Search (115 results, page 1 of 6)

  • × theme_ss:"Automatisches Abstracting"
  1. Vanderwende, L.; Suzuki, H.; Brockett, J.M.; Nenkova, A.: Beyond SumBasic : task-focused summarization with sentence simplification and lexical expansion (2007) 0.03
    0.032469407 = product of:
      0.06493881 = sum of:
        0.06493881 = sum of:
          0.009017859 = weight(_text_:a in 948) [ClassicSimilarity], result of:
            0.009017859 = score(doc=948,freq=10.0), product of:
              0.052761257 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.045758117 = queryNorm
              0.1709182 = fieldWeight in 948, product of:
                3.1622777 = tf(freq=10.0), with freq of:
                  10.0 = termFreq=10.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.046875 = fieldNorm(doc=948)
          0.018723397 = weight(_text_:h in 948) [ClassicSimilarity], result of:
            0.018723397 = score(doc=948,freq=2.0), product of:
              0.113683715 = queryWeight, product of:
                2.4844491 = idf(docFreq=10020, maxDocs=44218)
                0.045758117 = queryNorm
              0.16469726 = fieldWeight in 948, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                2.4844491 = idf(docFreq=10020, maxDocs=44218)
                0.046875 = fieldNorm(doc=948)
          0.03719756 = weight(_text_:22 in 948) [ClassicSimilarity], result of:
            0.03719756 = score(doc=948,freq=2.0), product of:
              0.16023713 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.045758117 = queryNorm
              0.23214069 = fieldWeight in 948, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=948)
      0.5 = coord(1/2)
    
    Abstract
    In recent years, there has been increased interest in topic-focused multi-document summarization. In this task, automatic summaries are produced in response to a specific information request, or topic, stated by the user. The system we have designed to accomplish this task comprises four main components: a generic extractive summarization system, a topic-focusing component, sentence simplification, and lexical expansion of topic words. This paper details each of these components, together with experiments designed to quantify their individual contributions. We include an analysis of our results on two large datasets commonly used to evaluate task-focused summarization, the DUC2005 and DUC2006 datasets, using automatic metrics. Additionally, we include an analysis of our results on the DUC2006 task according to human evaluation metrics. In the human evaluation of system summaries compared to human summaries, i.e., the Pyramid method, our system ranked first out of 22 systems in terms of overall mean Pyramid score; and in the human evaluation of summary responsiveness to the topic, our system ranked third out of 35 systems.
    Type
    a
  2. Oh, H.; Nam, S.; Zhu, Y.: Structured abstract summarization of scientific articles : summarization using full-text section information (2023) 0.03
    0.027746264 = product of:
      0.055492528 = sum of:
        0.055492528 = sum of:
          0.008891728 = weight(_text_:a in 889) [ClassicSimilarity], result of:
            0.008891728 = score(doc=889,freq=14.0), product of:
              0.052761257 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.045758117 = queryNorm
              0.1685276 = fieldWeight in 889, product of:
                3.7416575 = tf(freq=14.0), with freq of:
                  14.0 = termFreq=14.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.0390625 = fieldNorm(doc=889)
          0.015602832 = weight(_text_:h in 889) [ClassicSimilarity], result of:
            0.015602832 = score(doc=889,freq=2.0), product of:
              0.113683715 = queryWeight, product of:
                2.4844491 = idf(docFreq=10020, maxDocs=44218)
                0.045758117 = queryNorm
              0.13724773 = fieldWeight in 889, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                2.4844491 = idf(docFreq=10020, maxDocs=44218)
                0.0390625 = fieldNorm(doc=889)
          0.030997967 = weight(_text_:22 in 889) [ClassicSimilarity], result of:
            0.030997967 = score(doc=889,freq=2.0), product of:
              0.16023713 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.045758117 = queryNorm
              0.19345059 = fieldWeight in 889, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=889)
      0.5 = coord(1/2)
    
    Abstract
    The automatic summarization of scientific articles differs from other text genres because of the structured format and longer text length. Previous approaches have focused on tackling the lengthy nature of scientific articles, aiming to improve the computational efficiency of summarizing long text using a flat, unstructured abstract. However, the structured format of scientific articles and characteristics of each section have not been fully explored, despite their importance. The lack of a sufficient investigation and discussion of various characteristics for each section and their influence on summarization results has hindered the practical use of automatic summarization for scientific articles. To provide a balanced abstract proportionally emphasizing each section of a scientific article, the community introduced the structured abstract, an abstract with distinct, labeled sections. Using this information, in this study, we aim to understand tasks ranging from data preparation to model evaluation from diverse viewpoints. Specifically, we provide a preprocessed large-scale dataset and propose a summarization method applying the introduction, methods, results, and discussion (IMRaD) format reflecting the characteristics of each section. We also discuss the objective benchmarks and perspectives of state-of-the-art algorithms and present the challenges and research directions in this area.
