Search (37 results, page 1 of 2)

  • × author_ss:"Zeng, M.L."
  1. Golub, K.; Tudhope, D.; Zeng, M.L.; Zumer, M.: Terminology registries for knowledge organization systems : functionality, use, and attributes (2014) 0.04
    0.04180808 = product of:
      0.08361616 = sum of:
        0.036299463 = weight(_text_:use in 1347) [ClassicSimilarity], result of:
          0.036299463 = score(doc=1347,freq=4.0), product of:
            0.12644777 = queryWeight, product of:
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.041294612 = queryNorm
            0.2870708 = fieldWeight in 1347, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.046875 = fieldNorm(doc=1347)
        0.021168415 = weight(_text_:of in 1347) [ClassicSimilarity], result of:
          0.021168415 = score(doc=1347,freq=20.0), product of:
            0.06457475 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.041294612 = queryNorm
            0.32781258 = fieldWeight in 1347, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=1347)
        0.009363732 = product of:
          0.018727465 = sum of:
            0.018727465 = weight(_text_:on in 1347) [ClassicSimilarity], result of:
              0.018727465 = score(doc=1347,freq=4.0), product of:
                0.090823986 = queryWeight, product of:
                  2.199415 = idf(docFreq=13325, maxDocs=44218)
                  0.041294612 = queryNorm
                0.20619515 = fieldWeight in 1347, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  2.199415 = idf(docFreq=13325, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1347)
          0.5 = coord(1/2)
        0.016784549 = product of:
          0.033569098 = sum of:
            0.033569098 = weight(_text_:22 in 1347) [ClassicSimilarity], result of:
              0.033569098 = score(doc=1347,freq=2.0), product of:
                0.1446067 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.041294612 = queryNorm
                0.23214069 = fieldWeight in 1347, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1347)
          0.5 = coord(1/2)
      0.5 = coord(4/8)
    
    Abstract
    Terminology registries (TRs) are a crucial element of the infrastructure required for resource discovery services, digital libraries, Linked Data, and semantic interoperability generally. They can make the content of knowledge organization systems (KOS) available both for human and machine access. The paper describes the attributes and functionality for a TR, based on a review of published literature, existing TRs, and a survey of experts. A domain model based on user tasks is constructed and a set of core metadata elements for use in TRs is proposed. Ideally, the TR should allow searching as well as browsing for a KOS, matching a user's search while also providing information about existing terminology services, accessible to both humans and machines. The issues surrounding metadata for KOS are also discussed, together with the rationale for different aspects and the importance of a core set of KOS metadata for future machine-based access; a possible core set of metadata elements is proposed. This is dealt with in terms of practical experience and in relation to the Dublin Core Application Profile.
    Date
    22. 8.2014 17:12:54
    Source
    Journal of the Association for Information Science and Technology. 65(2014) no.9, S.1901-1916
  2. Mitchell, J.S.; Zeng, M.L.; Zumer, M.: Modeling classification systems in multicultural and multilingual contexts (2012) 0.04
    0.038850937 = product of:
      0.077701874 = sum of:
        0.025667597 = weight(_text_:use in 1967) [ClassicSimilarity], result of:
          0.025667597 = score(doc=1967,freq=2.0), product of:
            0.12644777 = queryWeight, product of:
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.041294612 = queryNorm
            0.20298971 = fieldWeight in 1967, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.046875 = fieldNorm(doc=1967)
        0.018933605 = weight(_text_:of in 1967) [ClassicSimilarity], result of:
          0.018933605 = score(doc=1967,freq=16.0), product of:
            0.06457475 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.041294612 = queryNorm
            0.2932045 = fieldWeight in 1967, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=1967)
        0.009363732 = product of:
          0.018727465 = sum of:
            0.018727465 = weight(_text_:on in 1967) [ClassicSimilarity], result of:
              0.018727465 = score(doc=1967,freq=4.0), product of:
                0.090823986 = queryWeight, product of:
                  2.199415 = idf(docFreq=13325, maxDocs=44218)
                  0.041294612 = queryNorm
                0.20619515 = fieldWeight in 1967, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  2.199415 = idf(docFreq=13325, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1967)
          0.5 = coord(1/2)
        0.023736939 = product of:
          0.047473878 = sum of:
            0.047473878 = weight(_text_:22 in 1967) [ClassicSimilarity], result of:
              0.047473878 = score(doc=1967,freq=4.0), product of:
                0.1446067 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.041294612 = queryNorm
                0.32829654 = fieldWeight in 1967, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1967)
          0.5 = coord(1/2)
      0.5 = coord(4/8)
    
