Search (117 results, page 1 of 6)

  • × theme_ss:"Klassifikationssysteme im Online-Retrieval"
  1. Slavic, A.: On the nature and typology of documentary classifications and their use in a networked environment (2007) 0.01
    0.010578708 = product of:
      0.037025474 = sum of:
        0.021198487 = weight(_text_:with in 780) [ClassicSimilarity], result of:
          0.021198487 = score(doc=780,freq=4.0), product of:
            0.09383348 = queryWeight, product of:
              2.409771 = idf(docFreq=10797, maxDocs=44218)
              0.038938753 = queryNorm
            0.22591603 = fieldWeight in 780, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.409771 = idf(docFreq=10797, maxDocs=44218)
              0.046875 = fieldNorm(doc=780)
        0.015826989 = product of:
          0.031653978 = sum of:
            0.031653978 = weight(_text_:22 in 780) [ClassicSimilarity], result of:
              0.031653978 = score(doc=780,freq=2.0), product of:
                0.13635688 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.038938753 = queryNorm
                0.23214069 = fieldWeight in 780, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=780)
          0.5 = coord(1/2)
      0.2857143 = coord(2/7)
    
    Abstract
    Networked orientated standards for vocabulary publishing and exchange and proposals for terminological services and terminology registries will improve sharing and use of all knowledge organization systems in the networked information environment. This means that documentary classifications may also become more applicable for use outside their original domain of application. The paper summarises some characteristics common to documentary classifications and explains some terminological, functional and implementation aspects. The original purpose behind each classification scheme determines the functions that the vocabulary is designed to facilitate. These functions influence the structure, semantics and syntax, scheme coverage and format in which classification data are published and made available. The author suggests that attention should be paid to the differences between documentary classifications as these may determine their suitability for a certain purpose and may impose different requirements with respect to their use online. As we speak, many classifications are being created for knowledge organization and it may be important to promote expertise from the bibliographic domain with respect to building and using classification systems.
    Date
    22.12.2007 17:22:31
  2. Kwasnik, B.H.: ¬The role of classification in knowledge representation (1999) 0.01
    0.008804738 = product of:
      0.030816581 = sum of:
        0.014989593 = weight(_text_:with in 2464) [ClassicSimilarity], result of:
          0.014989593 = score(doc=2464,freq=2.0), product of:
            0.09383348 = queryWeight, product of:
              2.409771 = idf(docFreq=10797, maxDocs=44218)
              0.038938753 = queryNorm
            0.15974675 = fieldWeight in 2464, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.409771 = idf(docFreq=10797, maxDocs=44218)
              0.046875 = fieldNorm(doc=2464)
        0.015826989 = product of:
          0.031653978 = sum of:
            0.031653978 = weight(_text_:22 in 2464) [ClassicSimilarity], result of:
              0.031653978 = score(doc=2464,freq=2.0), product of:
                0.13635688 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.038938753 = queryNorm
                0.23214069 = fieldWeight in 2464, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2464)
          0.5 = coord(1/2)
      0.2857143 = coord(2/7)
    