    Date
    22. 1.2023 18:57:12
    Type
    a
  3. Goh, A.; Hui, S.C.: TES: a text extraction system (1996) 0.02
    0.021601934 = product of:
      0.043203868 = sum of:
        0.043203868 = product of:
          0.0648058 = sum of:
            0.015209052 = weight(_text_:a in 6599) [ClassicSimilarity], result of:
              0.015209052 = score(doc=6599,freq=16.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.28826174 = fieldWeight in 6599, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=6599)
            0.049596746 = weight(_text_:22 in 6599) [ClassicSimilarity], result of:
              0.049596746 = score(doc=6599,freq=2.0), product of:
                0.16023713 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045758117 = queryNorm
                0.30952093 = fieldWeight in 6599, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=6599)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Abstract
    With the onset of the information explosion arising from digital libraries and access to a wealth of information through the Internet, the need to efficiently determine the relevance of a document becomes even more urgent. Describes a text extraction system (TES), which retrieves a set of sentences from a document to form an indicative abstract. Such an automated process enables information to be filtered more quickly. Discusses the combination of various text extraction techniques. Compares results with manually produced abstracts
    Date
    26. 2.1997 10:22:43
    Type
    a
  4. Robin, J.; McKeown, K.: Empirically designing and evaluating a new revision-based model for summary generation (1996) 0.02
    0.020922724 = product of:
      0.04184545 = sum of:
        0.04184545 = product of:
          0.06276817 = sum of:
            0.013171425 = weight(_text_:a in 6751) [ClassicSimilarity], result of:
              0.013171425 = score(doc=6751,freq=12.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.24964198 = fieldWeight in 6751, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=6751)
            0.049596746 = weight(_text_:22 in 6751) [ClassicSimilarity], result of:
              0.049596746 = score(doc=6751,freq=2.0), product of:
                0.16023713 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045758117 = queryNorm
                0.30952093 = fieldWeight in 6751, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=6751)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Abstract
    Presents a system for summarizing quantitative data in natural language, focusing on the use of a corpus of basketball game summaries, drawn from online news services, to empirically shape the system design and to evaluate the approach. Initial corpus analysis revealed characteristics of textual summaries that challenge the capabilities of current language generation systems. A revision based corpus analysis was used to identify and encode the revision rules of the system. Presents a quantitative evaluation, using several test corpora, to measure the robustness of the new revision based model
    Date
    6. 3.1997 16:22:15
    Type
    a
  5. Jones, P.A.; Bradbeer, P.V.G.: Discovery of optimal weights in a concept selection system (1996) 0.02
    0.020117057 = product of:
      0.040234115 = sum of:
        0.040234115 = product of:
          0.06035117 = sum of:
            0.010754423 = weight(_text_:a in 6974) [ClassicSimilarity], result of:
              0.010754423 = score(doc=6974,freq=8.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.20383182 = fieldWeight in 6974, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=6974)
            0.049596746 = weight(_text_:22 in 6974) [ClassicSimilarity], result of:
              0.049596746 = score(doc=6974,freq=2.0), product of:
                0.16023713 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045758117 = queryNorm
                0.30952093 = fieldWeight in 6974, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=6974)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Abstract
    Describes the application of weighting strategies to model uncertainties and probabilities in automatic abstracting systems, particularly in the concept selection phase. The weights were originally assigned in an ad hoc manner and were then refined by manual analysis of the results. The new method attempts to derive a more systematic methods and performs this using a genetic algorithm
    Source
    Information retrieval: new systems and current research. Proceedings of the 16th Research Colloquium of the British Computer Society Information Retrieval Specialist Group, Drymen, Scotland, 22-23 Mar 94. Ed.: R. Leon
    Type