    Abstract
    This paper reports on the second part of an initiative of the authors on researching classification systems with the conceptual model defined by the Functional Requirements for Subject Authority Data (FRSAD) final report. In an earlier study, the authors explored whether the FRSAD conceptual model could be extended beyond subject authority data to model classification data. The focus of the current study is to determine if classification data modeled using FRSAD can be used to solve real-world discovery problems in multicultural and multilingual contexts. The paper discusses the relationships between entities (same type or different types) in the context of classification systems that involve multiple translations and /or multicultural implementations. Results of two case studies are presented in detail: (a) two instances of the DDC (DDC 22 in English, and the Swedish-English mixed translation of DDC 22), and (b) Chinese Library Classification. The use cases of conceptual models in practice are also discussed.
  3. Mitchell, J.S.; Zeng, M.L.; Zumer, M.: Modeling classification systems in multicultural and multilingual contexts (2014) 0.03
    0.032375783 = product of:
      0.064751565 = sum of:
        0.021389665 = weight(_text_:use in 1962) [ClassicSimilarity], result of:
          0.021389665 = score(doc=1962,freq=2.0), product of:
            0.12644777 = queryWeight, product of:
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.041294612 = queryNorm
            0.1691581 = fieldWeight in 1962, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1962)
        0.015778005 = weight(_text_:of in 1962) [ClassicSimilarity], result of:
          0.015778005 = score(doc=1962,freq=16.0), product of:
            0.06457475 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.041294612 = queryNorm
            0.24433708 = fieldWeight in 1962, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1962)
        0.007803111 = product of:
          0.015606222 = sum of:
            0.015606222 = weight(_text_:on in 1962) [ClassicSimilarity], result of:
              0.015606222 = score(doc=1962,freq=4.0), product of:
                0.090823986 = queryWeight, product of:
                  2.199415 = idf(docFreq=13325, maxDocs=44218)
                  0.041294612 = queryNorm
                0.1718293 = fieldWeight in 1962, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  2.199415 = idf(docFreq=13325, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1962)
          0.5 = coord(1/2)
        0.019780781 = product of:
          0.039561562 = sum of:
            0.039561562 = weight(_text_:22 in 1962) [ClassicSimilarity], result of:
              0.039561562 = score(doc=1962,freq=4.0), product of:
                0.1446067 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.041294612 = queryNorm
                0.27358043 = fieldWeight in 1962, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1962)
          0.5 = coord(1/2)
      0.5 = coord(4/8)
    
    Abstract
    This article reports on the second part of an initiative of the authors on researching classification systems with the conceptual model defined by the Functional Requirements for Subject Authority Data (FRSAD) final report. In an earlier study, the authors explored whether the FRSAD conceptual model could be extended beyond subject authority data to model classification data. The focus of the current study is to determine if classification data modeled using FRSAD can be used to solve real-world discovery problems in multicultural and multilingual contexts. The article discusses the relationships between entities (same type or different types) in the context of classification systems that involve multiple translations and/or multicultural implementations. Results of two case studies are presented in detail: (a) two instances of the Dewey Decimal Classification [DDC] (DDC 22 in English, and the Swedish-English mixed translation of DDC 22), and (b) Chinese Library Classification. The use cases of conceptual models in practice are also discussed.
  4. Salaba, A.; Zeng, M.L.: Extending the "Explore" user task beyond subject authority data into the linked data sphere (2014) 0.03
    0.032169618 = product of:
      0.064339235 = sum of:
        0.029222867 = weight(_text_:retrieval in 1465) [ClassicSimilarity], result of:
          0.029222867 = score(doc=1465,freq=2.0), product of:
            0.124912694 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.041294612 = queryNorm
            0.23394634 = fieldWeight in 1465, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1465)
        0.0078097144 = weight(_text_:of in 1465) [ClassicSimilarity], result of:
          0.0078097144 = score(doc=1465,freq=2.0), product of:
            0.06457475 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.041294612 = queryNorm
            0.120940685 = fieldWeight in 1465, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1465)
        0.007724685 = product of:
          0.01544937 = sum of:
            0.01544937 = weight(_text_:on in 1465) [ClassicSimilarity], result of:
              0.01544937 = score(doc=1465,freq=2.0), product of:
                0.090823986 = queryWeight, product of:
                  2.199415 = idf(docFreq=13325, maxDocs=44218)
                  0.041294612 = queryNorm
                0.17010231 = fieldWeight in 1465, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.199415 = idf(docFreq=13325, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1465)
          0.5 = coord(1/2)
        0.019581974 = product of:
          0.039163947 = sum of:
            0.039163947 = weight(_text_:22 in 1465) [ClassicSimilarity], result of:
              0.039163947 = score(doc=1465,freq=2.0), product of:
                0.1446067 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.041294612 = queryNorm
                0.2708308 = fieldWeight in 1465, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1465)
          0.5 = coord(1/2)
      0.5 = coord(4/8)
    
    Abstract
    "Explore" is a user task introduced in the Functional Requirements for Subject Authority Data (FRSAD) final report. Through various case scenarios, the authors discuss how structured data, presented based on Linked Data principles and using knowledge organisation systems (KOS) as the backbone, extend the explore task within and beyond subject authority data.
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
    Theme
    Semantisches Umfeld in Indexierung u. Retrieval
  5. Zhang, J.; Zeng, M.L.: ¬A new similarity measure for subject hierarchical structures (2014) 0.03
    0.029040786 = product of:
      0.05808157 = sum of:
        0.020873476 = weight(_text_:retrieval in 1778) [ClassicSimilarity], result of:
          0.020873476 = score(doc=1778,freq=2.0), product of:
            0.124912694 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.041294612 = queryNorm
            0.16710453 = fieldWeight in 1778, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1778)
        0.013664153 = weight(_text_:of in 1778) [ClassicSimilarity], result of:
          0.013664153 = score(doc=1778,freq=12.0), product of:
            0.06457475 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.041294612 = queryNorm
            0.21160212 = fieldWeight in 1778, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1778)
        0.00955682 = product of:
          0.01911364 = sum of:
            0.01911364 = weight(_text_:on in 1778) [ClassicSimilarity], result of:
              0.01911364 = score(doc=1778,freq=6.0), product of:
                0.090823986 = queryWeight, product of:
                  2.199415 = idf(docFreq=13325, maxDocs=44218)
                  0.041294612 = queryNorm
                0.21044704 = fieldWeight in 1778, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  2.199415 = idf(docFreq=13325, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1778)
          0.5 = coord(1/2)
        0.013987125 = product of:
          0.02797425 = sum of:
            0.02797425 = weight(_text_:22 in 1778) [ClassicSimilarity], result of:
              0.02797425 = score(doc=1778,freq=2.0), product of:
                0.1446067 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.041294612 = queryNorm
                0.19345059 = fieldWeight in 1778, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1778)
          0.5 = coord(1/2)
      0.5 = coord(4/8)
    