    Abstract
    A fascinating, broad-ranging article about classification, knowledge, and how they relate. Hierarchies, trees, paradigms (a two-dimensional classification that can look something like a spreadsheet), and facets are covered, with descriptions of how they work and how they can be used for knowledge discovery and creation. Kwasnick outlines how to make a faceted classification: choose facets, develop facets, analyze entities using the facets, and make a citation order. Facets are useful for many reasons: they do not require complete knowledge of the entire body of material; they are hospitable, flexible, and expressive; they do not require a rigid background theory; they can mix theoretical structures and models; and they allow users to view things from many perspectives. Facets do have faults: it can be hard to pick the right ones; it is hard to show relations between them; and it is difficult to visualize them. The coverage of the other methods is equally thorough and there is much to consider for anyone putting a classification on the web.
    Source
    Library trends. 48(1999) no.1, S.22-47
  3. Chandler, A.; LeBlanc, J.: Exploring the potential of a virtual undergraduate library collection based on the hierarchical interface to LC Classification (2006) 0.01
    0.008804738 = product of:
      0.030816581 = sum of:
        0.014989593 = weight(_text_:with in 769) [ClassicSimilarity], result of:
          0.014989593 = score(doc=769,freq=2.0), product of:
            0.09383348 = queryWeight, product of:
              2.409771 = idf(docFreq=10797, maxDocs=44218)
              0.038938753 = queryNorm
            0.15974675 = fieldWeight in 769, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.409771 = idf(docFreq=10797, maxDocs=44218)
              0.046875 = fieldNorm(doc=769)
        0.015826989 = product of:
          0.031653978 = sum of:
            0.031653978 = weight(_text_:22 in 769) [ClassicSimilarity], result of:
              0.031653978 = score(doc=769,freq=2.0), product of:
                0.13635688 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.038938753 = queryNorm
                0.23214069 = fieldWeight in 769, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=769)
          0.5 = coord(1/2)
      0.2857143 = coord(2/7)
    
    Abstract
    The Hierarchical Interface to Library of Congress Classification (HILCC) is a system developed by the Columbia University Library to leverage call number data from the MARC holdings records in Columbia's online catalog to create a structured, hierarchical menuing system that provides subject access to the library's electronic resources. In this paper, the authors describe a research initiative at the Cornell University Library to discover if the Columbia HILCC scheme can be used as developed or in modified form to create a virtual undergraduate print collection outside the context of the traditional online catalog. Their results indicate that, with certain adjustments, an HILCC model can indeed, be used to represent the holdings of a large research library's undergraduate collection of approximately 150,000 titles, but that such a model is not infinitely scalable and may require a new approach to browsing such a large information space.
    Date
    10. 9.2000 17:38:22
  4. Frâncu, V.; Sabo, C.-N.: Implementation of a UDC-based multilingual thesaurus in a library catalogue : the case of BiblioPhil (2010) 0.01
    0.008804738 = product of:
      0.030816581 = sum of:
        0.014989593 = weight(_text_:with in 3697) [ClassicSimilarity], result of:
          0.014989593 = score(doc=3697,freq=2.0), product of:
            0.09383348 = queryWeight, product of:
              2.409771 = idf(docFreq=10797, maxDocs=44218)
              0.038938753 = queryNorm
            0.15974675 = fieldWeight in 3697, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.409771 = idf(docFreq=10797, maxDocs=44218)
              0.046875 = fieldNorm(doc=3697)
        0.015826989 = product of:
          0.031653978 = sum of:
            0.031653978 = weight(_text_:22 in 3697) [ClassicSimilarity], result of:
              0.031653978 = score(doc=3697,freq=2.0), product of:
                0.13635688 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.038938753 = queryNorm
                0.23214069 = fieldWeight in 3697, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3697)
          0.5 = coord(1/2)
      0.2857143 = coord(2/7)
    
    Abstract
    In order to enhance the use of Universal Decimal Classification (UDC) numbers in information retrieval, the authors have represented classification with multilingual thesaurus descriptors and implemented this solution in an automated way. The authors illustrate a solution implemented in a BiblioPhil library system. The standard formats used are UNIMARC for subject authority records (i.e. the UDC-based multilingual thesaurus) and MARC XML support for data transfer. The multilingual thesaurus was built according to existing standards, the constituent parts of the classification notations being used as the basis for search terms in the multilingual information retrieval. The verbal equivalents, descriptors and non-descriptors, are used to expand the number of concepts and are given in Romanian, English and French. This approach saves the time of the indexer and provides more user-friendly and easier access to the bibliographic information. The multilingual aspect of the thesaurus enhances information access for a greater number of online users
    Date
    22. 7.2010 20:40:56
  5. Lardera, M.; Gnoli, C.; Rolandi, C.; Trzmielewski, M.: Developing SciGator, a DDC-based library browsing tool (2017) 0.01
    0.008804738 = product of:
      0.030816581 = sum of:
        0.014989593 = weight(_text_:with in 4144) [ClassicSimilarity], result of:
          0.014989593 = score(doc=4144,freq=2.0), product of:
            0.09383348 = queryWeight, product of:
              2.409771 = idf(docFreq=10797, maxDocs=44218)
              0.038938753 = queryNorm
            0.15974675 = fieldWeight in 4144, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.409771 = idf(docFreq=10797, maxDocs=44218)
              0.046875 = fieldNorm(doc=4144)
        0.015826989 = product of:
          0.031653978 = sum of:
            0.031653978 = weight(_text_:22 in 4144) [ClassicSimilarity], result of:
              0.031653978 = score(doc=4144,freq=2.0), product of:
                0.13635688 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.038938753 = queryNorm
                0.23214069 = fieldWeight in 4144, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4144)
          0.5 = coord(1/2)
      0.2857143 = coord(2/7)
    