    a
  6. Endres-Niggemeyer, B.: ¬An empirical process model of abstracting (1992) 0.02
    0.01628453 = product of:
      0.03256906 = sum of:
        0.03256906 = product of:
          0.048853584 = sum of:
            0.011406789 = weight(_text_:a in 8834) [ClassicSimilarity], result of:
              0.011406789 = score(doc=8834,freq=4.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.2161963 = fieldWeight in 8834, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.09375 = fieldNorm(doc=8834)
            0.037446793 = weight(_text_:h in 8834) [ClassicSimilarity], result of:
              0.037446793 = score(doc=8834,freq=2.0), product of:
                0.113683715 = queryWeight, product of:
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.045758117 = queryNorm
                0.32939452 = fieldWeight in 8834, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.09375 = fieldNorm(doc=8834)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Source
    Mensch und Maschine: Informationelle Schnittstellen der Kommunikation. Proc. des 3. Int. Symposiums für Informationswissenschaft (ISI'92), 5.-7.11.1992 in Saarbrücken. Hrsg.: H.H. Zimmermann, H.-D. Luckhardt u. A. Schulz
    Type
    a
  7. Haag, M.: Automatic text summarization (2002) 0.02
    0.01517087 = product of:
      0.03034174 = sum of:
        0.03034174 = product of:
          0.04551261 = sum of:
            0.008065818 = weight(_text_:a in 5662) [ClassicSimilarity], result of:
              0.008065818 = score(doc=5662,freq=2.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.15287387 = fieldWeight in 5662, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.09375 = fieldNorm(doc=5662)
            0.037446793 = weight(_text_:h in 5662) [ClassicSimilarity], result of:
              0.037446793 = score(doc=5662,freq=2.0), product of:
                0.113683715 = queryWeight, product of:
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.045758117 = queryNorm
                0.32939452 = fieldWeight in 5662, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.09375 = fieldNorm(doc=5662)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Source
    Information - Wissenschaft und Praxis. 53(2002) H.4, 243-244
    Type
    a
  8. Wu, Y.-f.B.; Li, Q.; Bot, R.S.; Chen, X.: Finding nuggets in documents : a machine learning approach (2006) 0.01
    0.013875205 = product of:
      0.02775041 = sum of:
        0.02775041 = product of:
          0.041625615 = sum of:
            0.010627648 = weight(_text_:a in 5290) [ClassicSimilarity], result of:
              0.010627648 = score(doc=5290,freq=20.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.20142901 = fieldWeight in 5290, product of:
                  4.472136 = tf(freq=20.0), with freq of:
                    20.0 = termFreq=20.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5290)
            0.030997967 = weight(_text_:22 in 5290) [ClassicSimilarity], result of:
              0.030997967 = score(doc=5290,freq=2.0), product of:
                0.16023713 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045758117 = queryNorm
                0.19345059 = fieldWeight in 5290, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5290)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Abstract
    Document keyphrases provide a concise summary of a document's content, offering semantic metadata summarizing a document. They can be used in many applications related to knowledge management and text mining, such as automatic text summarization, development of search engines, document clustering, document classification, thesaurus construction, and browsing interfaces. Because only a small portion of documents have keyphrases assigned by authors, and it is time-consuming and costly to manually assign keyphrases to documents, it is necessary to develop an algorithm to automatically generate keyphrases for documents. This paper describes a Keyphrase Identification Program (KIP), which extracts document keyphrases by using prior positive samples of human identified phrases to assign weights to the candidate keyphrases. The logic of our algorithm is: The more keywords a candidate keyphrase contains and the more significant these keywords are, the more likely this candidate phrase is a keyphrase. KIP's learning function can enrich the glossary database by automatically adding new identified keyphrases to the database. KIP's personalization feature will let the user build a glossary database specifically suitable for the area of his/her interest. The evaluation results show that KIP's performance is better than the systems we compared to and that the learning function is effective.
