Search (129 results, page 1 of 7)

  • × theme_ss:"Computerlinguistik"
  1. Hotho, A.; Bloehdorn, S.: Data Mining 2004 : Text classification by boosting weak learners based on terms and concepts (2004) 0.24
    0.23780152 = product of:
      0.3170687 = sum of:
        0.07450074 = product of:
          0.22350222 = sum of:
            0.22350222 = weight(_text_:3a in 562) [ClassicSimilarity], result of:
              0.22350222 = score(doc=562,freq=2.0), product of:
                0.39767802 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.046906993 = queryNorm
                0.56201804 = fieldWeight in 562, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.046875 = fieldNorm(doc=562)
          0.33333334 = coord(1/3)
        0.22350222 = weight(_text_:2f in 562) [ClassicSimilarity], result of:
          0.22350222 = score(doc=562,freq=2.0), product of:
            0.39767802 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.046906993 = queryNorm
            0.56201804 = fieldWeight in 562, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.046875 = fieldNorm(doc=562)
        0.019065749 = product of:
          0.038131498 = sum of:
            0.038131498 = weight(_text_:22 in 562) [ClassicSimilarity], result of:
              0.038131498 = score(doc=562,freq=2.0), product of:
                0.1642603 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046906993 = queryNorm
                0.23214069 = fieldWeight in 562, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=562)
          0.5 = coord(1/2)
      0.75 = coord(3/4)
    
    Content
    Vgl.: http://www.google.de/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&ved=0CEAQFjAA&url=http%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fdownload%3Fdoi%3D10.1.1.91.4940%26rep%3Drep1%26type%3Dpdf&ei=dOXrUMeIDYHDtQahsIGACg&usg=AFQjCNHFWVh6gNPvnOrOS9R3rkrXCNVD-A&sig2=5I2F5evRfMnsttSgFF9g7Q&bvm=bv.1357316858,d.Yms.
    Date
    8. 1.2013 10:22:32
  2. Noever, D.; Ciolino, M.: ¬The Turing deception (2022) 0.15
    0.14900148 = product of:
      0.29800296 = sum of:
        0.07450074 = product of:
          0.22350222 = sum of:
            0.22350222 = weight(_text_:3a in 862) [ClassicSimilarity], result of:
              0.22350222 = score(doc=862,freq=2.0), product of:
                0.39767802 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.046906993 = queryNorm
                0.56201804 = fieldWeight in 862, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.046875 = fieldNorm(doc=862)
          0.33333334 = coord(1/3)
        0.22350222 = weight(_text_:2f in 862) [ClassicSimilarity], result of:
          0.22350222 = score(doc=862,freq=2.0), product of:
            0.39767802 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.046906993 = queryNorm
            0.56201804 = fieldWeight in 862, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.046875 = fieldNorm(doc=862)
      0.5 = coord(2/4)
    