    Abstract
    Exploring collections by their subject matter is an important functionality for library users. We developed an online tool called SciGator in order to allow users to browse the Dewey Decimal Classification (DDC) classes used in different libraries at the University of Pavia and to perform different types of search in the OPAC. Besides navigation of DDC hierarchies, SciGator suggests "see-also" relationships with related classes and maps equivalent classes in local shelving schemes, thus allowing the expansion of search queries to include subjects contiguous to the initial one. We are developing new features, including the possibility to expand searches even more to national and international catalogues.
    Content
    Beitrag eines Special Issue: ISKO-Italy: 8' Incontro ISKO Italia, Università di Bologna, 22 maggio 2017, Bologna, Italia.
  6. Slavic, A.: Classification revisited : a web of knowledge (2011) 0.01
    0.006996738 = product of:
      0.048977163 = sum of:
        0.048977163 = product of:
          0.097954325 = sum of:
            0.097954325 = weight(_text_:humans in 12) [ClassicSimilarity], result of:
              0.097954325 = score(doc=12,freq=2.0), product of:
                0.26276368 = queryWeight, product of:
                  6.7481275 = idf(docFreq=140, maxDocs=44218)
                  0.038938753 = queryNorm
                0.37278488 = fieldWeight in 12, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  6.7481275 = idf(docFreq=140, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=12)
          0.5 = coord(1/2)
      0.14285715 = coord(1/7)
    
    Abstract
    The vision of the semantic web is gradually unfolding and taking shape through a web of linked data, a part of which is built by capturing semantics stored in existing knowledge organization systems (KOS), subject metadata and resource metadata. The content of vast bibliographic collections is currently categorized by some widely used bibliographic classification and we may soon see them being mined for information and linked in a meaningful way across the web. Bibliographic classifications are designed for knowledge mediation, which offers both a rich terminology and different ways in which concepts can be categorized and related to each other in the universe of knowledge. From 1990 to 2010 they have been used in various resource discovery services on the web, and they continue to be used to support information integration in a number of international digital library projects. In this chapter we will revisit some of the ways in which universal classifications, as language-independent concept schemes, can assist humans and computers in structuring and presenting information and formulating queries. Most importantly, we will highlight issues important to understanding bibliographic classifications, identifying both their unused potential and their technical limitations.
  7. Hill, J.S.: Online classification number access : some practical considerations (1984) 0.01
    0.0060293297 = product of:
      0.042205308 = sum of:
        0.042205308 = product of:
          0.084410615 = sum of:
            0.084410615 = weight(_text_:22 in 7684) [ClassicSimilarity], result of:
              0.084410615 = score(doc=7684,freq=2.0), product of:
                0.13635688 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.038938753 = queryNorm
                0.61904186 = fieldWeight in 7684, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.125 = fieldNorm(doc=7684)
          0.5 = coord(1/2)
      0.14285715 = coord(1/7)
    