    Date
    22. 7.2006 17:25:48
    Type
    a
  9. Chen, H.-H.; Kuo, J.-J.; Huang, S.-J.; Lin, C.-J.; Wung, H.-C.: ¬A summarization system for Chinese news from multiple sources (2003) 0.01
    0.013815912 = product of:
      0.027631825 = sum of:
        0.027631825 = product of:
          0.041447736 = sum of:
            0.009017859 = weight(_text_:a in 2115) [ClassicSimilarity], result of:
              0.009017859 = score(doc=2115,freq=10.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.1709182 = fieldWeight in 2115, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2115)
            0.032429878 = weight(_text_:h in 2115) [ClassicSimilarity], result of:
              0.032429878 = score(doc=2115,freq=6.0), product of:
                0.113683715 = queryWeight, product of:
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.045758117 = queryNorm
                0.28526405 = fieldWeight in 2115, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2115)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Abstract
    This article proposes a summarization system for multiple documents. It employs not only named entities and other signatures to cluster news from different sources, but also employs punctuation marks, linking elements, and topic chains to identify the meaningful units (MUs). Using nouns and verbs to identify the similar MUs, focusing and browsing models are applied to represent the summarization results. To reduce information loss during summarization, informative words in a document are introduced. For the evaluation, a question answering system (QA system) is proposed to substitute the human assessors. In large-scale experiments containing 140 questions to 17,877 documents, the results show that those models using informative words outperform pure heuristic voting-only strategy by news reporters. This model can be easily further applied to summarize multilingual news from multiple sources.
    Type
    a
  10. Kim, H.H.; Kim, Y.H.: Generic speech summarization of transcribed lecture videos : using tags and their semantic relations (2016) 0.01
    0.012837617 = product of:
      0.025675233 = sum of:
        0.025675233 = product of:
          0.03851285 = sum of:
            0.007514882 = weight(_text_:a in 2640) [ClassicSimilarity], result of:
              0.007514882 = score(doc=2640,freq=10.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.14243183 = fieldWeight in 2640, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2640)
            0.030997967 = weight(_text_:22 in 2640) [ClassicSimilarity], result of:
              0.030997967 = score(doc=2640,freq=2.0), product of:
                0.16023713 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045758117 = queryNorm
                0.19345059 = fieldWeight in 2640, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2640)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Abstract
    We propose a tag-based framework that simulates human abstractors' ability to select significant sentences based on key concepts in a sentence as well as the semantic relations between key concepts to create generic summaries of transcribed lecture videos. The proposed extractive summarization method uses tags (viewer- and author-assigned terms) as key concepts. Our method employs Flickr tag clusters and WordNet synonyms to expand tags and detect the semantic relations between tags. This method helps select sentences that have a greater number of semantically related key concepts. To investigate the effectiveness and uniqueness of the proposed method, we compare it with an existing technique, latent semantic analysis (LSA), using intrinsic and extrinsic evaluations. The results of intrinsic evaluation show that the tag-based method is as or more effective than the LSA method. We also observe that in the extrinsic evaluation, the grand mean accuracy score of the tag-based method is higher than that of the LSA method, with a statistically significant difference. Elaborating on our results, we discuss the theoretical and practical implications of our findings for speech video summarization and retrieval.