    Abstract
    Purpose - The purpose of this paper is to introduce a new similarity method to gauge the differences between two subject hierarchical structures. Design/methodology/approach - In the proposed similarity measure, nodes on two hierarchical structures are projected onto a two-dimensional space, respectively, and both structural similarity and subject similarity of nodes are considered in the similarity between the two hierarchical structures. The extent to which the structural similarity impacts on the similarity can be controlled by adjusting a parameter. An experiment was conducted to evaluate soundness of the measure. Eight experts whose research interests were information retrieval and information organization participated in the study. Results from the new measure were compared with results from the experts. Findings - The evaluation shows strong correlations between the results from the new method and the results from the experts. It suggests that the similarity method achieved satisfactory results. Practical implications - Hierarchical structures that are found in subject directories, taxonomies, classification systems, and other classificatory structures play an extremely important role in information organization and information representation. Measuring the similarity between two subject hierarchical structures allows an accurate overarching understanding of the degree to which the two hierarchical structures are similar. Originality/value - Both structural similarity and subject similarity of nodes were considered in the proposed similarity method, and the extent to which the structural similarity impacts on the similarity can be adjusted. In addition, a new evaluation method for a hierarchical structure similarity was presented.
    Date
    8. 4.2015 16:22:13
    Source
    Journal of documentation. 70(2014) no.3, S.364-391
  6. Zeng, M.L.; Fan, W.; Lin, X.: SKOS for an integrated vocabulary structure (2008) 0.03
    0.028142031 = product of:
      0.056284063 = sum of:
        0.01711173 = weight(_text_:use in 2654) [ClassicSimilarity], result of:
          0.01711173 = score(doc=2654,freq=2.0), product of:
            0.12644777 = queryWeight, product of:
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.041294612 = queryNorm
            0.13532647 = fieldWeight in 2654, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.03125 = fieldNorm(doc=2654)
        0.018933605 = weight(_text_:of in 2654) [ClassicSimilarity], result of:
          0.018933605 = score(doc=2654,freq=36.0), product of:
            0.06457475 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.041294612 = queryNorm
            0.2932045 = fieldWeight in 2654, product of:
              6.0 = tf(freq=36.0), with freq of:
                36.0 = termFreq=36.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03125 = fieldNorm(doc=2654)
        0.004414106 = product of:
          0.008828212 = sum of:
            0.008828212 = weight(_text_:on in 2654) [ClassicSimilarity], result of:
              0.008828212 = score(doc=2654,freq=2.0), product of:
                0.090823986 = queryWeight, product of:
                  2.199415 = idf(docFreq=13325, maxDocs=44218)
                  0.041294612 = queryNorm
                0.097201325 = fieldWeight in 2654, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.199415 = idf(docFreq=13325, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2654)
          0.5 = coord(1/2)
        0.015824625 = product of:
          0.03164925 = sum of:
            0.03164925 = weight(_text_:22 in 2654) [ClassicSimilarity], result of:
              0.03164925 = score(doc=2654,freq=4.0), product of:
                0.1446067 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.041294612 = queryNorm
                0.21886435 = fieldWeight in 2654, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2654)
          0.5 = coord(1/2)
      0.5 = coord(4/8)
    
    Abstract
    In order to transfer the Chinese Classified Thesaurus (CCT) into a machine-processable format and provide CCT-based Web services, a pilot study has been conducted in which a variety of selected CCT classes and mapped thesaurus entries are encoded with SKOS. OWL and RDFS are also used to encode the same contents for the purposes of feasibility and cost-benefit comparison. CCT is a collected effort led by the National Library of China. It is an integration of the national standards Chinese Library Classification (CLC) 4th edition and Chinese Thesaurus (CT). As a manually created mapping product, CCT provides for each of the classes the corresponding thesaurus terms, and vice versa. The coverage of CCT includes four major clusters: philosophy, social sciences and humanities, natural sciences and technologies, and general works. There are 22 main-classes, 52,992 sub-classes and divisions, 110,837 preferred thesaurus terms, 35,690 entry terms (non-preferred terms), and 59,738 pre-coordinated headings (Chinese Classified Thesaurus, 2005) Major challenges of encoding this large vocabulary comes from its integrated structure. CCT is a result of the combination of two structures (illustrated in Figure 1): a thesaurus that uses ISO-2788 standardized structure and a classification scheme that is basically enumerative, but provides some flexibility for several kinds of synthetic mechanisms Other challenges include the complex relationships caused by differences of granularities of two original schemes and their presentation with various levels of SKOS elements; as well as the diverse coordination of entries due to the use of auxiliary tables and pre-coordinated headings derived from combining classes, subdivisions, and thesaurus terms, which do not correspond to existing unique identifiers. The poster reports the progress, shares the sample SKOS entries, and summarizes problems identified during the SKOS encoding process. Although OWL Lite and OWL Full provide richer expressiveness, the cost-benefit issues and the final purposes of encoding CCT raise questions of using such approaches.
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas
  7. Gracy, K.F.; Zeng, M.L.; Skirvin, L.: Exploring methods to improve access to Music resources by aligning library Data with Linked Data : a report of methodologies and preliminary findings (2013) 0.03
    0.02601868 = product of:
      0.05203736 = sum of:
        0.01711173 = weight(_text_:use in 1096) [ClassicSimilarity], result of:
          0.01711173 = score(doc=1096,freq=2.0), product of:
            0.12644777 = queryWeight, product of:
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.041294612 = queryNorm
            0.13532647 = fieldWeight in 1096, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.03125 = fieldNorm(doc=1096)
        0.016090471 = weight(_text_:of in 1096) [ClassicSimilarity], result of:
          0.016090471 = score(doc=1096,freq=26.0), product of:
            0.06457475 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.041294612 = queryNorm
            0.2491759 = fieldWeight in 1096, product of:
              5.0990195 = tf(freq=26.0), with freq of:
                26.0 = termFreq=26.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03125 = fieldNorm(doc=1096)
        0.007645456 = product of:
          0.015290912 = sum of:
            0.015290912 = weight(_text_:on in 1096) [ClassicSimilarity], result of:
              0.015290912 = score(doc=1096,freq=6.0), product of:
                0.090823986 = queryWeight, product of:
                  2.199415 = idf(docFreq=13325, maxDocs=44218)
                  0.041294612 = queryNorm
                0.16835764 = fieldWeight in 1096, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  2.199415 = idf(docFreq=13325, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1096)
          0.5 = coord(1/2)
        0.0111897 = product of:
          0.0223794 = sum of:
            0.0223794 = weight(_text_:22 in 1096) [ClassicSimilarity], result of:
              0.0223794 = score(doc=1096,freq=2.0), product of:
                0.1446067 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.041294612 = queryNorm
                0.15476047 = fieldWeight in 1096, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1096)
          0.5 = coord(1/2)
      0.5 = coord(4/8)
    
