Search (5 results, page 1 of 1)

  • × author_ss:"Zhang, J."
  1. Zhuge, H.; Zhang, J.: Topological centrality and its e-Science applications (2010) 0.01
    0.013563735 = product of:
      0.040691204 = sum of:
        0.040691204 = product of:
          0.08138241 = sum of:
            0.08138241 = weight(_text_:networks in 3984) [ClassicSimilarity], result of:
              0.08138241 = score(doc=3984,freq=2.0), product of:
                0.22247115 = queryWeight, product of:
                  4.72992 = idf(docFreq=1060, maxDocs=44218)
                  0.047034867 = queryNorm
                0.36581108 = fieldWeight in 3984, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.72992 = idf(docFreq=1060, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3984)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Network structure analysis plays an important role in characterizing complex systems. Different from previous network centrality measures, this article proposes the topological centrality measure reflecting the topological positions of nodes and edges as well as influence between nodes and edges in general network. Experiments on different networks show distinguished features of the topological centrality by comparing with the degree centrality, closeness centrality, betweenness centrality, information centrality, and PageRank. The topological centrality measure is then applied to discover communities and to construct the backbone network. Its characteristics and significance is further shown in e-Science applications.
  2. Liu, X.; Zhang, J.; Guo, C.: Full-text citation analysis : a new method to enhance scholarly networks (2013) 0.01
    0.009688382 = product of:
      0.029065145 = sum of:
        0.029065145 = product of:
          0.05813029 = sum of:
            0.05813029 = weight(_text_:networks in 1044) [ClassicSimilarity], result of:
              0.05813029 = score(doc=1044,freq=2.0), product of:
                0.22247115 = queryWeight, product of:
                  4.72992 = idf(docFreq=1060, maxDocs=44218)
                  0.047034867 = queryNorm
                0.26129362 = fieldWeight in 1044, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.72992 = idf(docFreq=1060, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1044)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
  3. Zhang, J.; Zhai, S.; Liu, H.; Stevenson, J.A.: Social network analysis on a topic-based navigation guidance system in a public health portal (2016) 0.01
    0.009688382 = product of:
      0.029065145 = sum of:
        0.029065145 = product of:
          0.05813029 = sum of:
            0.05813029 = weight(_text_:networks in 2887) [ClassicSimilarity], result of:
              0.05813029 = score(doc=2887,freq=2.0), product of:
                0.22247115 = queryWeight, product of:
                  4.72992 = idf(docFreq=1060, maxDocs=44218)
                  0.047034867 = queryNorm
                0.26129362 = fieldWeight in 2887, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.72992 = idf(docFreq=1060, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2887)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    We investigated a topic-based navigation guidance system in the World Health Organization portal, compared the link connection network and the semantic connection network derived from the guidance system, analyzed the characteristics of the 2 networks from the perspective of the node centrality (in_closeness, out_closeness, betweenness, in_degree, and out_degree), and provided the suggestions to optimize and enhance the topic-based navigation guidance system. A mixed research method that combines the social network analysis method, clustering analysis method, and inferential analysis methods was used. The clustering analysis results of the link connection network were quite different from those of the semantic connection network. There were significant differences between the link connection network and the semantic network in terms of density and centrality. Inferential analysis results show that there were no strong correlations between the centrality of a node and its topic information characteristics. Suggestions for enhancing the navigation guidance system are discussed in detail. Future research directions, such as application of the same research method presented in this study to other similar public health portals, are also included.
  4. Zhang, J.; Zeng, M.L.: ¬A new similarity measure for subject hierarchical structures (2014) 0.01
    0.0053104796 = product of:
      0.015931439 = sum of:
        0.015931439 = product of:
          0.031862877 = sum of:
            0.031862877 = weight(_text_:22 in 1778) [ClassicSimilarity], result of:
              0.031862877 = score(doc=1778,freq=2.0), product of:
                0.1647081 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.047034867 = queryNorm
                0.19345059 = fieldWeight in 1778, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1778)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    8. 4.2015 16:22:13
  5. Zhang, J.; Mostafa, J.; Tripathy, H.: Information retrieval by semantic analysis and visualization of the concept space of D-Lib® magazine (2002) 0.00
    0.004844191 = product of:
      0.014532573 = sum of:
        0.014532573 = product of:
          0.029065145 = sum of:
            0.029065145 = weight(_text_:networks in 1211) [ClassicSimilarity], result of:
              0.029065145 = score(doc=1211,freq=2.0), product of:
                0.22247115 = queryWeight, product of:
                  4.72992 = idf(docFreq=1060, maxDocs=44218)
                  0.047034867 = queryNorm
                0.13064681 = fieldWeight in 1211, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.72992 = idf(docFreq=1060, maxDocs=44218)
                  0.01953125 = fieldNorm(doc=1211)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    In this article we present a method for retrieving documents from a digital library through a visual interface based on automatically generated concepts. We used a vocabulary generation algorithm to generate a set of concepts for the digital library and a technique called the max-min distance technique to cluster them. Additionally, the concepts were visualized in a spring embedding graph layout to depict the semantic relationship among them. The resulting graph layout serves as an aid to users for retrieving documents. An online archive containing the contents of D-Lib Magazine from July 1995 to May 2002 was used to test the utility of an implemented retrieval and visualization system. We believe that the method developed and tested can be applied to many different domains to help users get a better understanding of online document collections and to minimize users' cognitive load during execution of search tasks. Over the past few years, the volume of information available through the World Wide Web has been expanding exponentially. Never has so much information been so readily available and shared among so many people. Unfortunately, the unstructured nature and huge volume of information accessible over networks have made it hard for users to sift through and find relevant information. To deal with this problem, information retrieval (IR) techniques have gained more intensive attention from both industrial and academic researchers. Numerous IR techniques have been developed to help deal with the information overload problem. These techniques concentrate on mathematical models and algorithms for retrieval. Popular IR models such as the Boolean model, the vector-space model, the probabilistic model and their variants are well established.