Search (124 results, page 1 of 7)

  • × theme_ss:"Computerlinguistik"
  • × year_i:[2010 TO 2020}
  1. Schmolz, H.: Anaphora resolution and text retrieval : a lnguistic analysis of hypertexts (2015) 0.04
    0.03515436 = product of:
      0.05273154 = sum of:
        0.0066366266 = weight(_text_:a in 1172) [ClassicSimilarity], result of:
          0.0066366266 = score(doc=1172,freq=2.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.12739488 = fieldWeight in 1172, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.078125 = fieldNorm(doc=1172)
        0.046094913 = product of:
          0.092189826 = sum of:
            0.092189826 = weight(_text_:de in 1172) [ClassicSimilarity], result of:
              0.092189826 = score(doc=1172,freq=2.0), product of:
                0.19416152 = queryWeight, product of:
                  4.297489 = idf(docFreq=1634, maxDocs=44218)
                  0.045180224 = queryNorm
                0.47480997 = fieldWeight in 1172, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.297489 = idf(docFreq=1634, maxDocs=44218)
                  0.078125 = fieldNorm(doc=1172)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Imprint
    Berlin : De Gruyter Mouton
  2. Colace, F.; Santo, M. De; Greco, L.; Napoletano, P.: Weighted word pairs for query expansion (2015) 0.03
    0.029097255 = product of:
      0.04364588 = sum of:
        0.011379444 = weight(_text_:a in 2687) [ClassicSimilarity], result of:
          0.011379444 = score(doc=2687,freq=12.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.21843673 = fieldWeight in 2687, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2687)
        0.032266438 = product of:
          0.064532876 = sum of:
            0.064532876 = weight(_text_:de in 2687) [ClassicSimilarity], result of:
              0.064532876 = score(doc=2687,freq=2.0), product of:
                0.19416152 = queryWeight, product of:
                  4.297489 = idf(docFreq=1634, maxDocs=44218)
                  0.045180224 = queryNorm
                0.33236697 = fieldWeight in 2687, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.297489 = idf(docFreq=1634, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2687)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    This paper proposes a novel query expansion method to improve accuracy of text retrieval systems. Our method makes use of a minimal relevance feedback to expand the initial query with a structured representation composed of weighted pairs of words. Such a structure is obtained from the relevance feedback through a method for pairs of words selection based on the Probabilistic Topic Model. We compared our method with other baseline query expansion schemes and methods. Evaluations performed on TREC-8 demonstrated the effectiveness of the proposed method with respect to the baseline.
    Type
    a
  3. Budin, G.: Zum Entwicklungsstand der Terminologiewissenschaft (2019) 0.02
    0.024608051 = product of:
      0.036912076 = sum of:
        0.0046456386 = weight(_text_:a in 5604) [ClassicSimilarity], result of:
          0.0046456386 = score(doc=5604,freq=2.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.089176424 = fieldWeight in 5604, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0546875 = fieldNorm(doc=5604)
        0.032266438 = product of:
          0.064532876 = sum of:
            0.064532876 = weight(_text_:de in 5604) [ClassicSimilarity], result of:
              0.064532876 = score(doc=5604,freq=2.0), product of:
                0.19416152 = queryWeight, product of:
                  4.297489 = idf(docFreq=1634, maxDocs=44218)
                  0.045180224 = queryNorm
                0.33236697 = fieldWeight in 5604, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.297489 = idf(docFreq=1634, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=5604)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Footnote
    Vgl.: https://www.springer.com/de/book/9783662589489.
    Type
    a
  4. Clark, M.; Kim, Y.; Kruschwitz, U.; Song, D.; Albakour, D.; Dignum, S.; Beresi, U.C.; Fasli, M.; Roeck, A De: Automatically structuring domain knowledge from text : an overview of current research (2012) 0.02
    0.023747265 = product of:
      0.035620898 = sum of:
        0.007963953 = weight(_text_:a in 2738) [ClassicSimilarity], result of:
          0.007963953 = score(doc=2738,freq=8.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.15287387 = fieldWeight in 2738, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=2738)
        0.027656946 = product of:
          0.055313893 = sum of:
            0.055313893 = weight(_text_:de in 2738) [ClassicSimilarity], result of:
              0.055313893 = score(doc=2738,freq=2.0), product of:
                0.19416152 = queryWeight, product of:
                  4.297489 = idf(docFreq=1634, maxDocs=44218)
                  0.045180224 = queryNorm
                0.28488597 = fieldWeight in 2738, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.297489 = idf(docFreq=1634, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2738)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    This paper presents an overview of automatic methods for building domain knowledge structures (domain models) from text collections. Applications of domain models have a long history within knowledge engineering and artificial intelligence. In the last couple of decades they have surfaced noticeably as a useful tool within natural language processing, information retrieval and semantic web technology. Inspired by the ubiquitous propagation of domain model structures that are emerging in several research disciplines, we give an overview of the current research landscape and some techniques and approaches. We will also discuss trade-offs between different approaches and point to some recent trends.