    Abstract
    As a part of a research project aiming to connect library data to the unfamiliar data sets available in the Linked Data (LD) community's CKAN Data Hub (thedatahub.org), this project collected, analyzed, and mapped properties used in describing and accessing music recordings, scores, and music-related information used by selected music LD data sets, library catalogs, and various digital collections created by libraries and other cultural institutions. This article reviews current efforts to connect music data through the Semantic Web, with an emphasis on the Music Ontology (MO) and ontology alignment approaches; it also presents a framework for understanding the life cycle of a musical work, focusing on the central activities of composition, performance, and use. The project studied metadata structures and properties of 11 music-related LD data sets and mapped them to the descriptions commonly used in the library cataloging records for sound recordings and musical scores (including MARC records and their extended schema.org markup), and records from 20 collections of digitized music recordings and scores (featuring a variety of metadata structures). The analysis resulted in a set of crosswalks and a unified crosswalk that aligns these properties. The paper reports on detailed methodologies used and discusses research findings and issues. Topics of particular concern include (a) the challenges of mapping between the overgeneralized descriptions found in library data and the specialized, music-oriented properties present in the LD data sets; (b) the hidden information and access points in library data; and (c) the potential benefits of enriching library data through the mapping of properties found in library catalogs to similar properties used by LD data sets.
    Date
    28.10.2013 17:22:17
    Source
    Journal of the American Society for Information Science and Technology. 64(2013) no.10, S.2078-2099
  8. Zeng, M.L.: Interoperability (2019) 0.02
    0.022838417 = product of:
      0.060902447 = sum of:
        0.03422346 = weight(_text_:use in 5232) [ClassicSimilarity], result of:
          0.03422346 = score(doc=5232,freq=2.0), product of:
            0.12644777 = queryWeight, product of:
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.041294612 = queryNorm
            0.27065295 = fieldWeight in 5232, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.0625 = fieldNorm(doc=5232)
        0.017850775 = weight(_text_:of in 5232) [ClassicSimilarity], result of:
          0.017850775 = score(doc=5232,freq=8.0), product of:
            0.06457475 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.041294612 = queryNorm
            0.27643585 = fieldWeight in 5232, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0625 = fieldNorm(doc=5232)
        0.008828212 = product of:
          0.017656423 = sum of:
            0.017656423 = weight(_text_:on in 5232) [ClassicSimilarity], result of:
              0.017656423 = score(doc=5232,freq=2.0), product of:
                0.090823986 = queryWeight, product of:
                  2.199415 = idf(docFreq=13325, maxDocs=44218)
                  0.041294612 = queryNorm
                0.19440265 = fieldWeight in 5232, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.199415 = idf(docFreq=13325, maxDocs=44218)
                  0.0625 = fieldNorm(doc=5232)
          0.5 = coord(1/2)
      0.375 = coord(3/8)
    
    Abstract
    Interoperability refers to the ability of two or more systems or components to exchange information and to use the information that has been exchanged. This article presents the major viewpoints of interoperability, with the focus on semantic interoperability. It discusses the approaches to achieving interoperability as demonstrated in standards and best practices, projects, and products in the broad domain of knowledge organization.
    Series
    Reviews of concepts in knowledge organization
  9. Zeng, M.L.; Kronenberg, F.; Molholt, P.: Toward a conceptual framework for complementary and alternative medicine : challenges and issues (2001) 0.02
    0.021902496 = product of:
      0.058406655 = sum of:
        0.036153924 = weight(_text_:retrieval in 6740) [ClassicSimilarity], result of:
          0.036153924 = score(doc=6740,freq=6.0), product of:
            0.124912694 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.041294612 = queryNorm
            0.28943354 = fieldWeight in 6740, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0390625 = fieldNorm(doc=6740)
        0.0167351 = weight(_text_:of in 6740) [ClassicSimilarity], result of:
          0.0167351 = score(doc=6740,freq=18.0), product of:
            0.06457475 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.041294612 = queryNorm
            0.25915858 = fieldWeight in 6740, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=6740)
        0.0055176322 = product of:
          0.0110352645 = sum of:
            0.0110352645 = weight(_text_:on in 6740) [ClassicSimilarity], result of:
              0.0110352645 = score(doc=6740,freq=2.0), product of:
                0.090823986 = queryWeight, product of:
                  2.199415 = idf(docFreq=13325, maxDocs=44218)
                  0.041294612 = queryNorm
                0.121501654 = fieldWeight in 6740, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.199415 = idf(docFreq=13325, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=6740)
          0.5 = coord(1/2)
      0.375 = coord(3/8)
    