    Source
    Journal of academic librarianship. 10(1984), S.17-22
  8. National Seminar on Classification in the Digital Environment : Papers contributed to the National Seminar an Classification in the Digital Environment, Bangalore, 9-11 August 2001 (2001) 0.01
    0.005004176 = product of:
      0.017514614 = sum of:
        0.012238951 = weight(_text_:with in 2047) [ClassicSimilarity], result of:
          0.012238951 = score(doc=2047,freq=12.0), product of:
            0.09383348 = queryWeight, product of:
              2.409771 = idf(docFreq=10797, maxDocs=44218)
              0.038938753 = queryNorm
            0.13043268 = fieldWeight in 2047, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              2.409771 = idf(docFreq=10797, maxDocs=44218)
              0.015625 = fieldNorm(doc=2047)
        0.0052756635 = product of:
          0.010551327 = sum of:
            0.010551327 = weight(_text_:22 in 2047) [ClassicSimilarity], result of:
              0.010551327 = score(doc=2047,freq=2.0), product of:
                0.13635688 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.038938753 = queryNorm
                0.07738023 = fieldWeight in 2047, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.015625 = fieldNorm(doc=2047)
          0.5 = coord(1/2)
      0.2857143 = coord(2/7)
    
    Date
    2. 1.2004 10:35:22
    Footnote
    Rez. in: Knowledge organization 30(2003) no.1, S.40-42 (J.-E. Mai): "Introduction: This is a collection of papers presented at the National Seminar an Classification in the Digital Environment held in Bangalore, India, an August 9-11 2001. The collection contains 18 papers dealing with various issues related to knowledge organization and classification theory. The issue of transferring the knowledge, traditions, and theories of bibliographic classification to the digital environment is an important one, and I was excited to learn that proceedings from this seminar were available. Many of us experience frustration an a daily basis due to poorly constructed Web search mechanisms and Web directories. As a community devoted to making information easily accessible we have something to offer the Web community and a seminar an the topic was indeed much needed. Below are brief summaries of the 18 papers presented at the seminar. The order of the summaries follows the order of the papers in the proceedings. The titles of the paper are given in parentheses after the author's name. AHUJA and WESLEY (From "Subject" to "Need": Shift in Approach to Classifying Information an the Internet/Web) argue that traditional bibliographic classification systems fall in the digital environment. One problem is that bibliographic classification systems have been developed to organize library books an shelves and as such are unidimensional and tied to the paper-based environment. Another problem is that they are "subject" oriented in the sense that they assume a relatively stable universe of knowledge containing basic and fixed compartments of knowledge that can be identified and represented. Ahuja and Wesley suggest that classification in the digital environment should be need-oriented instead of subjectoriented ("One important link that binds knowledge and human being is his societal need. ... Hence, it will be ideal to organise knowledge based upon need instead of subject." (p. 10)).
    AHUJA and SATIJA (Relevance of Ranganathan's Classification Theory in the Age of Digital Libraries) note that traditional bibliographic classification systems have been applied in the digital environment with only limited success. They find that the "inherent flexibility of electronic manipulation of documents or their surrogates should allow a more organic approach to allocation of new subjects and appropriate linkages between subject hierarchies." (p. 18). Ahija and Satija also suggest that it is necessary to shift from a "subject" focus to a "need" focus when applying classification theory in the digital environment. They find Ranganathan's framework applicable in the digital environment. Although Ranganathan's focus is "subject oriented and hence emphasise the hierarchical and linear relationships" (p. 26), his framework "can be successfully adopted with certain modifications ... in the digital environment." (p. 26). SHAH and KUMAR (Model for System Unification of Geographical Schedules (Space Isolates)) report an a plan to develop a single schedule for geographical Subdivision that could be used across all classification systems. The authors argue that this is needed in order to facilitate interoperability in the digital environment. SAN SEGUNDO MANUEL (The Representation of Knowledge as a Symbolization of Productive Electronic Information) distills different approaches and definitions of the term "representation" as it relates to representation of knowledge in the library and information science literature and field. SHARADA (Linguistic and Document Classification: Paradigmatic Merger Possibilities) suggests the development of a universal indexing language. The foundation for the universal indexing language is Chomsky's Minimalist Program and Ranganathan's analytico-synthetic classification theory; Acording to the author, based an these approaches, it "should not be a problem" (p. 62) to develop a universal indexing language.