    Type
    a
  5. Carrillo-de-Albornoz, J.; Plaza, L.: ¬An emotion-based model of negation, intensifiers, and modality for polarity and intensity classification (2013) 0.02
    0.021217927 = product of:
      0.03182689 = sum of:
        0.008779433 = weight(_text_:a in 1005) [ClassicSimilarity], result of:
          0.008779433 = score(doc=1005,freq=14.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.1685276 = fieldWeight in 1005, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1005)
        0.023047457 = product of:
          0.046094913 = sum of:
            0.046094913 = weight(_text_:de in 1005) [ClassicSimilarity], result of:
              0.046094913 = score(doc=1005,freq=2.0), product of:
                0.19416152 = queryWeight, product of:
                  4.297489 = idf(docFreq=1634, maxDocs=44218)
                  0.045180224 = queryNorm
                0.23740499 = fieldWeight in 1005, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.297489 = idf(docFreq=1634, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1005)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Negation, intensifiers, and modality are common linguistic constructions that may modify the emotional meaning of the text and therefore need to be taken into consideration in sentiment analysis. Negation is usually considered as a polarity shifter, whereas intensifiers are regarded as amplifiers or diminishers of the strength of such polarity. Modality, in turn, has only been addressed in a very naïve fashion, so that modal forms are treated as polarity blockers. However, processing these constructions as mere polarity modifiers may be adequate for polarity classification, but it is not enough for more complex tasks (e.g., intensity classification), for which a more fine-grained model based on emotions is needed. In this work, we study the effect of modifiers on the emotions affected by them and propose a model of negation, intensifiers, and modality especially conceived for sentiment analysis tasks. We compare our emotion-based strategy with two traditional approaches based on polar expressions and find that representing the text as a set of emotions increases accuracy in different classification tasks and that this representation allows for a more accurate modeling of modifiers that results in further classification improvements. We also study the most common uses of modifiers in opinionated texts and quantify their impact in polarity and intensity classification. Finally, we analyze the joint effect of emotional modifiers and find that interesting synergies exist between them.
    Type
    a
  6. Collovini de Abreu, S.; Vieira, R.: RelP: Portuguese open relation extraction (2017) 0.02
    0.021217927 = product of:
      0.03182689 = sum of:
        0.008779433 = weight(_text_:a in 3621) [ClassicSimilarity], result of:
          0.008779433 = score(doc=3621,freq=14.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.1685276 = fieldWeight in 3621, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3621)
        0.023047457 = product of:
          0.046094913 = sum of:
            0.046094913 = weight(_text_:de in 3621) [ClassicSimilarity], result of:
              0.046094913 = score(doc=3621,freq=2.0), product of:
                0.19416152 = queryWeight, product of:
                  4.297489 = idf(docFreq=1634, maxDocs=44218)
                  0.045180224 = queryNorm
                0.23740499 = fieldWeight in 3621, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.297489 = idf(docFreq=1634, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3621)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Natural language texts are valuable data sources in many human activities. NLP techniques are being widely used in order to help find the right information to specific needs. In this paper, we present one such technique: relation extraction from texts. This task aims at identifying and classifying semantic relations that occur between entities in a text. For example, the sentence "Roberto Marinho is the founder of Rede Globo" expresses a relation occurring between "Roberto Marinho" and "Rede Globo." This work presents a system for Portuguese Open Relation Extraction, named RelP, which extracts any relation descriptor that describes an explicit relation between named entities in the organisation domain by applying the Conditional Random Fields. For implementing RelP, we define the representation scheme, features based on previous work, and a reference corpus. RelP achieved state of the art results for open relation extraction; the F-measure rate was around 60% between the named entities person, organisation and place. For better understanding of the output, we present a way for organizing the output from the mining of the extracted relation descriptors. This organization can be useful to classify relation types, to cluster the entities involved in a common relation and to populate datasets.