    Abstract
    A problem facing information retrieval and exchange among international medical practitioners and researchers is the lack of a knowledge structure or conceptual framework that relates concepts used in the Western medical system to those used in non-Western medical systems. This paper presents challenges we have encountered in attempting to develop a general conceptual framework to cover concepts and terminology used for information retrieval in the field of complementary and alternative medicine. This is a broad field that has not been covered appropriately in knowledge organization systems such as classification schemes, thesauri, and terminology databases. The objective of the project is to improve significantly the efficiency and the quality of cross-language and cross-cultural information exchange and knowledge discovery by facilitating concept mapping and information retrieval between Western and Eastern medical traditions. Major facets of the conceptual framework include Diagnostic Categories, Therapeutic Preparations, Human Anatomy, Selected Diseases/Medical Conditions, and Basics of Traditional Systems. The paper discusses issues of subject coverage, the representation of medical concepts in the conceptual framework, incorporation of concept names that have existed in individual traditional systems, and the relationships among concepts. Findings reported are primarily from current work that focuses on Traditional Chinese Medicine.
  10. Zeng, M.L.; Gracy, K.F.; Zumer, M.: Using a semantic analysis tool to generate subject access points : a study using Panofsky's theory and two research samples (2014) 0.02
    0.01923732 = product of:
      0.051299524 = sum of:
        0.025048172 = weight(_text_:retrieval in 1464) [ClassicSimilarity], result of:
          0.025048172 = score(doc=1464,freq=2.0), product of:
            0.124912694 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.041294612 = queryNorm
            0.20052543 = fieldWeight in 1464, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=1464)
        0.009466803 = weight(_text_:of in 1464) [ClassicSimilarity], result of:
          0.009466803 = score(doc=1464,freq=4.0), product of:
            0.06457475 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.041294612 = queryNorm
            0.14660224 = fieldWeight in 1464, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=1464)
        0.016784549 = product of:
          0.033569098 = sum of:
            0.033569098 = weight(_text_:22 in 1464) [ClassicSimilarity], result of:
              0.033569098 = score(doc=1464,freq=2.0), product of:
                0.1446067 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.041294612 = queryNorm
                0.23214069 = fieldWeight in 1464, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1464)
          0.5 = coord(1/2)
      0.375 = coord(3/8)
    
    Abstract
    This paper attempts to explore an approach of using an automatic semantic analysis tool to enhance the "subject" access to materials that are not included in the usual library subject cataloging process. Using two research samples the authors analyzed the access points supplied by OpenCalais, a semantic analysis tool. As an aid in understanding how computerized subject analysis might be approached, this paper suggests using the three-layer framework that has been accepted and applied in image analysis, developed by Erwin Panofsky.
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
    Theme
    Semantisches Umfeld in Indexierung u. Retrieval
  11. Zeng, M.L.; Zumer, M.: Introducing FRSAD and mapping it with SKOS and other models (2009) 0.02
    0.0189761 = product of:
      0.050602935 = sum of:
        0.025048172 = weight(_text_:retrieval in 3150) [ClassicSimilarity], result of:
          0.025048172 = score(doc=3150,freq=2.0), product of:
            0.124912694 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.041294612 = queryNorm
            0.20052543 = fieldWeight in 3150, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=3150)
        0.018933605 = weight(_text_:of in 3150) [ClassicSimilarity], result of:
          0.018933605 = score(doc=3150,freq=16.0), product of:
            0.06457475 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.041294612 = queryNorm
            0.2932045 = fieldWeight in 3150, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=3150)
        0.006621159 = product of:
          0.013242318 = sum of:
            0.013242318 = weight(_text_:on in 3150) [ClassicSimilarity], result of:
              0.013242318 = score(doc=3150,freq=2.0), product of:
                0.090823986 = queryWeight, product of:
                  2.199415 = idf(docFreq=13325, maxDocs=44218)
                  0.041294612 = queryNorm
                0.14580199 = fieldWeight in 3150, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.199415 = idf(docFreq=13325, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3150)
          0.5 = coord(1/2)
      0.375 = coord(3/8)
    
