Search (100 results, page 1 of 5)

  • × theme_ss:"Social tagging"
  1. Chae, G.; Park, J.; Park, J.; Yeo, W.S.; Shi, C.: Linking and clustering artworks using social tags : revitalizing crowd-sourced information on cultural collections (2016) 0.05
    0.04916378 = product of:
      0.09832756 = sum of:
        0.01841403 = weight(_text_:for in 2852) [ClassicSimilarity], result of:
          0.01841403 = score(doc=2852,freq=8.0), product of:
            0.08876751 = queryWeight, product of:
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.047278564 = queryNorm
            0.20744109 = fieldWeight in 2852, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2852)
        0.079913534 = weight(_text_:computing in 2852) [ClassicSimilarity], result of:
          0.079913534 = score(doc=2852,freq=2.0), product of:
            0.26151994 = queryWeight, product of:
              5.5314693 = idf(docFreq=475, maxDocs=44218)
              0.047278564 = queryNorm
            0.3055734 = fieldWeight in 2852, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.5314693 = idf(docFreq=475, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2852)
      0.5 = coord(2/4)
    
    Abstract
    Social tagging is one of the most popular methods for collecting crowd-sourced information in galleries, libraries, archives, and museums (GLAMs). However, when the number of social tags grows rapidly, using them becomes problematic and, as a result, they are often left as simply big data that cannot be used for practical purposes. To revitalize the use of this crowd-sourced information, we propose using social tags to link and cluster artworks based on an experimental study using an online collection at the Gyeonggi Museum of Modern Art (GMoMA). We view social tagging as a folksonomy, where artworks are classified by keywords of the crowd's various interpretations and one artwork can belong to several different categories simultaneously. To leverage this strength of social tags, we used a clustering method called "link communities" to detect overlapping communities in a network of artworks constructed by computing similarities between all artwork pairs. We used this framework to identify semantic relationships and clusters of similar artworks. By comparing the clustering results with curators' manual classification results, we demonstrated the potential of social tagging data for automatically clustering artworks in a way that reflects the dynamic perspectives of crowds.
    Source
    Journal of the Association for Information Science and Technology. 67(2016) no.4, S.885-899
  2. Nov, O.; Naaman, M.; Ye, C.: Analysis of participation in an online photo-sharing community : a multidimensional perspective (2010) 0.05
    0.047930278 = product of:
      0.095860556 = sum of:
        0.01594702 = weight(_text_:for in 3424) [ClassicSimilarity], result of:
          0.01594702 = score(doc=3424,freq=6.0), product of:
            0.08876751 = queryWeight, product of:
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.047278564 = queryNorm
            0.17964928 = fieldWeight in 3424, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3424)
        0.079913534 = weight(_text_:computing in 3424) [ClassicSimilarity], result of:
          0.079913534 = score(doc=3424,freq=2.0), product of:
            0.26151994 = queryWeight, product of:
              5.5314693 = idf(docFreq=475, maxDocs=44218)
              0.047278564 = queryNorm
            0.3055734 = fieldWeight in 3424, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.5314693 = idf(docFreq=475, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3424)
      0.5 = coord(2/4)
    
    Abstract
    In recent years we have witnessed a significant growth of social-computing communities - online services in which users share information in various forms. As content contributions from participants are critical to the viability of these communities, it is important to understand what drives users to participate and share information with others in such settings. We extend previous literature on user contribution by studying the factors that are associated with various forms of participation in a large online photo-sharing community. Using survey and system data, we examine four different forms of participation and consider the differences between these forms. We build on theories of motivation to examine the relationship between users' participation and their motivations with respect to their tenure in the community. Amongst our findings, we identify individual motivations (both extrinsic and intrinsic) that underpin user participation, and their effects on different forms of information sharing; we show that tenure in the community does affect participation, but that this effect depends on the type of participation activity. Finally, we demonstrate that tenure in the community has a weak moderating effect on a number of motivations with regard to their effect on participation. Directions for future research, as well as implications for theory and practice, are discussed.