    Type
    a
  7. Endres-Niggemeyer, B.: Thinkie: Lautes Denken mit Spracherkennung (mobil) (2013) 0.02
    0.021092616 = product of:
      0.031638924 = sum of:
        0.0039819763 = weight(_text_:a in 1145) [ClassicSimilarity], result of:
          0.0039819763 = score(doc=1145,freq=2.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.07643694 = fieldWeight in 1145, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=1145)
        0.027656946 = product of:
          0.055313893 = sum of:
            0.055313893 = weight(_text_:de in 1145) [ClassicSimilarity], result of:
              0.055313893 = score(doc=1145,freq=2.0), product of:
                0.19416152 = queryWeight, product of:
                  4.297489 = idf(docFreq=1634, maxDocs=44218)
                  0.045180224 = queryNorm
                0.28488597 = fieldWeight in 1145, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.297489 = idf(docFreq=1634, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1145)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Lautes Denken ist eine bewährte Methode zum Erforschen kognitiver Prozesse. Es wird in vielen Disziplinen benutzt, z. B. um aufzudecken, welche Erfahrungen Benutzer bei der Interaktion mit Computerschnittstellen machen. Nach einer kurzen Erklärung des Lauten Denkens wird die App Thinkie vorgestellt. Thinkie ist eine mobile Lösung für das Laute Denken auf iPhone und iPad. Die Testperson nimmt auf dem iPhone den Ton auf. Die Spracherkennungssoftware Siri (http://www.apple.com/de/ios/siri/) transkribiert ihn. Parallel wird auf dem iPad oder einem anderen Gerät gefilmt. Auf dem iPad kann man - mit Video im Blick - das Transkript aufarbeiten und interpretieren. Die Textdateien transportiert Thinkie über eine Cloud-Kollektion, die Filme werden mit iTunes übertragen. Thinkie ist noch nicht tauglich für den praktischen Gebrauch. Noch sind die Sequenzen zu kurz, die Siri verarbeiten kann. Das wird sich ändern.
    Type
    a
  8. Mengel, T.: Wie viel Terminologiearbeit steckt in der Übersetzung der Dewey-Dezimalklassifikation? (2019) 0.02
    0.021092616 = product of:
      0.031638924 = sum of:
        0.0039819763 = weight(_text_:a in 5603) [ClassicSimilarity], result of:
          0.0039819763 = score(doc=5603,freq=2.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.07643694 = fieldWeight in 5603, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=5603)
        0.027656946 = product of:
          0.055313893 = sum of:
            0.055313893 = weight(_text_:de in 5603) [ClassicSimilarity], result of:
              0.055313893 = score(doc=5603,freq=2.0), product of:
                0.19416152 = queryWeight, product of:
                  4.297489 = idf(docFreq=1634, maxDocs=44218)
                  0.045180224 = queryNorm
                0.28488597 = fieldWeight in 5603, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.297489 = idf(docFreq=1634, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5603)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Footnote
    Vgl.: https://www.springer.com/de/book/9783662589489.
    Type
    a
  9. Lawrie, D.; Mayfield, J.; McNamee, P.; Oard, P.W.: Cross-language person-entity linking from 20 languages (2015) 0.02
    0.017551895 = product of:
      0.026327841 = sum of:
        0.007963953 = weight(_text_:a in 1848) [ClassicSimilarity], result of:
          0.007963953 = score(doc=1848,freq=8.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.15287387 = fieldWeight in 1848, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=1848)
        0.01836389 = product of:
          0.03672778 = sum of:
            0.03672778 = weight(_text_:22 in 1848) [ClassicSimilarity], result of:
              0.03672778 = score(doc=1848,freq=2.0), product of:
                0.15821345 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045180224 = queryNorm
                0.23214069 = fieldWeight in 1848, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1848)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    The goal of entity linking is to associate references to an entity that is found in unstructured natural language content to an authoritative inventory of known entities. This article describes the construction of 6 test collections for cross-language person-entity linking that together span 22 languages. Fully automated components were used together with 2 crowdsourced validation stages to affordably generate ground-truth annotations with an accuracy comparable to that of a completely manual process. The resulting test collections each contain between 642 (Arabic) and 2,361 (Romanian) person references in non-English texts for which the correct resolution in English Wikipedia is known, plus a similar number of references for which no correct resolution into English Wikipedia is believed to exist. Fully automated cross-language person-name linking experiments with 20 non-English languages yielded a resolution accuracy of between 0.84 (Serbian) and 0.98 (Romanian), which compares favorably with previously reported cross-language entity linking results for Spanish.