    Abstract
    The Functional Requirements for Subject Authority Records (FRSAR) Working Group was formed in 2005 as the third IFLA working group of the FRBR family to address subject authority data issues and to investigate the direct and indirect uses of subject authority data by a wide range of users. This paper introduces the Functional Requirements for Subject Authority Data (FRSAD), the model developed by the FRSAR Working Group, and discusses it in the context of other related conceptual models defined in the specifications during recent years, including the British Standard BS8723-5: Structured vocabularies for information retrieval - Guide Part 5: Exchange formats and protocols for interoperability, W3C's SKOS Simple Knowledge Organization System Reference, and OWL Web Ontology Language Reference. These models enable the consideration of the functions of subject authority data and concept schemes at a higher level that is independent of any implementation, system, or specific context, while allowing us to focus on the semantics, structures, and interoperability of subject authority data.
  12. Zeng, M.L.: Knowledge Organization Systems (KOS) (2008) 0.02
    0.017489124 = product of:
      0.04663766 = sum of:
        0.025048172 = weight(_text_:retrieval in 2316) [ClassicSimilarity], result of:
          0.025048172 = score(doc=2316,freq=2.0), product of:
            0.124912694 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.041294612 = queryNorm
            0.20052543 = fieldWeight in 2316, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.046875 = fieldNorm(doc=2316)
        0.014968331 = weight(_text_:of in 2316) [ClassicSimilarity], result of:
          0.014968331 = score(doc=2316,freq=10.0), product of:
            0.06457475 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.041294612 = queryNorm
            0.23179851 = fieldWeight in 2316, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=2316)
        0.006621159 = product of:
          0.013242318 = sum of:
            0.013242318 = weight(_text_:on in 2316) [ClassicSimilarity], result of:
              0.013242318 = score(doc=2316,freq=2.0), product of:
                0.090823986 = queryWeight, product of:
                  2.199415 = idf(docFreq=13325, maxDocs=44218)
                  0.041294612 = queryNorm
                0.14580199 = fieldWeight in 2316, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.199415 = idf(docFreq=13325, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2316)
          0.5 = coord(1/2)
      0.375 = coord(3/8)
    
    Abstract
    Knowledge organization systems (KOS) can be described based on their structures (from flat to multidimensional) and main functions. The latter include eliminating ambiguity, controlling synonyms or equivalents, establishing explicit semantic relationships such as hierarchical and associative relationships, and presenting both relationships and properties of concepts in the knowledge models. Examples of KOS include lists, authority files, gazetteers, synonym rings, taxonomies and classification schemes, thesauri, and ontologies. These systems model the underlying semantic structure of a domain and provide semantics, navigation, and translation through labels, definitions, typing, relationships, and properties for concepts. The term knowledge organization systems (KOS) is intended to encompass all types of schemes for organizing information and promoting knowledge management, such as classification schemes, gazetteers, lexical databases, taxonomies, thesauri, and ontologies (Hodge 2000). These systems model the underlying semantic structure of a domain and provide semantics, navigation, and translation through labels, definitions, typing, relationships, and properties for concepts (Hill et al. 2002, Koch and Tudhope 2004). Embodied as (Web) services, they facilitate resource discovery and retrieval by acting as semantic road maps, thereby making possible a common orientation for indexers and future users, either human or machine (Koch and Tudhope 2003, 2004).
  13. Mitchell, J.S.; Zeng, M.L.; Zumer, M.: Extending models for controlled vocabularies to classification systems : modelling DDC with FRSAD (2011) 0.02
    0.016365897 = product of:
      0.043642394 = sum of:
        0.021389665 = weight(_text_:use in 4828) [ClassicSimilarity], result of:
          0.021389665 = score(doc=4828,freq=2.0), product of:
            0.12644777 = queryWeight, product of:
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.041294612 = queryNorm
            0.1691581 = fieldWeight in 4828, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4828)
        0.0167351 = weight(_text_:of in 4828) [ClassicSimilarity], result of:
          0.0167351 = score(doc=4828,freq=18.0), product of:
            0.06457475 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.041294612 = queryNorm
            0.25915858 = fieldWeight in 4828, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4828)
        0.0055176322 = product of:
          0.0110352645 = sum of:
            0.0110352645 = weight(_text_:on in 4828) [ClassicSimilarity], result of:
              0.0110352645 = score(doc=4828,freq=2.0), product of:
                0.090823986 = queryWeight, product of:
                  2.199415 = idf(docFreq=13325, maxDocs=44218)
                  0.041294612 = queryNorm
                0.121501654 = fieldWeight in 4828, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.199415 = idf(docFreq=13325, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4828)
          0.5 = coord(1/2)
      0.375 = coord(3/8)
    
    Abstract
    The Functional Requirements for Subject Authority Data (FRSAD) conceptual model identifies entities, attributes and relationships as they relate to subject authority data. FRSAD includes two main entities, thema (any entity used as a subject of a work) and nomen (any sign or sequence of signs that a thema is known by, referred to, or addressed as). In a given controlled vocabulary and within a domain, a nomen is the appellation of only one thema. The authors consider the question, can the FRSAD conceptual model be extended beyond controlled vocabularies (its original focus) to model classification data? Models that are developed based on the structures and functions of controlled vocabularies (such as thesauri and subject heading systems) often need to be adjusted or extended to accommodate classification systems that have been developed with different focused functions, structures and fundamental theories. The Dewey Decimal Classification (DDC) system is used as a case study to test applicability of the FRSAD model for classification data, and as a springboard for a general discussion of issues related to the use of FRSAD for the representation of classification data.
    Source
    Classification and ontology: formal approaches and access to knowledge: proceedings of the International UDC Seminar, 19-20 September 2011, The Hague, The Netherlands. Eds.: A. Slavic u. E. Civallero
  14. Mitchell, J.S.; Zeng, M.L.; Zumer, M.: Extending models for controlled vocabularies to classification systems : modeling DDC with FRSAD (2011) 0.02
    0.016006988 = product of:
      0.0426853 = sum of:
        0.021389665 = weight(_text_:use in 4092) [ClassicSimilarity], result of:
          0.021389665 = score(doc=4092,freq=2.0), product of:
            0.12644777 = queryWeight, product of:
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.041294612 = queryNorm
            0.1691581 = fieldWeight in 4092, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4092)
        0.015778005 = weight(_text_:of in 4092) [ClassicSimilarity], result of:
          0.015778005 = score(doc=4092,freq=16.0), product of:
            0.06457475 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.041294612 = queryNorm
            0.24433708 = fieldWeight in 4092, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4092)
        0.0055176322 = product of:
          0.0110352645 = sum of:
            0.0110352645 = weight(_text_:on in 4092) [ClassicSimilarity], result of:
              0.0110352645 = score(doc=4092,freq=2.0), product of:
                0.090823986 = queryWeight, product of:
                  2.199415 = idf(docFreq=13325, maxDocs=44218)
                  0.041294612 = queryNorm
                0.121501654 = fieldWeight in 4092, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.199415 = idf(docFreq=13325, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4092)
          0.5 = coord(1/2)
      0.375 = coord(3/8)
    