    Source
    Journal of the American Society for Information Science and Technology. 61(2010) no.3, S.555-566
  3. Catarino, M.E.; Baptista, A.A.: Relating folksonomies with Dublin Core (2008) 0.02
    0.023503331 = product of:
      0.047006663 = sum of:
        0.024359472 = weight(_text_:for in 2652) [ClassicSimilarity], result of:
          0.024359472 = score(doc=2652,freq=14.0), product of:
            0.08876751 = queryWeight, product of:
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.047278564 = queryNorm
            0.27441877 = fieldWeight in 2652, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2652)
        0.02264719 = product of:
          0.04529438 = sum of:
            0.04529438 = weight(_text_:22 in 2652) [ClassicSimilarity], result of:
              0.04529438 = score(doc=2652,freq=4.0), product of:
                0.16556148 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.047278564 = queryNorm
                0.27358043 = fieldWeight in 2652, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2652)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Folksonomy is the result of describing Web resources with tags created by Web users. Although it has become a popular application for the description of resources, in general terms Folksonomies are not being conveniently integrated in metadata. However, if the appropriate metadata elements are identified, then further work may be conducted to automatically assign tags to these elements (RDF properties) and use them in Semantic Web applications. This article presents research carried out to continue the project Kinds of Tags, which intends to identify elements required for metadata originating from folksonomies and to propose an application profile for DC Social Tagging. The work provides information that may be used by software applications to assign tags to metadata elements and, therefore, means for tags to be conveniently gathered by metadata interoperability tools. Despite the unquestionably high value of DC and the significance of the already existing properties in DC Terms, the pilot study show revealed a significant number of tags for which no corresponding properties yet existed. A need for new properties, such as Action, Depth, Rate, and Utility was determined. Those potential new properties will have to be validated in a later stage by the DC Social Tagging Community.
    Pages
    S.14-22
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas
  4. Kim, H.L.; Scerri, S.; Breslin, J.G.; Decker, S.; Kim, H.G.: ¬The state of the art in tag ontologies : a semantic model for tagging and folksonomies (2008) 0.02
    0.021027677 = product of:
      0.042055354 = sum of:
        0.026041372 = weight(_text_:for in 2650) [ClassicSimilarity], result of:
          0.026041372 = score(doc=2650,freq=16.0), product of:
            0.08876751 = queryWeight, product of:
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.047278564 = queryNorm
            0.29336601 = fieldWeight in 2650, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2650)
        0.016013984 = product of:
          0.032027967 = sum of:
            0.032027967 = weight(_text_:22 in 2650) [ClassicSimilarity], result of:
              0.032027967 = score(doc=2650,freq=2.0), product of:
                0.16556148 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.047278564 = queryNorm
                0.19345059 = fieldWeight in 2650, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2650)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    There is a growing interest into how we represent and share tagging data in collaborative tagging systems. Conventional tags, meaning freely created tags that are not associated with a structured ontology, are not naturally suited for collaborative processes, due to linguistic and grammatical variations, as well as human typing errors. Additionally, tags reflect personal views of the world by individual users, and are not normalised for synonymy, morphology or any other mapping. Our view is that the conventional approach provides very limited semantic value for collaboration. Moreover, in cases where there is some semantic value, automatically sharing semantics via computer manipulations is extremely problematic. This paper explores these problems by discussing approaches for collaborative tagging activities at a semantic level, and presenting conceptual models for collaborative tagging activities and folksonomies. We present criteria for the comparison of existing tag ontologies and discuss their strengths and weaknesses in relation to these criteria.
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas
  5. Chen, M.; Liu, X.; Qin, J.: Semantic relation extraction from socially-generated tags : a methodology for metadata generation (2008) 0.02
    0.019283235 = product of:
      0.03856647 = sum of:
        0.022552488 = weight(_text_:for in 2648) [ClassicSimilarity], result of:
          0.022552488 = score(doc=2648,freq=12.0), product of:
            0.08876751 = queryWeight, product of:
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.047278564 = queryNorm
            0.2540624 = fieldWeight in 2648, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2648)
        0.016013984 = product of:
          0.032027967 = sum of:
            0.032027967 = weight(_text_:22 in 2648) [ClassicSimilarity], result of:
              0.032027967 = score(doc=2648,freq=2.0), product of:
                0.16556148 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.047278564 = queryNorm
                0.19345059 = fieldWeight in 2648, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2648)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    The growing predominance of social semantics in the form of tagging presents the metadata community with both opportunities and challenges as for leveraging this new form of information content representation and for retrieval. One key challenge is the absence of contextual information associated with these tags. This paper presents an experiment working with Flickr tags as an example of utilizing social semantics sources for enriching subject metadata. The procedure included four steps: 1) Collecting a sample of Flickr tags, 2) Calculating cooccurrences between tags through mutual information, 3) Tracing contextual information of tag pairs via Google search results, 4) Applying natural language processing and machine learning techniques to extract semantic relations between tags. The experiment helped us to build a context sentence collection from the Google search results, which was then processed by natural language processing and machine learning algorithms. This new approach achieved a reasonably good rate of accuracy in assigning semantic relations to tag pairs. This paper also explores the implications of this approach for using social semantics to enrich subject metadata.