    Source
    https%3A%2F%2Farxiv.org%2Fabs%2F2212.06721&usg=AOvVaw3i_9pZm9y_dQWoHi6uv0EN
  3. Huo, W.: Automatic multi-word term extraction and its application to Web-page summarization (2012) 0.12
    0.121283986 = product of:
      0.24256797 = sum of:
        0.22350222 = weight(_text_:2f in 563) [ClassicSimilarity], result of:
          0.22350222 = score(doc=563,freq=2.0), product of:
            0.39767802 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.046906993 = queryNorm
            0.56201804 = fieldWeight in 563, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.046875 = fieldNorm(doc=563)
        0.019065749 = product of:
          0.038131498 = sum of:
            0.038131498 = weight(_text_:22 in 563) [ClassicSimilarity], result of:
              0.038131498 = score(doc=563,freq=2.0), product of:
                0.1642603 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046906993 = queryNorm
                0.23214069 = fieldWeight in 563, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=563)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Content
    A Thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Master of Science in Computer Science. Vgl. Unter: http://www.inf.ufrgs.br%2F~ceramisch%2Fdownload_files%2Fpublications%2F2009%2Fp01.pdf.
    Date
    10. 1.2013 19:22:47
  4. Addison, E.R.; Wilson, H.D.; Feder, J.: ¬The impact of plain English searching on end users (1993) 0.04
    0.039717898 = product of:
      0.079435796 = sum of:
        0.05588421 = weight(_text_:services in 5354) [ClassicSimilarity], result of:
          0.05588421 = score(doc=5354,freq=2.0), product of:
            0.17221296 = queryWeight, product of:
              3.6713707 = idf(docFreq=3057, maxDocs=44218)
              0.046906993 = queryNorm
            0.3245064 = fieldWeight in 5354, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6713707 = idf(docFreq=3057, maxDocs=44218)
              0.0625 = fieldNorm(doc=5354)
        0.023551589 = product of:
          0.047103178 = sum of:
            0.047103178 = weight(_text_:management in 5354) [ClassicSimilarity], result of:
              0.047103178 = score(doc=5354,freq=2.0), product of:
                0.15810528 = queryWeight, product of:
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.046906993 = queryNorm
                0.29792285 = fieldWeight in 5354, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.0625 = fieldNorm(doc=5354)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Commercial software products are available with plain English searching capabilities as engines for online and CD-ROM information services, and for internal text information management. With plain English interfaces, end users do not need to master the keyword and connector approach of the Boolean search query language. Describes plain English searching and its impact on the process of full text retrieval. Explores the issues of ease of use, reliability and implications for the total research process
  5. Doszkocs, T.E.; Zamora, A.: Dictionary services and spelling aids for Web searching (2004) 0.04
    0.035932165 = product of:
      0.07186433 = sum of:
        0.049395125 = weight(_text_:services in 2541) [ClassicSimilarity], result of:
          0.049395125 = score(doc=2541,freq=4.0), product of:
            0.17221296 = queryWeight, product of:
              3.6713707 = idf(docFreq=3057, maxDocs=44218)
              0.046906993 = queryNorm
            0.28682584 = fieldWeight in 2541, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.6713707 = idf(docFreq=3057, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2541)
        0.022469202 = product of:
          0.044938404 = sum of:
            0.044938404 = weight(_text_:22 in 2541) [ClassicSimilarity], result of:
              0.044938404 = score(doc=2541,freq=4.0), product of:
                0.1642603 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046906993 = queryNorm
                0.27358043 = fieldWeight in 2541, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2541)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    The Specialized Information Services Division (SIS) of the National Library of Medicine (NLM) provides Web access to more than a dozen scientific databases on toxicology and the environment on TOXNET . Search queries on TOXNET often include misspelled or variant English words, medical and scientific jargon and chemical names. Following the example of search engines like Google and ClinicalTrials.gov, we set out to develop a spelling "suggestion" system for increased recall and precision in TOXNET searching. This paper describes development of dictionary technology that can be used in a variety of applications such as orthographic verification, writing aid, natural language processing, and information storage and retrieval. The design of the technology allows building complex applications using the components developed in the earlier phases of the work in a modular fashion without extensive rewriting of computer code. Since many of the potential applications envisioned for this work have on-line or web-based interfaces, the dictionaries and other computer components must have fast response, and must be adaptable to open-ended database vocabularies, including chemical nomenclature. The dictionary vocabulary for this work was derived from SIS and other databases and specialized resources, such as NLM's Unified Medical Language Systems (UMLS) . The resulting technology, A-Z Dictionary (AZdict), has three major constituents: 1) the vocabulary list, 2) the word attributes that define part of speech and morphological relationships between words in the list, and 3) a set of programs that implements the retrieval of words and their attributes, and determines similarity between words (ChemSpell). These three components can be used in various applications such as spelling verification, spelling aid, part-of-speech tagging, paraphrasing, and many other natural language processing functions.
    Date
    14. 8.2004 17:22:56
    Source
    Online. 28(2004) no.3, S.22-29
  6. Allen, E.E.: Searching, naturally (1998) 0.02
    0.020956578 = product of:
      0.08382631 = sum of:
        0.08382631 = weight(_text_:services in 2602) [ClassicSimilarity], result of:
          0.08382631 = score(doc=2602,freq=2.0), product of:
            0.17221296 = queryWeight, product of:
              3.6713707 = idf(docFreq=3057, maxDocs=44218)
              0.046906993 = queryNorm
            0.4867596 = fieldWeight in 2602, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6713707 = idf(docFreq=3057, maxDocs=44218)
              0.09375 = fieldNorm(doc=2602)
      0.25 = coord(1/4)
    