    SELVI (Knowledge Classification of Digital Information Materials with Special Reference to Clustering Technique) finds that it is essential to classify digital material since the amount of material that is becoming available is growing. Selvi suggests using automated classification to "group together those digital information materials or documents that are "most similar" (p. 65). This can be attained by using Cluster analysis methods. PRADHAN and THULASI (A Study of the Use of Classification and Indexing Systems by Web Resource Directories) compare and contrast the classificatory structures of Google, Yahoo, and Looksmart's directories and compare the directories to Dewey Decimal Classification, Library of Congress Classification and Colon Classification's classificatory structures. They find differentes between the directories' and the bibliographic classification systems' classificatory structures and principles. These differentes stem from the fact that bibliographic classification systems are used to "classify academic resources for the research community" (p. 83) and directories "aim to categorize a wider breath of information groups, entertainment, recreation, govt. information, commercial information" (p. 83). NEELAMEGHAN (Hierarchy, Hierarchical Relation and Hierarchical Arrangement) reviews the concept of hierarchy and the formation of hierarchical structures across a variety of domains. NEELAMEGHAN and PRADAD (Digitized Schemes for Subject Classification and Thesauri: Complementary Roles) demonstrate how thesaural relationships (NT, BT, and RT) can be applied to a classification scheme, the Colon Classification in this Gase. NEELAMEGHAN and ASUNDI (Metadata Framework for Describing Embodied Knowledge and Subject Content) propose to use the Generalized Facet Structure framework which is based an Ranganathan's General Theory of Knowledge Classification as a framework for describing the content of documents in a metadata element set for the representation of web documents. CHUDAMANI (Classified Catalogue as a Tool for Subject Based Information Retrieval in both Traditional and Electronic Library Environment) explains why the classified catalogue is superior to the alphabetic cata logue and argues that the same is true in the digital environment.
    Discussion The proceedings of the National Seminar an Classification in the Digital Environment give some insights. However, the depth of analysis and discussion is very uneven across the papers. Some of the papers have substantive research content while others appear to be notes used in the oral presentation. The treatments of the topics are very general in nature. Some papers have a very limited list of references while others have no bibliography. No index has been provided. The transfer of bibliographic knowledge organization theory to the digital environment is an important topic. However, as the papers at this conference have shown, it is also a difficult task. Of the 18 papers presented at this seminar an classification in the digital environment, only 4-5 papers actually deal directly with this important topic. The remaining papers deal with issues that are more or less relevant to classification in the digital environment without explicitly discussing the relation. The reason could be that the authors take up issues in knowledge organization that still need to be investigated and clarified before their application in the digital environment can be considered. Nonetheless, one wishes that the knowledge organization community would discuss the application of classification theory in the digital environment in greater detail. It is obvious from the comparisons of the classificatory structures of bibliographic classification systems and Web directories that these are different and that they probably should be different, since they serve different purposes. Interesting questions in the transformation of bibliographic classification theories to the digital environment are: "Given the existing principles in bibliographic knowledge organization, what are the optimum principles for organization of information, irrespectively of context?" and "What are the fundamental theoretical and practical principles for the construction of Web directories?" Unfortunately, the papers presented at this seminar do not attempt to answer or discuss these questions."
  9. Micco, M.; Popp, R.: Improving library subject access (ILSA) : a theory of clustering based in classification (1994) 0.00
    0.0049965307 = product of:
      0.034975715 = sum of:
        0.034975715 = weight(_text_:with in 7715) [ClassicSimilarity], result of:
          0.034975715 = score(doc=7715,freq=8.0), product of:
            0.09383348 = queryWeight, product of:
              2.409771 = idf(docFreq=10797, maxDocs=44218)
              0.038938753 = queryNorm
            0.3727424 = fieldWeight in 7715, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              2.409771 = idf(docFreq=10797, maxDocs=44218)
              0.0546875 = fieldNorm(doc=7715)
      0.14285715 = coord(1/7)
    