    Date
    22. 1.2016 12:29:41
    Type
    a
  11. Jiang, Y.; Meng, R.; Huang, Y.; Lu, W.; Liu, J.: Generating keyphrases for readers : a controllable keyphrase generation framework (2023) 0.01
    0.012837617 = product of:
      0.025675233 = sum of:
        0.025675233 = product of:
          0.03851285 = sum of:
            0.007514882 = weight(_text_:a in 1012) [ClassicSimilarity], result of:
              0.007514882 = score(doc=1012,freq=10.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.14243183 = fieldWeight in 1012, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1012)
            0.030997967 = weight(_text_:22 in 1012) [ClassicSimilarity], result of:
              0.030997967 = score(doc=1012,freq=2.0), product of:
                0.16023713 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045758117 = queryNorm
                0.19345059 = fieldWeight in 1012, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1012)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Abstract
    With the wide application of keyphrases in many Information Retrieval (IR) and Natural Language Processing (NLP) tasks, automatic keyphrase prediction has been emerging. However, these statistically important phrases are contributing increasingly less to the related tasks because the end-to-end learning mechanism enables models to learn the important semantic information of the text directly. Similarly, keyphrases are of little help for readers to quickly grasp the paper's main idea because the relationship between the keyphrase and the paper is not explicit to readers. Therefore, we propose to generate keyphrases with specific functions for readers to bridge the semantic gap between them and the information producers, and verify the effectiveness of the keyphrase function for assisting users' comprehension with a user experiment. A controllable keyphrase generation framework (the CKPG) that uses the keyphrase function as a control code to generate categorized keyphrases is proposed and implemented based on Transformer, BART, and T5, respectively. For the Computer Science domain, the Macro-avgs of , , and on the Paper with Code dataset are up to 0.680, 0.535, and 0.558, respectively. Our experimental results indicate the effectiveness of the CKPG models.
    Date
    22. 6.2023 14:55:20
    Type
    a
  12. Su, H.: Automatic abstracting (1996) 0.01
    0.012642393 = product of:
      0.025284786 = sum of:
        0.025284786 = product of:
          0.037927177 = sum of:
            0.0067215143 = weight(_text_:a in 150) [ClassicSimilarity], result of:
              0.0067215143 = score(doc=150,freq=2.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.12739488 = fieldWeight in 150, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.078125 = fieldNorm(doc=150)
            0.031205663 = weight(_text_:h in 150) [ClassicSimilarity], result of:
              0.031205663 = score(doc=150,freq=2.0), product of:
                0.113683715 = queryWeight, product of:
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.045758117 = queryNorm
                0.27449545 = fieldWeight in 150, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.078125 = fieldNorm(doc=150)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Type
    a
  13. Over, P.; Dang, H.; Harman, D.: DUC in context (2007) 0.01
    0.010856352 = product of:
      0.021712704 = sum of:
        0.021712704 = product of:
          0.032569055 = sum of:
            0.007604526 = weight(_text_:a in 934) [ClassicSimilarity], result of:
              0.007604526 = score(doc=934,freq=4.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.14413087 = fieldWeight in 934, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=934)
            0.02496453 = weight(_text_:h in 934) [ClassicSimilarity], result of:
              0.02496453 = score(doc=934,freq=2.0), product of:
                0.113683715 = queryWeight, product of:
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.045758117 = queryNorm
                0.21959636 = fieldWeight in 934, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.0625 = fieldNorm(doc=934)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Abstract
    Recent years have seen increased interest in text summarization with emphasis on evaluation of prototype systems. Many factors can affect the design of such evaluations, requiring choices among competing alternatives. This paper examines several major themes running through three evaluations: SUMMAC, NTCIR, and DUC, with a concentration on DUC. The themes are extrinsic and intrinsic evaluation, evaluation procedures and methods, generic versus focused summaries, single- and multi-document summaries, length and compression issues, extracts versus abstracts, and issues with genre.