    Source
    Internet reference services quarterly. 3(1998) no.2, S.75-81
  7. Cimiano, P.; Völker, J.; Studer, R.: Ontologies on demand? : a description of the state-of-the-art, applications, challenges and trends for ontology learning from text (2006) 0.01
    0.014818538 = product of:
      0.059274152 = sum of:
        0.059274152 = weight(_text_:services in 6014) [ClassicSimilarity], result of:
          0.059274152 = score(doc=6014,freq=4.0), product of:
            0.17221296 = queryWeight, product of:
              3.6713707 = idf(docFreq=3057, maxDocs=44218)
              0.046906993 = queryNorm
            0.344191 = fieldWeight in 6014, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.6713707 = idf(docFreq=3057, maxDocs=44218)
              0.046875 = fieldNorm(doc=6014)
      0.25 = coord(1/4)
    
    Abstract
    Ontologies are nowadays used for many applications requiring data, services and resources in general to be interoperable and machine understandable. Such applications are for example web service discovery and composition, information integration across databases, intelligent search, etc. The general idea is that data and services are semantically described with respect to ontologies, which are formal specifications of a domain of interest, and can thus be shared and reused in a way such that the shared meaning specified by the ontology remains formally the same across different parties and applications. As the cost of creating ontologies is relatively high, different proposals have emerged for learning ontologies from structured and unstructured resources. In this article we examine the maturity of techniques for ontology learning from textual resources, addressing the question whether the state-of-the-art is mature enough to produce ontologies 'on demand'.
  8. Deventer, J.P. van; Kruger, C.J.; Johnson, R.D.: Delineating knowledge management through lexical analysis : a retrospective (2015) 0.01
    0.014484214 = product of:
      0.057936855 = sum of:
        0.057936855 = sum of:
          0.03569348 = weight(_text_:management in 3807) [ClassicSimilarity], result of:
            0.03569348 = score(doc=3807,freq=6.0), product of:
              0.15810528 = queryWeight, product of:
                3.3706124 = idf(docFreq=4130, maxDocs=44218)
                0.046906993 = queryNorm
              0.22575769 = fieldWeight in 3807, product of:
                2.4494898 = tf(freq=6.0), with freq of:
                  6.0 = termFreq=6.0
                3.3706124 = idf(docFreq=4130, maxDocs=44218)
                0.02734375 = fieldNorm(doc=3807)
          0.022243375 = weight(_text_:22 in 3807) [ClassicSimilarity], result of:
            0.022243375 = score(doc=3807,freq=2.0), product of:
              0.1642603 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046906993 = queryNorm
              0.1354154 = fieldWeight in 3807, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.02734375 = fieldNorm(doc=3807)
      0.25 = coord(1/4)
    
    Abstract
    Purpose Academic authors tend to define terms that meet their own needs. Knowledge Management (KM) is a term that comes to mind and is examined in this study. Lexicographical research identified KM terms used by authors from 1996 to 2006 in academic outlets to define KM. Data were collected based on strict criteria which included that definitions should be unique instances. From 2006 onwards, these authors could not identify new unique instances of definitions with repetitive usage of such definition instances. Analysis revealed that KM is directly defined by People (Person and Organisation), Processes (Codify, Share, Leverage, and Process) and Contextualised Content (Information). The paper aims to discuss these issues. Design/methodology/approach The aim of this paper is to add to the body of knowledge in the KM discipline and supply KM practitioners and scholars with insight into what is commonly regarded to be KM so as to reignite the debate on what one could consider as KM. The lexicon used by KM scholars was evaluated though the application of lexicographical research methods as extended though Knowledge Discovery and Text Analysis methods. Findings By simplifying term relationships through the application of lexicographical research methods, as extended though Knowledge Discovery and Text Analysis methods, it was found that KM is directly defined by People (Person and Organisation), Processes (Codify, Share, Leverage, Process) and Contextualised Content (Information). One would therefore be able to indicate that KM, from an academic point of view, refers to people processing contextualised content.
    Date
    20. 1.2015 18:30:22
    Source
    Aslib journal of information management. 67(2015) no.2, S.203-229
  9. Warner, A.J.: Natural language processing (1987) 0.01
    0.0127105005 = product of:
      0.050842002 = sum of:
        0.050842002 = product of:
          0.101684004 = sum of:
            0.101684004 = weight(_text_:22 in 337) [ClassicSimilarity], result of:
              0.101684004 = score(doc=337,freq=2.0), product of:
                0.1642603 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046906993 = queryNorm
                0.61904186 = fieldWeight in 337, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.125 = fieldNorm(doc=337)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Source
    Annual review of information science and technology. 22(1987), S.79-108
  10. Reyes Ayala, B.; Knudson, R.; Chen, J.; Cao, G.; Wang, X.: Metadata records machine translation combining multi-engine outputs with limited parallel data (2018) 0.01
    0.012348781 = product of:
      0.049395125 = sum of:
        0.049395125 = weight(_text_:services in 4010) [ClassicSimilarity], result of:
          0.049395125 = score(doc=4010,freq=4.0), product of:
            0.17221296 = queryWeight, product of:
              3.6713707 = idf(docFreq=3057, maxDocs=44218)
              0.046906993 = queryNorm
            0.28682584 = fieldWeight in 4010, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.6713707 = idf(docFreq=3057, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4010)
      0.25 = coord(1/4)
    