    Abstract
    The ILSA prototype was developed using an object-oriented multimedia user interfcae on six NeXT workstations with two databases: the first with 100.000 MARC records and the second with 20.000 additional records enhanced with table of contents data. The items are grouped into subject clusters consisting of the classification number and the first subject heading assigned. Every other distinct keyword in the MARC record is linked to the subject cluster in an automated natural language mapping scheme, which leads the user from the term entered to the controlled vocabulary of the subject clusters in which the term appeared. The use of a hierarchical classification number (Dewey) makes it possible to broaden or narrow a search at will
  10. Gödert, W.: Klassifikationssysteme und Online-Katalog (1987) 0.00
    0.0047882507 = product of:
      0.03351775 = sum of:
        0.03351775 = weight(_text_:with in 5138) [ClassicSimilarity], result of:
          0.03351775 = score(doc=5138,freq=10.0), product of:
            0.09383348 = queryWeight, product of:
              2.409771 = idf(docFreq=10797, maxDocs=44218)
              0.038938753 = queryNorm
            0.35720462 = fieldWeight in 5138, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              2.409771 = idf(docFreq=10797, maxDocs=44218)
              0.046875 = fieldNorm(doc=5138)
      0.14285715 = coord(1/7)
    
    Abstract
    Free text searching with keywords in a complete data store is not necessarily the best automatic retrieval method. There must be a proper classification of documents and concepts and the use of a proper classification system avoids problems of terminological deficiency. The dialogue search form makes the on-line catalogue a new information medium. A bibliographic unit must be created with as many search access points as possible, using verbal and classificatory search elements. Verbal search categories must include free text elements for individual search access requirements and a controlled vocabulary with syntactic connections. Classified data should consist of a universal classification system with clear structural notation for access and surface searching, together with several specialist subject classifications for differentiated documentation and retrieval. The universal classification needs no detailed subdivision: it serves mainly as a guide and entry to the detailed sub-systems
  11. Lim, E.: Southeast Asian subject gateways : an examination of their classification practices (2000) 0.00
    0.004521997 = product of:
      0.031653978 = sum of:
        0.031653978 = product of:
          0.063307956 = sum of:
            0.063307956 = weight(_text_:22 in 6040) [ClassicSimilarity], result of:
              0.063307956 = score(doc=6040,freq=2.0), product of:
                0.13635688 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.038938753 = queryNorm
                0.46428138 = fieldWeight in 6040, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=6040)
          0.5 = coord(1/2)
      0.14285715 = coord(1/7)
    
    Date
    22. 6.2002 19:42:47
  12. Gödert, W.: ¬Die Dezimalklassifikation im Online-Retrieval (1990) 0.00
    0.004282741 = product of:
      0.029979186 = sum of:
        0.029979186 = weight(_text_:with in 5067) [ClassicSimilarity], result of:
          0.029979186 = score(doc=5067,freq=2.0), product of:
            0.09383348 = queryWeight, product of:
              2.409771 = idf(docFreq=10797, maxDocs=44218)
              0.038938753 = queryNorm
            0.3194935 = fieldWeight in 5067, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.409771 = idf(docFreq=10797, maxDocs=44218)
              0.09375 = fieldNorm(doc=5067)
      0.14285715 = coord(1/7)
    
    Abstract
    Considers some structural features of UDC which may be of some importance to on-line information retrieval with synthesised UDC notations
  13. Huisman, F.: Anders zoeken met een classificatie (1999) 0.00
    0.004282741 = product of:
      0.029979186 = sum of:
        0.029979186 = weight(_text_:with in 3932) [ClassicSimilarity], result of:
          0.029979186 = score(doc=3932,freq=2.0), product of:
            0.09383348 = queryWeight, product of:
              2.409771 = idf(docFreq=10797, maxDocs=44218)
              0.038938753 = queryNorm
            0.3194935 = fieldWeight in 3932, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.409771 = idf(docFreq=10797, maxDocs=44218)
              0.09375 = fieldNorm(doc=3932)
      0.14285715 = coord(1/7)
    