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas
  6. Yi, K.: Harnessing collective intelligence in social tagging using Delicious (2012) 0.02
    0.019283235 = product of:
      0.03856647 = sum of:
        0.022552488 = weight(_text_:for in 515) [ClassicSimilarity], result of:
          0.022552488 = score(doc=515,freq=12.0), product of:
            0.08876751 = queryWeight, product of:
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.047278564 = queryNorm
            0.2540624 = fieldWeight in 515, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.0390625 = fieldNorm(doc=515)
        0.016013984 = product of:
          0.032027967 = sum of:
            0.032027967 = weight(_text_:22 in 515) [ClassicSimilarity], result of:
              0.032027967 = score(doc=515,freq=2.0), product of:
                0.16556148 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.047278564 = queryNorm
                0.19345059 = fieldWeight in 515, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=515)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    A new collaborative approach in information organization and sharing has recently arisen, known as collaborative tagging or social indexing. A key element of collaborative tagging is the concept of collective intelligence (CI), which is a shared intelligence among all participants. This research investigates the phenomenon of social tagging in the context of CI with the aim to serve as a stepping-stone towards the mining of truly valuable social tags for web resources. This study focuses on assessing and evaluating the degree of CI embedded in social tagging over time in terms of two-parameter values, number of participants, and top frequency ranking window. Five different metrics were adopted and utilized for assessing the similarity between ranking lists: overlapList, overlapRank, Footrule, Fagin's measure, and the Inverse Rank measure. The result of this study demonstrates that a substantial degree of CI is most likely to be achieved when somewhere between the first 200 and 400 people have participated in tagging, and that a target degree of CI can be projected by controlling the two factors along with the selection of a similarity metric. The study also tests some experimental conditions for detecting social tags with high CI degree. The results of this study can be applicable to the study of filtering social tags based on CI; filtered social tags may be utilized for the metadata creation of tagged resources and possibly for the retrieval of tagged resources.
    Date
    25.12.2012 15:22:37
    Source
    Journal of the American Society for Information Science and Technology. 63(2012) no.12, S.2488-2502
  7. Rolla, P.J.: User tags versus Subject headings : can user-supplied data improve subject access to library collections? (2009) 0.02
    0.0191766 = product of:
      0.0383532 = sum of:
        0.019136423 = weight(_text_:for in 3601) [ClassicSimilarity], result of:
          0.019136423 = score(doc=3601,freq=6.0), product of:
            0.08876751 = queryWeight, product of:
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.047278564 = queryNorm
            0.21557912 = fieldWeight in 3601, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.046875 = fieldNorm(doc=3601)
        0.019216778 = product of:
          0.038433556 = sum of:
            0.038433556 = weight(_text_:22 in 3601) [ClassicSimilarity], result of:
              0.038433556 = score(doc=3601,freq=2.0), product of:
                0.16556148 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.047278564 = queryNorm
                0.23214069 = fieldWeight in 3601, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3601)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Some members of the library community, including the Library of Congress Working Group on the Future of Bibliographic Control, have suggested that libraries should open up their catalogs to allow users to add descriptive tags to the bibliographic data in catalog records. The web site LibraryThing currently permits its members to add such user tags to its records for books and therefore provides a useful resource to contrast with library bibliographic records. A comparison between the LibraryThing tags for a group of books and the library-supplied subject headings for the same books shows that users and catalogers approach these descriptors very differently. Because of these differences, user tags can enhance subject access to library materials, but they cannot entirely replace controlled vocabularies such as the Library of Congress subject headings.