    Abstract
    The Functional Requirements for Subject Authority Data (FRSAD) conceptual model identifies entities, attributes and relationships as they relate to subject authority data. FRSAD includes two main entities, thema (any entity used as a subject of a work) and nomen (any sign or sequence of signs that a thema is known by, referred to, or addressed as). In a given controlled vocabulary and within a domain, a nomen is the appellation of only one thema. The authors consider the question, can the FRSAD conceptual model be extended beyond controlled vocabularies (its original focus) to model classification data? Models that are developed based on the structures and functions of controlled vocabularies (such as thesauri and subject heading systems) often need to be adjusted or extended to accommodate classification systems that have been developed with different focused functions, structures and fundamental theories. The Dewey Decimal Classification (DDC) system is used as a case study to test applicability of the FRSAD model for classification data, and as a springboard for a general discussion of issues related to the use of FRSAD for the representation of classification data.
  15. Smith, T.R.; Zeng, M.L.: Concept maps supported by knowledge organization structures (2004) 0.01
    0.012268836 = product of:
      0.049075343 = sum of:
        0.029945528 = weight(_text_:use in 2620) [ClassicSimilarity], result of:
          0.029945528 = score(doc=2620,freq=2.0), product of:
            0.12644777 = queryWeight, product of:
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.041294612 = queryNorm
            0.23682132 = fieldWeight in 2620, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2620)
        0.019129815 = weight(_text_:of in 2620) [ClassicSimilarity], result of:
          0.019129815 = score(doc=2620,freq=12.0), product of:
            0.06457475 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.041294612 = queryNorm
            0.29624295 = fieldWeight in 2620, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2620)
      0.25 = coord(2/8)
    
    Abstract
    Describes the use of concept maps as one of the semantic tools employed in the ADEPT (Alexandria Digital Earth Prototype) Digital Learning Environment (DLE) for teaching undergraduate classes. The graphic representation of the conceptualizations is derived from the knowledge in stronglystructured models (SSMs) of concepts represented in one or more knowledge bases. Such knowledge bases function as a source of "reference" information about concepts in a given context, including information about their scientific representation, scientific semantics, manipulation, and interrelationships to other concepts.
    Source
    Knowledge organization and the global information society: Proceedings of the 8th International ISKO Conference 13-16 July 2004, London, UK. Ed.: I.C. McIlwaine
  16. Zumer, M.; Zeng, M.L.; Salaba, A.: FRSAD: conceptual modeling of aboutness (2012) 0.01
    0.011391239 = product of:
      0.045564957 = sum of:
        0.029945528 = weight(_text_:use in 1960) [ClassicSimilarity], result of:
          0.029945528 = score(doc=1960,freq=2.0), product of:
            0.12644777 = queryWeight, product of:
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.041294612 = queryNorm
            0.23682132 = fieldWeight in 1960, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1960)
        0.015619429 = weight(_text_:of in 1960) [ClassicSimilarity], result of:
          0.015619429 = score(doc=1960,freq=8.0), product of:
            0.06457475 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.041294612 = queryNorm
            0.24188137 = fieldWeight in 1960, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1960)
      0.25 = coord(2/8)
    
    Abstract
    This book offers the first comprehensive exploration of the development and use of the International Federation of Library Association's newly released model for subject authority data, covering everything from the rationale for creating the model to practical steps for implementing it.
  17. Zeng, M.L.: Metadata elements for object description and representaion : a case report from a digitized historical fashion collection project (1999) 0.01
    0.0111503005 = product of:
      0.044601202 = sum of:
        0.025667597 = weight(_text_:use in 4055) [ClassicSimilarity], result of:
          0.025667597 = score(doc=4055,freq=2.0), product of:
            0.12644777 = queryWeight, product of:
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.041294612 = queryNorm
            0.20298971 = fieldWeight in 4055, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.0620887 = idf(docFreq=5623, maxDocs=44218)
              0.046875 = fieldNorm(doc=4055)
        0.018933605 = weight(_text_:of in 4055) [ClassicSimilarity], result of:
          0.018933605 = score(doc=4055,freq=16.0), product of:
            0.06457475 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.041294612 = queryNorm
            0.2932045 = fieldWeight in 4055, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=4055)
      0.25 = coord(2/8)
    