    Type
    a
  14. Yeh, J.-Y.; Ke, H.-R.; Yang, W.-P.; Meng, I.-H.: Text summarization using a trainable summarizer and latent semantic analysis (2005) 0.01
    0.010523799 = product of:
      0.021047598 = sum of:
        0.021047598 = product of:
          0.031571396 = sum of:
            0.0095056575 = weight(_text_:a in 1003) [ClassicSimilarity], result of:
              0.0095056575 = score(doc=1003,freq=16.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.18016359 = fieldWeight in 1003, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1003)
            0.022065736 = weight(_text_:h in 1003) [ClassicSimilarity], result of:
              0.022065736 = score(doc=1003,freq=4.0), product of:
                0.113683715 = queryWeight, product of:
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.045758117 = queryNorm
                0.1940976 = fieldWeight in 1003, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1003)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Abstract
    This paper proposes two approaches to address text summarization: modified corpus-based approach (MCBA) and LSA-based T.R.M. approach (LSA + T.R.M.). The first is a trainable summarizer, which takes into account several features, including position, positive keyword, negative keyword, centrality, and the resemblance to the title, to generate summaries. Two new ideas are exploited: (1) sentence positions are ranked to emphasize the significances of different sentence positions, and (2) the score function is trained by the genetic algorithm (GA) to obtain a suitable combination of feature weights. The second uses latent semantic analysis (LSA) to derive the semantic matrix of a document or a corpus and uses semantic sentence representation to construct a semantic text relationship map. We evaluate LSA + T.R.M. both with single documents and at the corpus level to investigate the competence of LSA in text summarization. The two novel approaches were measured at several compression rates on a data corpus composed of 100 political articles. When the compression rate was 30%, an average f-measure of 49% for MCBA, 52% for MCBA + GA, 44% and 40% for LSA + T.R.M. in single-document and corpus level were achieved respectively.
    Type
    a
  15. Saggion, H.; Lapalme, G.: Selective analysis for the automatic generation of summaries (2000) 0.01
    0.010418028 = product of:
      0.020836055 = sum of:
        0.020836055 = product of:
          0.031254083 = sum of:
            0.009410121 = weight(_text_:a in 132) [ClassicSimilarity], result of:
              0.009410121 = score(doc=132,freq=8.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.17835285 = fieldWeight in 132, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=132)
            0.021843962 = weight(_text_:h in 132) [ClassicSimilarity], result of:
              0.021843962 = score(doc=132,freq=2.0), product of:
                0.113683715 = queryWeight, product of:
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.045758117 = queryNorm
                0.19214681 = fieldWeight in 132, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=132)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Abstract
    Selective Analysis is a new method for text summarization of technical articles whose design is based on the study of a corpus of professional abstracts and technical documents The method emphasizes the selection of particular types of information and its elaboration exploring the issue of dynamical summarization. A computer prototype was developed to demonstrate the viability of the approach and the automatic abstracts were evaluated using human informants. The results so far obtained indicate that the summaries are acceptable in content and text quality
    Type
    a
  16. Deutsche Patentdatenbank mit maschinellen Abstract-Übersetzungen (2005) 0.01
    0.010113914 = product of:
      0.020227827 = sum of:
        0.020227827 = product of:
          0.03034174 = sum of:
            0.0053772116 = weight(_text_:a in 3344) [ClassicSimilarity], result of:
              0.0053772116 = score(doc=3344,freq=2.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.10191591 = fieldWeight in 3344, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3344)
            0.02496453 = weight(_text_:h in 3344) [ClassicSimilarity], result of:
              0.02496453 = score(doc=3344,freq=2.0), product of:
                0.113683715 = queryWeight, product of:
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.045758117 = queryNorm
                0.21959636 = fieldWeight in 3344, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3344)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Source
    Password. 2005, H.2, S.32
    Type
    a
  17. Lee, J.-H.; Park, S.; Ahn, C.-M.; Kim, D.: Automatic generic document summarization based on non-negative matrix factorization (2009) 0.01
    0.009997789 = product of:
      0.019995578 = sum of:
        0.019995578 = product of:
          0.029993366 = sum of:
            0.008149404 = weight(_text_:a in 2448) [ClassicSimilarity], result of:
              0.008149404 = score(doc=2448,freq=6.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.1544581 = fieldWeight in 2448, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2448)
            0.021843962 = weight(_text_:h in 2448) [ClassicSimilarity], result of:
              0.021843962 = score(doc=2448,freq=2.0), product of:
                0.113683715 = queryWeight, product of:
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.045758117 = queryNorm
                0.19214681 = fieldWeight in 2448, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2448)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Abstract
    In existing unsupervised methods, Latent Semantic Analysis (LSA) is used for sentence selection. However, the obtained results are less meaningful, because singular vectors are used as the bases for sentence selection from given documents, and singular vector components can have negative values. We propose a new unsupervised method using Non-negative Matrix Factorization (NMF) to select sentences for automatic generic document summarization. The proposed method uses non-negative constraints, which are more similar to the human cognition process. As a result, the method selects more meaningful sentences for generic document summarization than those selected using LSA.
