Search (6 results, page 1 of 1)

  • × author_ss:"Rindflesch, T.C."
  • × theme_ss:"Computerlinguistik"
  1. Wright, L.W.; Nardini, H.K.G.; Aronson, A.R.; Rindflesch, T.C.: Hierarchical concept indexing of full-text documents in the Unified Medical Language System Information sources Map (1999) 0.00
    0.0028703054 = product of:
      0.005740611 = sum of:
        0.005740611 = product of:
          0.011481222 = sum of:
            0.011481222 = weight(_text_:a in 2111) [ClassicSimilarity], result of:
              0.011481222 = score(doc=2111,freq=16.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.2161963 = fieldWeight in 2111, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2111)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Full-text documents are a vital and rapidly growing part of online biomedical information. A single large document can contain as much information as a small database, but normally lacks the tight structure and consistent indexing of a database. Retrieval systems will often miss highly relevant parts of a document if the document as a whole appears irrelevant. Access to full-text information is further complicated by the need to search separately many disparate information resources. This research explores how these problems can be addressed by the combined use of 2 techniques: 1) natural language processing for automatic concept-based indexing of full text, and 2) methods for exploiting the structure and hierarchy of full-text documents. We describe methods for applying these techniques to a large collection of full-text documents drawn from the Health Services / Technology Assessment Text (HSTAT) database at the NLM and examine how this hierarchical concept indexing can assist both document- and source-level retrieval in the context of NLM's Information Source Map project
    Type
    a
  2. Rindflesch, T.C.; Fizsman, M.: The interaction of domain knowledge and linguistic structure in natural language processing : interpreting hypernymic propositions in biomedical text (2003) 0.00
    0.0026742492 = product of:
      0.0053484985 = sum of:
        0.0053484985 = product of:
          0.010696997 = sum of:
            0.010696997 = weight(_text_:a in 2097) [ClassicSimilarity], result of:
              0.010696997 = score(doc=2097,freq=20.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.20142901 = fieldWeight in 2097, product of:
                  4.472136 = tf(freq=20.0), with freq of:
                    20.0 = termFreq=20.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2097)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Interpretation of semantic propositions in free-text documents such as MEDLINE citations would provide valuable support for biomedical applications, and several approaches to semantic interpretation are being pursued in the biomedical informatics community. In this paper, we describe a methodology for interpreting linguistic structures that encode hypernymic propositions, in which a more specific concept is in a taxonomic relationship with a more general concept. In order to effectively process these constructions, we exploit underspecified syntactic analysis and structured domain knowledge from the Unified Medical Language System (UMLS). After introducing the syntactic processing on which our system depends, we focus on the UMLS knowledge that supports interpretation of hypernymic propositions. We first use semantic groups from the Semantic Network to ensure that the two concepts involved are compatible; hierarchical information in the Metathesaurus then determines which concept is more general and which more specific. A preliminary evaluation of a sample based on the semantic group Chemicals and Drugs provides 83% precision. An error analysis was conducted and potential solutions to the problems encountered are presented. The research discussed here serves as a paradigm for investigating the interaction between domain knowledge and linguistic structure in natural language processing, and could also make a contribution to research on automatic processing of discourse structure. Additional implications of the system we present include its integration in advanced semantic interpretation processors for biomedical text and its use for information extraction in specific domains. The approach has the potential to support a range of applications, including information retrieval and ontology engineering.
    Type
    a
  3. Rosemblat, G.; Resnick, M.P.; Auston, I.; Shin, D.; Sneiderman, C.; Fizsman, M.; Rindflesch, T.C.: Extending SemRep to the public health domain (2013) 0.00
    0.0024857575 = product of:
      0.004971515 = sum of:
        0.004971515 = product of:
          0.00994303 = sum of:
            0.00994303 = weight(_text_:a in 2096) [ClassicSimilarity], result of:
              0.00994303 = score(doc=2096,freq=12.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.18723148 = fieldWeight in 2096, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2096)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    We describe the use of a domain-independent method to extend a natural language processing (NLP) application, SemRep (Rindflesch, Fiszman, & Libbus, 2005), based on the knowledge sources afforded by the Unified Medical Language System (UMLS®; Humphreys, Lindberg, Schoolman, & Barnett, 1998) to support the area of health promotion within the public health domain. Public health professionals require good information about successful health promotion policies and programs that might be considered for application within their own communities. Our effort seeks to improve access to relevant information for the public health profession, to help those in the field remain an information-savvy workforce. Natural language processing and semantic techniques hold promise to help public health professionals navigate the growing ocean of information by organizing and structuring this knowledge into a focused public health framework paired with a user-friendly visualization application as a way to summarize results of PubMed® searches in this field of knowledge.