    Abstract
    One way to facilitate Multilingual Information Access (MLIA) for digital libraries is to generate multilingual metadata records by applying Machine Translation (MT) techniques. Current online MT services are available and affordable, but are not always effective for creating multilingual metadata records. In this study, we implemented 3 different MT strategies and evaluated their performance when translating English metadata records to Chinese and Spanish. These strategies included combining MT results from 3 online MT systems (Google, Bing, and Yahoo!) with and without additional linguistic resources, such as manually-generated parallel corpora, and metadata records in the two target languages obtained from international partners. The open-source statistical MT platform Moses was applied to design and implement the three translation strategies. Human evaluation of the MT results using adequacy and fluency demonstrated that two of the strategies produced higher quality translations than individual online MT systems for both languages. Especially, adding small, manually-generated parallel corpora of metadata records significantly improved translation performance. Our study suggested an effective and efficient MT approach for providing multilingual services for digital collections.
  11. Hutchins, J.: ¬A new era in machine translation research (1995) 0.01
    0.012224671 = product of:
      0.048898686 = sum of:
        0.048898686 = weight(_text_:services in 3846) [ClassicSimilarity], result of:
          0.048898686 = score(doc=3846,freq=2.0), product of:
            0.17221296 = queryWeight, product of:
              3.6713707 = idf(docFreq=3057, maxDocs=44218)
              0.046906993 = queryNorm
            0.28394312 = fieldWeight in 3846, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6713707 = idf(docFreq=3057, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3846)
      0.25 = coord(1/4)
    