    Type
    a
  10. Huo, W.: Automatic multi-word term extraction and its application to Web-page summarization (2012) 0.02
    0.016840585 = product of:
      0.025260875 = sum of:
        0.006896985 = weight(_text_:a in 563) [ClassicSimilarity], result of:
          0.006896985 = score(doc=563,freq=6.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.13239266 = fieldWeight in 563, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=563)
        0.01836389 = product of:
          0.03672778 = sum of:
            0.03672778 = weight(_text_:22 in 563) [ClassicSimilarity], result of:
              0.03672778 = score(doc=563,freq=2.0), product of:
                0.15821345 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045180224 = queryNorm
                0.23214069 = fieldWeight in 563, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=563)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    In this thesis we propose three new word association measures for multi-word term extraction. We combine these association measures with LocalMaxs algorithm in our extraction model and compare the results of different multi-word term extraction methods. Our approach is language and domain independent and requires no training data. It can be applied to such tasks as text summarization, information retrieval, and document classification. We further explore the potential of using multi-word terms as an effective representation for general web-page summarization. We extract multi-word terms from human written summaries in a large collection of web-pages, and generate the summaries by aligning document words with these multi-word terms. Our system applies machine translation technology to learn the aligning process from a training set and focuses on selecting high quality multi-word terms from human written summaries to generate suitable results for web-page summarization.
    Content
    A Thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Master of Science in Computer Science. Vgl. Unter: http://www.inf.ufrgs.br%2F~ceramisch%2Fdownload_files%2Fpublications%2F2009%2Fp01.pdf.
    Date
    10. 1.2013 19:22:47
  11. Fóris, A.: Network theory and terminology (2013) 0.02
    0.016055118 = product of:
      0.024082676 = sum of:
        0.008779433 = weight(_text_:a in 1365) [ClassicSimilarity], result of:
          0.008779433 = score(doc=1365,freq=14.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.1685276 = fieldWeight in 1365, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1365)
        0.015303242 = product of:
          0.030606484 = sum of:
            0.030606484 = weight(_text_:22 in 1365) [ClassicSimilarity], result of:
              0.030606484 = score(doc=1365,freq=2.0), product of:
                0.15821345 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045180224 = queryNorm
                0.19345059 = fieldWeight in 1365, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1365)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    The paper aims to present the relations of network theory and terminology. The model of scale-free networks, which has been recently developed and widely applied since, can be effectively used in terminology research as well. Operation based on the principle of networks is a universal characteristic of complex systems. Networks are governed by general laws. The model of scale-free networks can be viewed as a statistical-probability model, and it can be described with mathematical tools. Its main feature is that "everything is connected to everything else," that is, every node is reachable (in a few steps) starting from any other node; this phenomena is called "the small world phenomenon." The existence of a linguistic network and the general laws of the operation of networks enable us to place issues of language use in the complex system of relations that reveal the deeper connection s between phenomena with the help of networks embedded in each other. The realization of the metaphor that language also has a network structure is the basis of the classification methods of the terminological system, and likewise of the ways of creating terminology databases, which serve the purpose of providing easy and versatile accessibility to specialised knowledge.
    Date
    2. 9.2014 21:22:48
    Type
    a
  12. Deventer, J.P. van; Kruger, C.J.; Johnson, R.D.: Delineating knowledge management through lexical analysis : a retrospective (2015) 0.01
    0.011238582 = product of:
      0.016857874 = sum of:
        0.006145603 = weight(_text_:a in 3807) [ClassicSimilarity], result of:
          0.006145603 = score(doc=3807,freq=14.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.11796933 = fieldWeight in 3807, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.02734375 = fieldNorm(doc=3807)
        0.01071227 = product of:
          0.02142454 = sum of:
            0.02142454 = weight(_text_:22 in 3807) [ClassicSimilarity], result of:
              0.02142454 = score(doc=3807,freq=2.0), product of:
                0.15821345 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045180224 = queryNorm
                0.1354154 = fieldWeight in 3807, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=3807)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Purpose Academic authors tend to define terms that meet their own needs. Knowledge Management (KM) is a term that comes to mind and is examined in this study. Lexicographical research identified KM terms used by authors from 1996 to 2006 in academic outlets to define KM. Data were collected based on strict criteria which included that definitions should be unique instances. From 2006 onwards, these authors could not identify new unique instances of definitions with repetitive usage of such definition instances. Analysis revealed that KM is directly defined by People (Person and Organisation), Processes (Codify, Share, Leverage, and Process) and Contextualised Content (Information). The paper aims to discuss these issues. Design/methodology/approach The aim of this paper is to add to the body of knowledge in the KM discipline and supply KM practitioners and scholars with insight into what is commonly regarded to be KM so as to reignite the debate on what one could consider as KM. The lexicon used by KM scholars was evaluated though the application of lexicographical research methods as extended though Knowledge Discovery and Text Analysis methods. Findings By simplifying term relationships through the application of lexicographical research methods, as extended though Knowledge Discovery and Text Analysis methods, it was found that KM is directly defined by People (Person and Organisation), Processes (Codify, Share, Leverage, Process) and Contextualised Content (Information). One would therefore be able to indicate that KM, from an academic point of view, refers to people processing contextualised content.