    Footnote
    Übers. d. Titels: An alternative method of searching with the aid of classification
  14. Pika, J.: Universal Decimal Classification at the ETH-Bibliothek Zürich : a Swiss perspective (2007) 0.00
    0.004282741 = product of:
      0.029979186 = sum of:
        0.029979186 = weight(_text_:with in 5899) [ClassicSimilarity], result of:
          0.029979186 = score(doc=5899,freq=8.0), product of:
            0.09383348 = queryWeight, product of:
              2.409771 = idf(docFreq=10797, maxDocs=44218)
              0.038938753 = queryNorm
            0.3194935 = fieldWeight in 5899, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              2.409771 = idf(docFreq=10797, maxDocs=44218)
              0.046875 = fieldNorm(doc=5899)
      0.14285715 = coord(1/7)
    
    Abstract
    The ETH library has been using the UDC for the past twenty-five years and yet most of the users had almost never taken a single notice about it. The query in today's NEBIS-OPAC (former ETHICS) is based on verbal search with three-lingual descriptors and corresponding related search-terms including e.g. synonyma as well as user-friendly expressions from scientific journals - scientific jargon - to facilitate the dialog with OPAC. A single UDC number, standing behind these descriptors, connects them to the related document-titles, regardless of language. Thus the user actually works with the UDC, without realizing it. This paper describes the experience with this OPAC and the work behind it.
  15. Liu, S.; Svenonius, E.: DORS: DDC online retrieval system (1991) 0.00
    0.004037807 = product of:
      0.02826465 = sum of:
        0.02826465 = weight(_text_:with in 1155) [ClassicSimilarity], result of:
          0.02826465 = score(doc=1155,freq=4.0), product of:
            0.09383348 = queryWeight, product of:
              2.409771 = idf(docFreq=10797, maxDocs=44218)
              0.038938753 = queryNorm
            0.30122137 = fieldWeight in 1155, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.409771 = idf(docFreq=10797, maxDocs=44218)
              0.0625 = fieldNorm(doc=1155)
      0.14285715 = coord(1/7)
    
    Abstract
    A model system, the Dewey Online Retrieval System (DORS), was implemented as an interface to an online catalog for the purpose of experimenting with classification-based search strategies and generally seeking further understanding of the role of traditional classifications in automated information retrieval. Specifications for a classification retrieval interface were enumerated and rationalized and the system was developed in accordance with them. The feature that particularly distinguishes the system and enables it to meet its stated specifications is an automatically generated chain index
  16. Comaromi, C.L.: Summation of classification as an enhancement of intellectual access to information in an online environment (1990) 0.00
    0.0037683311 = product of:
      0.026378317 = sum of:
        0.026378317 = product of:
          0.052756634 = sum of:
            0.052756634 = weight(_text_:22 in 3576) [ClassicSimilarity], result of:
              0.052756634 = score(doc=3576,freq=2.0), product of:
                0.13635688 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.038938753 = queryNorm
                0.38690117 = fieldWeight in 3576, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=3576)
          0.5 = coord(1/2)
      0.14285715 = coord(1/7)
    
    Date
    8. 1.2007 12:22:40
  17. Reiner, U.: Automatische DDC-Klassifizierung von bibliografischen Titeldatensätzen (2009) 0.00
    0.0037683311 = product of:
      0.026378317 = sum of:
        0.026378317 = product of:
          0.052756634 = sum of:
            0.052756634 = weight(_text_:22 in 611) [ClassicSimilarity], result of:
              0.052756634 = score(doc=611,freq=2.0), product of:
                0.13635688 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.038938753 = queryNorm
                0.38690117 = fieldWeight in 611, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=611)
          0.5 = coord(1/2)
      0.14285715 = coord(1/7)
    