    Type
    a
  4. Keselman, A.; Rosemblat, G.; Kilicoglu, H.; Fiszman, M.; Jin, H.; Shin, D.; Rindflesch, T.C.: Adapting semantic natural language processing technology to address information overload in influenza epidemic management (2010) 0.00
    0.0022374375 = product of:
      0.004474875 = sum of:
        0.004474875 = product of:
          0.00894975 = sum of:
            0.00894975 = weight(_text_:a in 1312) [ClassicSimilarity], result of:
              0.00894975 = score(doc=1312,freq=14.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.1685276 = fieldWeight in 1312, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1312)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The explosion of disaster health information results in information overload among response professionals. The objective of this project was to determine the feasibility of applying semantic natural language processing (NLP) technology to addressing this overload. The project characterizes concepts and relationships commonly used in disaster health-related documents on influenza pandemics, as the basis for adapting an existing semantic summarizer to the domain. Methods include human review and semantic NLP analysis of a set of relevant documents. This is followed by a pilot test in which two information specialists use the adapted application for a realistic information-seeking task. According to the results, the ontology of influenza epidemics management can be described via a manageable number of semantic relationships that involve concepts from a limited number of semantic types. Test users demonstrate several ways to engage with the application to obtain useful information. This suggests that existing semantic NLP algorithms can be adapted to support information summarization and visualization in influenza epidemics and other disaster health areas. However, additional research is needed in the areas of terminology development (as many relevant relationships and terms are not part of existing standardized vocabularies), NLP, and user interface design.
    Type
    a
  5. Rindflesch, T.C.; Aronson, A.R.: Semantic processing in information retrieval (1993) 0.00
    0.001674345 = product of:
      0.00334869 = sum of:
        0.00334869 = product of:
          0.00669738 = sum of:
            0.00669738 = weight(_text_:a in 4121) [ClassicSimilarity], result of:
              0.00669738 = score(doc=4121,freq=4.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.12611452 = fieldWeight in 4121, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4121)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Intuition suggests that one way to enhance the information retrieval process would be the use of phrases to characterize the contents of text. A number of researchers, however, have noted that phrases alone do not improve retrieval effectiveness. In this paper we briefly review the use of phrases in information retrieval and then suggest extensions to this paradigm using semantic information. We claim that semantic processing, which can be viewed as expressing relations between the concepts represented by phrases, will in fact enhance retrieval effectiveness. The availability of the UMLS® domain model, which we exploit extensively, significantly contributes to the feasibility of this processing.
    Type
    a
  6. Humphrey, S.M.; Rogers, W.J.; Kilicoglu, H.; Demner-Fushman, D.; Rindflesch, T.C.: Word sense disambiguation by selecting the best semantic type based on journal descriptor indexing : preliminary experiment (2006) 0.00
    0.0016571716 = product of:
      0.0033143433 = sum of:
        0.0033143433 = product of:
          0.0066286866 = sum of:
            0.0066286866 = weight(_text_:a in 4912) [ClassicSimilarity], result of:
              0.0066286866 = score(doc=4912,freq=12.0), product of:
                0.053105544 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046056706 = queryNorm
                0.12482099 = fieldWeight in 4912, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4912)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    An experiment was performed at the National Library of Medicine® (NLM®) in word sense disambiguation (WSD) using the Journal Descriptor Indexing (JDI) methodology. The motivation is the need to solve the ambiguity problem confronting NLM's MetaMap system, which maps free text to terms corresponding to concepts in NLM's Unified Medical Language System® (UMLS®) Metathesaurus®. If the text maps to more than one Metathesaurus concept at the same high confidence score, MetaMap has no way of knowing which concept is the correct mapping. We describe the JDI methodology, which is ultimately based an statistical associations between words in a training set of MEDLINE® citations and a small set of journal descriptors (assigned by humans to journals per se) assumed to be inherited by the citations. JDI is the basis for selecting the best meaning that is correlated to UMLS semantic types (STs) assigned to ambiguous concepts in the Metathesaurus. For example, the ambiguity transport has two meanings: "Biological Transport" assigned the ST Cell Function and "Patient transport" assigned the ST Health Care Activity. A JDI-based methodology can analyze text containing transport and determine which ST receives a higher score for that text, which then returns the associated meaning, presumed to apply to the ambiguity itself. We then present an experiment in which a baseline disambiguation method was compared to four versions of JDI in disambiguating 45 ambiguous strings from NLM's WSD Test Collection. Overall average precision for the highest-scoring JDI version was 0.7873 compared to 0.2492 for the baseline method, and average precision for individual ambiguities was greater than 0.90 for 23 of them (51%), greater than 0.85 for 24 (53%), and greater than 0.65 for 35 (79%). On the basis of these results, we hope to improve performance of JDI and test its use in applications.
    Type
    a