    Research limitations/implications In total, 42 definitions were identified spanning a period of 11 years. This represented the first use of KM through the estimated apex of terms used. From 2006 onwards definitions were used in repetition, and all definitions that were considered to repeat were therefore subsequently excluded as not being unique instances. All definitions listed are by no means complete and exhaustive. The definitions are viewed outside the scope and context in which they were originally formulated and then used to review the key concepts in the definitions themselves. Social implications When the authors refer to the aforementioned discussion of KM content as well as the presentation of the method followed in this paper, the authors may have a few implications for future research in KM. First the research validates ideas presented by the OECD in 2005 pertaining to KM. It also validates that through the evolution of KM, the authors ended with a description of KM that may be seen as a standardised description. If the authors as academics and practitioners, for example, refer to KM as the same construct and/or idea, it has the potential to speculatively, distinguish between what KM may or may not be. Originality/value By simplifying the term used to define KM, by focusing on the most common definitions, the paper assist in refocusing KM by reconsidering the dimensions that is the most common in how it has been defined over time. This would hopefully assist in reigniting discussions about KM and how it may be used to the benefit of an organisation.
    Date
    20. 1.2015 18:30:22
    Isbn
    a
  13. Rötzer, F.: KI-Programm besser als Menschen im Verständnis natürlicher Sprache (2018) 0.01
    0.009931496 = product of:
      0.014897244 = sum of:
        0.0026546507 = weight(_text_:a in 4217) [ClassicSimilarity], result of:
          0.0026546507 = score(doc=4217,freq=2.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.050957955 = fieldWeight in 4217, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.03125 = fieldNorm(doc=4217)
        0.012242594 = product of:
          0.024485188 = sum of:
            0.024485188 = weight(_text_:22 in 4217) [ClassicSimilarity], result of:
              0.024485188 = score(doc=4217,freq=2.0), product of:
                0.15821345 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045180224 = queryNorm
                0.15476047 = fieldWeight in 4217, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4217)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Date
    22. 1.2018 11:32:44
    Type
    a
  14. Lezius, W.: Morphy - Morphologie und Tagging für das Deutsche (2013) 0.01
    0.008161729 = product of:
      0.024485188 = sum of:
        0.024485188 = product of:
          0.048970375 = sum of:
            0.048970375 = weight(_text_:22 in 1490) [ClassicSimilarity], result of:
              0.048970375 = score(doc=1490,freq=2.0), product of:
                0.15821345 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045180224 = queryNorm
                0.30952093 = fieldWeight in 1490, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1490)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    22. 3.2015 9:30:24
  15. Terminologie : Epochen - Schwerpunkte - Umsetzungen : zum 25-jährigen Bestehen des Rats für Deutschsprachige Terminologie (2019) 0.01
    0.0076824855 = product of:
      0.023047457 = sum of:
        0.023047457 = product of:
          0.046094913 = sum of:
            0.046094913 = weight(_text_:de in 5602) [ClassicSimilarity], result of:
              0.046094913 = score(doc=5602,freq=2.0), product of:
                0.19416152 = queryWeight, product of:
                  4.297489 = idf(docFreq=1634, maxDocs=44218)
                  0.045180224 = queryNorm
                0.23740499 = fieldWeight in 5602, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.297489 = idf(docFreq=1634, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5602)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Footnote
    Vgl.: https://www.springer.com/de/book/9783662589489.