    Date
    22. 8.2009 12:54:24
  18. Saeed, H.; Chaudry, A.S.: Potential of bibliographic tools to organize knowledge on the Internet : the use of Dewey Decimal classification scheme for organizing Web-based information resources (2001) 0.00
    0.0037089628 = product of:
      0.025962738 = sum of:
        0.025962738 = weight(_text_:with in 6739) [ClassicSimilarity], result of:
          0.025962738 = score(doc=6739,freq=6.0), product of:
            0.09383348 = queryWeight, product of:
              2.409771 = idf(docFreq=10797, maxDocs=44218)
              0.038938753 = queryNorm
            0.2766895 = fieldWeight in 6739, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              2.409771 = idf(docFreq=10797, maxDocs=44218)
              0.046875 = fieldNorm(doc=6739)
      0.14285715 = coord(1/7)
    
    Abstract
    Possibilities are being explored to use traditional bibliographic tools, like Dewey Decimal Classification (DDC), Library of Congress Classification (LCC), Library of Congress Subject Headings (LCSH), and Universal Decimal Classification (UDC), to improve the organization of information resources on the Internet. The most recent edition of DDC, with its enhanced features, has greater potential than other traditional approaches. A review of selected Web sites that use DDC to organize Web resources indicates, however, that the full potential of the DDC scheme for this purpose has not been realized. While the review found that the DDC classification structure was more effective when compared with other knowledge organization systems, we conclude that DDC needs to be further enhanced to make it more suitable for this application. As widely reported in the professional literature, OCLC has conducted research on the potential of DDC for organizing Web resources. Such research, however, is experimental and should be supplemented by empirical studies with user participation.
  19. Riesthuis, G.J.A.: Zoeken met woorden : hergebruik van onderwerpsontsluiting (1998) 0.00
    0.003568951 = product of:
      0.024982655 = sum of:
        0.024982655 = weight(_text_:with in 3154) [ClassicSimilarity], result of:
          0.024982655 = score(doc=3154,freq=2.0), product of:
            0.09383348 = queryWeight, product of:
              2.409771 = idf(docFreq=10797, maxDocs=44218)
              0.038938753 = queryNorm
            0.2662446 = fieldWeight in 3154, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.409771 = idf(docFreq=10797, maxDocs=44218)
              0.078125 = fieldNorm(doc=3154)
      0.14285715 = coord(1/7)
    
    Footnote
    Übers. d. Titels: Searching with words: re-use of subject indexing
  20. Broughton, V.; Lane, H.: Classification schemes revisited : applications to Web indexing and searching (2000) 0.00
    0.003568951 = product of:
      0.024982655 = sum of:
        0.024982655 = weight(_text_:with in 2476) [ClassicSimilarity], result of:
          0.024982655 = score(doc=2476,freq=8.0), product of:
            0.09383348 = queryWeight, product of:
              2.409771 = idf(docFreq=10797, maxDocs=44218)
              0.038938753 = queryNorm
            0.2662446 = fieldWeight in 2476, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              2.409771 = idf(docFreq=10797, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2476)
      0.14285715 = coord(1/7)
    
    Abstract
    Basic skills of classification and subject indexing have been little taught in British library schools since automation was introduced into libraries. However, development of the Internet as a major medium of publication has stretched the capability of search engines to cope with retrieval. Consequently, there has been interest in applying existing systems of knowledge organization to electronic resources. Unfortunately, the classification systems have been adopted without a full understanding of modern classification principles. Analytico-synthetic schemes have been used crudely, as in the case of the Universal Decimal Classification (UDC). The fully faceted Bliss Bibliographical Classification, 2nd edition (BC2) with its potential as a tool for electronic resource retrieval is virtually unknown outside academic libraries
    Content
    A short discussion of using classification systems to organize the web, one of many such. The authors are both involved with BC2 and naturally think it is the best system for organizing information online. They list reasons why faceted classifications are best (e.g. no theoretical limits to specificity or exhaustivity; easier to handle complex subjects; flexible enough to accommodate different user needs) and take a brief look at how BC2 works. They conclude with a discussion of how and why it should be applied to online resources, and a plea for recognition of the importance of classification and subject analysis skills, even when full-text searching is available and databases respond instantly.

Languages

Types

  • a 97
  • el 19
  • m 3
  • s 2
  • d 1
  • x 1
  • More… Less…