    Type
    a
  18. Ruda, S.: Maschinenunterstützte Kondensierung von Fachtexten mit CONNY : Abstracting am Beispiel eines 'Nachrichten für Dokumentation'-Textkorpus (1994) 0.01
    0.008849675 = product of:
      0.01769935 = sum of:
        0.01769935 = product of:
          0.026549023 = sum of:
            0.0047050603 = weight(_text_:a in 2376) [ClassicSimilarity], result of:
              0.0047050603 = score(doc=2376,freq=2.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.089176424 = fieldWeight in 2376, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2376)
            0.021843962 = weight(_text_:h in 2376) [ClassicSimilarity], result of:
              0.021843962 = score(doc=2376,freq=2.0), product of:
                0.113683715 = queryWeight, product of:
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.045758117 = queryNorm
                0.19214681 = fieldWeight in 2376, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2376)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Source
    Nachrichten für Dokumentation. 45(1994) H.6, S.335-342
    Type
    a
  19. Ruda, S.: Abstracting: eine Auswahlbibliographie (1992) 0.01
    0.008849675 = product of:
      0.01769935 = sum of:
        0.01769935 = product of:
          0.026549023 = sum of:
            0.0047050603 = weight(_text_:a in 6603) [ClassicSimilarity], result of:
              0.0047050603 = score(doc=6603,freq=2.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.089176424 = fieldWeight in 6603, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=6603)
            0.021843962 = weight(_text_:h in 6603) [ClassicSimilarity], result of:
              0.021843962 = score(doc=6603,freq=2.0), product of:
                0.113683715 = queryWeight, product of:
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.045758117 = queryNorm
                0.19214681 = fieldWeight in 6603, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=6603)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Source
    Nachrichten für Dokumentation. 43(1992) H.5, S.283-292
    Type
    a
  20. Kuhlen, R.: In Richtung Summarizing für Diskurse in K3 (2006) 0.01
    0.008849675 = product of:
      0.01769935 = sum of:
        0.01769935 = product of:
          0.026549023 = sum of:
            0.0047050603 = weight(_text_:a in 6067) [ClassicSimilarity], result of:
              0.0047050603 = score(doc=6067,freq=2.0), product of:
                0.052761257 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.045758117 = queryNorm
                0.089176424 = fieldWeight in 6067, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=6067)
            0.021843962 = weight(_text_:h in 6067) [ClassicSimilarity], result of:
              0.021843962 = score(doc=6067,freq=2.0), product of:
                0.113683715 = queryWeight, product of:
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.045758117 = queryNorm
                0.19214681 = fieldWeight in 6067, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.4844491 = idf(docFreq=10020, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=6067)
          0.6666667 = coord(2/3)
      0.5 = coord(1/2)
    
    Source
    Information und Sprache: Beiträge zu Informationswissenschaft, Computerlinguistik, Bibliothekswesen und verwandten Fächern. Festschrift für Harald H. Zimmermann. Herausgegeben von Ilse Harms, Heinz-Dirk Luckhardt und Hans W. Giessen
    Type
    a

Years

Languages

  • e 96
  • d 17
  • chi 2
  • More… Less…

Types

  • a 109
  • m 3
  • s 2
  • el 1
  • r 1
  • x 1
  • More… Less…