    Abstract
    This project's goal is to develop a catalog for a digitized collection of historical fashion objects held at the Kent State University Museum and to analyze and evaluate how well existing metadata formats can be applied to a fashion collection. The project considered the known and anticipated uses of the collection and the identification of the metadata elements that would be needed to support these uses. From a set of 90 museum accession records, 42 fashion objects were selected for cataloging. 2 metadata treatments were created for these 42 items using (a) AACR in use with USMARC formats, (b) the Dublic Core set of elements designed for minimal level cataloging, and (c) the Visual Resources Association (VRA) Core Categories for Visual Resources created for developing local databases and cataloging records for visual resource collections. Comparison and analysis of the formats resulted in the adoption of a modified VRA metadata format to catalog the entire digitized historical fashion collection
    Source
    Journal of the American Society for Information Science. 50(1999) no.13, S.1193-1208
  18. Zeng, M.L.; Chen, Y.: Features of an integrated thesaurus management and search system for the networked environment (2003) 0.01
    0.010687422 = product of:
      0.042749688 = sum of:
        0.029222867 = weight(_text_:retrieval in 3817) [ClassicSimilarity], result of:
          0.029222867 = score(doc=3817,freq=2.0), product of:
            0.124912694 = queryWeight, product of:
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.041294612 = queryNorm
            0.23394634 = fieldWeight in 3817, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.024915 = idf(docFreq=5836, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3817)
        0.013526822 = weight(_text_:of in 3817) [ClassicSimilarity], result of:
          0.013526822 = score(doc=3817,freq=6.0), product of:
            0.06457475 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.041294612 = queryNorm
            0.20947541 = fieldWeight in 3817, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3817)
      0.25 = coord(2/8)
    
    Abstract
    Reports an integrated system that employs an open structure for managing the distributed resources (thesauri and databases) and integrates a thesaurus management system with a crossthesaurus search system. Describes the functions of the system that highlight the unique design for the networked environment.
    Source
    Subject retrieval in a networked environment: Proceedings of the IFLA Satellite Meeting held in Dublin, OH, 14-16 August 2001 and sponsored by the IFLA Classification and Indexing Section, the IFLA Information Technology Section and OCLC. Ed.: I.C. McIlwaine
  19. Panzer, M.; Zeng, M.L.: Modeling classification systems in SKOS : Some challenges and best-practice (2009) 0.01
    0.0077106506 = product of:
      0.030842602 = sum of:
        0.017463053 = weight(_text_:of in 3717) [ClassicSimilarity], result of:
          0.017463053 = score(doc=3717,freq=10.0), product of:
            0.06457475 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.041294612 = queryNorm
            0.2704316 = fieldWeight in 3717, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3717)
        0.013379549 = product of:
          0.026759097 = sum of:
            0.026759097 = weight(_text_:on in 3717) [ClassicSimilarity], result of:
              0.026759097 = score(doc=3717,freq=6.0), product of:
                0.090823986 = queryWeight, product of:
                  2.199415 = idf(docFreq=13325, maxDocs=44218)
                  0.041294612 = queryNorm
                0.29462588 = fieldWeight in 3717, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  2.199415 = idf(docFreq=13325, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3717)
          0.5 = coord(1/2)
      0.25 = coord(2/8)
    
    Abstract
    Representing classification systems on the web for publication and exchange continues to be a challenge within the SKOS framework. This paper focuses on the differences between classification schemes and other families of KOS (knowledge organization systems) that make it difficult to express classifications without sacrificing a large amount of their semantic richness. Issues resulting from the specific set of relationships between classes and topics that defines the basic nature of any classification system are discussed. Where possible, different solutions within the frameworks of SKOS and OWL are proposed and examined.
    Source
    Semantic Interoperability for Linked Data, proc. DC2009: International Conference on Dublin Core and Metadata Applications, Seoul, Korea, October 12-17, 2009
  20. Chen, S.-j.; Zeng, M.L.; Chen, H.-h.: Alignment of conceptual structures in controlled vocabularies in the domain of Chinese art : a discussion of issues and patterns (2012) 0.01
    0.007633037 = product of:
      0.030532148 = sum of:
        0.021168415 = weight(_text_:of in 857) [ClassicSimilarity], result of:
          0.021168415 = score(doc=857,freq=20.0), product of:
            0.06457475 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.041294612 = queryNorm
            0.32781258 = fieldWeight in 857, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=857)
        0.009363732 = product of:
          0.018727465 = sum of:
            0.018727465 = weight(_text_:on in 857) [ClassicSimilarity], result of:
              0.018727465 = score(doc=857,freq=4.0), product of:
                0.090823986 = queryWeight, product of:
                  2.199415 = idf(docFreq=13325, maxDocs=44218)
                  0.041294612 = queryNorm
                0.20619515 = fieldWeight in 857, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  2.199415 = idf(docFreq=13325, maxDocs=44218)
                  0.046875 = fieldNorm(doc=857)
          0.5 = coord(1/2)
      0.25 = coord(2/8)
    
    Abstract
    Based on our recent sub-project of the Chinese AAT-Taiwan Project, this paper reports issues regarding the alignment of the controlled vocabularies in the domain of Chinese art. The conceptual structures of the concepts for Chinese art in the National Palace Museum (NPM) Vocabularies and the Art & Architecture Thesaurus (AAT) are studied and patterns were identified in the effort of achieving semantic interoperability. The findings presented in the paper are meaningful to the research on the semantic interoperability of multilingual KOS, especially when dealing with cultural-related concepts that cannot be exactly aligned in vocabularies due to the discrepancies in the conceptual structures.
    Source
    Categories, contexts and relations in knowledge organization: Proceedings of the Twelfth International ISKO Conference 6-9 August 2012, Mysore, India. Eds.: Neelameghan, A. u. K.S. Raghavan