  16. Vechtomova, O.: ¬A method for automatic extraction of multiword units representing business aspects from user reviews (2014) 0.00
    0.0045979903 = product of:
      0.01379397 = sum of:
        0.01379397 = weight(_text_:a in 1304) [ClassicSimilarity], result of:
          0.01379397 = score(doc=1304,freq=24.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.26478532 = fieldWeight in 1304, product of:
              4.8989797 = tf(freq=24.0), with freq of:
                24.0 = termFreq=24.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=1304)
      0.33333334 = coord(1/3)
    
    Abstract
    The article describes a semi-supervised approach to extracting multiword aspects of user-written reviews that belong to a given category. The method starts with a small set of seed words, representing the target category, and calculates distributional similarity between the candidate and seed words. We compare 3 distributional similarity measures (Lin's, Weeds's, and balAPinc), and a document retrieval function, BM25, adapted as a word similarity measure. We then introduce a method for identifying multiword aspects by using a combination of syntactic rules and a co-occurrence association measure. Finally, we describe a method for ranking multiword aspects by the likelihood of belonging to the target aspect category. The task used for evaluation is extraction of restaurant dish names from a corpus of restaurant reviews.
    Type
    a
  17. Rettinger, A.; Schumilin, A.; Thoma, S.; Ell, B.: Learning a cross-lingual semantic representation of relations expressed in text (2015) 0.00
    0.004424418 = product of:
      0.013273253 = sum of:
        0.013273253 = weight(_text_:a in 2027) [ClassicSimilarity], result of:
          0.013273253 = score(doc=2027,freq=8.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.25478977 = fieldWeight in 2027, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.078125 = fieldNorm(doc=2027)
      0.33333334 = coord(1/3)
    
    Type
    a
  18. Kiela, D.; Clark, S.: Detecting compositionality of multi-word expressions using nearest neighbours in vector space models (2013) 0.00
    0.00395732 = product of:
      0.01187196 = sum of:
        0.01187196 = weight(_text_:a in 1161) [ClassicSimilarity], result of:
          0.01187196 = score(doc=1161,freq=10.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.22789092 = fieldWeight in 1161, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0625 = fieldNorm(doc=1161)
      0.33333334 = coord(1/3)
    
    Abstract
    We present a novel unsupervised approach to detecting the compositionality of multi-word expressions. We compute the compositionality of a phrase through substituting the constituent words with their "neighbours" in a semantic vector space and averaging over the distance between the original phrase and the substituted neighbour phrases. Several methods of obtaining neighbours are presented. The results are compared to existing supervised results and achieve state-of-the-art performance on a verb-object dataset of human compositionality ratings.
    Type
    a
  19. Vasalou, A.; Gill, A.J.; Mazanderani, F.; Papoutsi, C.; Joinson, A.: Privacy dictionary : a new resource for the automated content analysis of privacy (2011) 0.00
    0.003754243 = product of:
      0.011262729 = sum of:
        0.011262729 = weight(_text_:a in 4915) [ClassicSimilarity], result of:
          0.011262729 = score(doc=4915,freq=16.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.2161963 = fieldWeight in 4915, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=4915)
      0.33333334 = coord(1/3)
    
    Abstract
    This article presents the privacy dictionary, a new linguistic resource for automated content analysis on privacy-related texts. To overcome the definitional challenges inherent in privacy research, the dictionary was informed by an inclusive set of relevant theoretical perspectives. Using methods from corpus linguistics, we constructed and validated eight dictionary categories on empirical material from a wide range of privacy-sensitive contexts. It was shown that the dictionary categories are able to measure unique linguistic patterns within privacy discussions. At a time when privacy considerations are increasing and online resources provide ever-growing quantities of textual data, the privacy dictionary can play a significant role not only for research in the social sciences but also in technology design and policymaking.
    Type
    a
  20. Biselli, A.: Unter Generalverdacht durch Algorithmen (2014) 0.00
    0.003754243 = product of:
      0.011262729 = sum of:
        0.011262729 = weight(_text_:a in 809) [ClassicSimilarity], result of:
          0.011262729 = score(doc=809,freq=4.0), product of:
            0.05209492 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.045180224 = queryNorm
            0.2161963 = fieldWeight in 809, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.09375 = fieldNorm(doc=809)
      0.33333334 = coord(1/3)
    
    Type
    a

Languages

  • e 95
  • d 27
  • el 1
  • More… Less…

Types

  • a 106
  • el 25
  • m 6
  • x 5
  • s 3
  • More… Less…