    Abstract
    In the 1980s the dominant framework for machine translation research was the approach based on essentially linguistic rules. Describes the new approaches of the 1990s which are based on large text corpora, the alignment of bilingual texts, the use of statistical methods and the use of parallel corpora for example based translation. Most systems are now designed for specialized applications, such as restricted to controlled languages, to a sublanguage or to s specific domain, to a perticular organization or to a particular user type. In addition, the field is widening with research under way on speech translation, on systems for monolingual users not knowing target languages, on systems for multilingual generation directly from structured databases, and in general for uses other than those traditionally associated with translation services
  12. Bernth, A.; McCord, M.; Warburton, K.: Terminology extraction for global content management (2003) 0.01
    0.011775794 = product of:
      0.047103178 = sum of:
        0.047103178 = product of:
          0.094206356 = sum of:
            0.094206356 = weight(_text_:management in 4122) [ClassicSimilarity], result of:
              0.094206356 = score(doc=4122,freq=2.0), product of:
                0.15810528 = queryWeight, product of:
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.046906993 = queryNorm
                0.5958457 = fieldWeight in 4122, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.125 = fieldNorm(doc=4122)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
  13. McMahon, J.G.; Smith, F.J.: Improved statistical language model performance with automatic generated word hierarchies (1996) 0.01
    0.0111216875 = product of:
      0.04448675 = sum of:
        0.04448675 = product of:
          0.0889735 = sum of:
            0.0889735 = weight(_text_:22 in 3164) [ClassicSimilarity], result of:
              0.0889735 = score(doc=3164,freq=2.0), product of:
                0.1642603 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046906993 = queryNorm
                0.5416616 = fieldWeight in 3164, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.109375 = fieldNorm(doc=3164)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Source
    Computational linguistics. 22(1996) no.2, S.217-248
  14. Ruge, G.: ¬A spreading activation network for automatic generation of thesaurus relationships (1991) 0.01
    0.0111216875 = product of:
      0.04448675 = sum of:
        0.04448675 = product of:
          0.0889735 = sum of:
            0.0889735 = weight(_text_:22 in 4506) [ClassicSimilarity], result of:
              0.0889735 = score(doc=4506,freq=2.0), product of:
                0.1642603 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046906993 = queryNorm
                0.5416616 = fieldWeight in 4506, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.109375 = fieldNorm(doc=4506)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    8.10.2000 11:52:22
  15. Somers, H.: Example-based machine translation : Review article (1999) 0.01
    0.0111216875 = product of:
      0.04448675 = sum of:
        0.04448675 = product of:
          0.0889735 = sum of:
            0.0889735 = weight(_text_:22 in 6672) [ClassicSimilarity], result of:
              0.0889735 = score(doc=6672,freq=2.0), product of:
                0.1642603 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046906993 = queryNorm
                0.5416616 = fieldWeight in 6672, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.109375 = fieldNorm(doc=6672)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    31. 7.1996 9:22:19
  16. New tools for human translators (1997) 0.01
    0.0111216875 = product of:
      0.04448675 = sum of:
        0.04448675 = product of:
          0.0889735 = sum of:
            0.0889735 = weight(_text_:22 in 1179) [ClassicSimilarity], result of:
              0.0889735 = score(doc=1179,freq=2.0), product of:
                0.1642603 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046906993 = queryNorm
                0.5416616 = fieldWeight in 1179, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.109375 = fieldNorm(doc=1179)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    31. 7.1996 9:22:19
  17. Baayen, R.H.; Lieber, H.: Word frequency distributions and lexical semantics (1997) 0.01
    0.0111216875 = product of:
      0.04448675 = sum of:
        0.04448675 = product of:
          0.0889735 = sum of:
            0.0889735 = weight(_text_:22 in 3117) [ClassicSimilarity], result of:
              0.0889735 = score(doc=3117,freq=2.0), product of:
                0.1642603 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046906993 = queryNorm
                0.5416616 = fieldWeight in 3117, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.109375 = fieldNorm(doc=3117)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    28. 2.1999 10:48:22
  18. ¬Der Student aus dem Computer (2023) 0.01
    0.0111216875 = product of:
      0.04448675 = sum of:
        0.04448675 = product of:
          0.0889735 = sum of:
            0.0889735 = weight(_text_:22 in 1079) [ClassicSimilarity], result of:
              0.0889735 = score(doc=1079,freq=2.0), product of:
                0.1642603 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046906993 = queryNorm
                0.5416616 = fieldWeight in 1079, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.109375 = fieldNorm(doc=1079)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    27. 1.2023 16:22:55
  19. Kettunen, K.: Reductive and generative approaches to management of morphological variation of keywords in monolingual information retrieval : an overview (2009) 0.01
    0.010816758 = product of:
      0.04326703 = sum of:
        0.04326703 = product of:
          0.08653406 = sum of:
            0.08653406 = weight(_text_:management in 2835) [ClassicSimilarity], result of:
              0.08653406 = score(doc=2835,freq=12.0), product of:
                0.15810528 = queryWeight, product of:
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.046906993 = queryNorm
                0.54731923 = fieldWeight in 2835, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2835)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    Purpose - The purpose of this article is to discuss advantages and disadvantages of various means to manage morphological variation of keywords in monolingual information retrieval. Design/methodology/approach - The authors present a compilation of query results from 11 mostly European languages and a new general classification of the language dependent techniques for management of morphological variation. Variants of the different techniques are compared in some detail in terms of retrieval effectiveness and other criteria. The paper consists mainly of an overview of different management methods for keyword variation in information retrieval. Typical IR retrieval results of 11 languages and a new classification for keyword management methods are also presented. Findings - The main results of the paper are an overall comparison of reductive and generative keyword management methods in terms of retrieval effectiveness and other broader criteria. Originality/value - The paper is of value to anyone who wants to get an overall picture of keyword management techniques used in IR.
  20. Navarretta, C.; Pedersen, B.S.; Hansen, D.H.: Language technology in knowledge-organization systems (2006) 0.01
    0.010478289 = product of:
      0.041913155 = sum of:
        0.041913155 = weight(_text_:services in 5706) [ClassicSimilarity], result of:
          0.041913155 = score(doc=5706,freq=2.0), product of:
            0.17221296 = queryWeight, product of:
              3.6713707 = idf(docFreq=3057, maxDocs=44218)
              0.046906993 = queryNorm
            0.2433798 = fieldWeight in 5706, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6713707 = idf(docFreq=3057, maxDocs=44218)
              0.046875 = fieldNorm(doc=5706)
      0.25 = coord(1/4)
    
    Content
    Beitrag eines Themenheftes "Knowledge organization systems and services"

Years

Languages

  • e 107
  • d 21
  • m 1
  • More… Less…

Types

  • a 110
  • m 10
  • s 7
  • el 5
  • x 3
  • p 2
  • d 1
  • More… Less…