    Date
    10. 9.2000 17:38:22
  8. Strader, C.R.: Author-assigned keywords versus Library of Congress Subject Headings : implications for the cataloging of electronic theses and dissertations (2009) 0.02
    0.0191766 = product of:
      0.0383532 = sum of:
        0.019136423 = weight(_text_:for in 3602) [ClassicSimilarity], result of:
          0.019136423 = score(doc=3602,freq=6.0), product of:
            0.08876751 = queryWeight, product of:
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.047278564 = queryNorm
            0.21557912 = fieldWeight in 3602, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.046875 = fieldNorm(doc=3602)
        0.019216778 = product of:
          0.038433556 = sum of:
            0.038433556 = weight(_text_:22 in 3602) [ClassicSimilarity], result of:
              0.038433556 = score(doc=3602,freq=2.0), product of:
                0.16556148 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.047278564 = queryNorm
                0.23214069 = fieldWeight in 3602, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3602)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    This study is an examination of the overlap between author-assigned keywords and cataloger-assigned Library of Congress Subject Headings (LCSH) for a set of electronic theses and dissertations in Ohio State University's online catalog. The project is intended to contribute to the literature on the issue of keywords versus controlled vocabularies in the use of online catalogs and databases. Findings support previous studies' conclusions that both keywords and controlled vocabularies complement one another. Further, even in the presence of bibliographic record enhancements, such as abstracts or summaries, keywords and subject headings provided a significant number of unique terms that could affect the success of keyword searches. Implications for the maintenance of controlled vocabularies such as LCSH also are discussed in light of the patterns of matches and nonmatches found between the keywords and their corresponding subject headings.
    Date
    10. 9.2000 17:38:22
  9. Kruk, S.R.; Kruk, E.; Stankiewicz, K.: Evaluation of semantic and social technologies for digital libraries (2009) 0.02
    0.0174208 = product of:
      0.0348416 = sum of:
        0.015624823 = weight(_text_:for in 3387) [ClassicSimilarity], result of:
          0.015624823 = score(doc=3387,freq=4.0), product of:
            0.08876751 = queryWeight, product of:
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.047278564 = queryNorm
            0.17601961 = fieldWeight in 3387, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.046875 = fieldNorm(doc=3387)
        0.019216778 = product of:
          0.038433556 = sum of:
            0.038433556 = weight(_text_:22 in 3387) [ClassicSimilarity], result of:
              0.038433556 = score(doc=3387,freq=2.0), product of:
                0.16556148 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.047278564 = queryNorm
                0.23214069 = fieldWeight in 3387, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3387)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Libraries are the tools we use to learn and to answer our questions. The quality of our work depends, among others, on the quality of the tools we use. Recent research in digital libraries is focused, on one hand on improving the infrastructure of the digital library management systems (DLMS), and on the other on improving the metadata models used to annotate collections of objects maintained by DLMS. The latter includes, among others, the semantic web and social networking technologies. Recently, the semantic web and social networking technologies are being introduced to the digital libraries domain. The expected outcome is that the overall quality of information discovery in digital libraries can be improved by employing social and semantic technologies. In this chapter we present the results of an evaluation of social and semantic end-user information discovery services for the digital libraries.
    Date
    1. 8.2010 12:35:22
  10. Danowski, P.: Authority files and Web 2.0 : Wikipedia and the PND. An Example (2007) 0.02
    0.0159805 = product of:
      0.031961 = sum of:
        0.01594702 = weight(_text_:for in 1291) [ClassicSimilarity], result of:
          0.01594702 = score(doc=1291,freq=6.0), product of:
            0.08876751 = queryWeight, product of:
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.047278564 = queryNorm
            0.17964928 = fieldWeight in 1291, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1291)
        0.016013984 = product of:
          0.032027967 = sum of:
            0.032027967 = weight(_text_:22 in 1291) [ClassicSimilarity], result of:
              0.032027967 = score(doc=1291,freq=2.0), product of:
                0.16556148 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.047278564 = queryNorm
                0.19345059 = fieldWeight in 1291, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1291)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    More and more users index everything on their own in the web 2.0. There are services for links, videos, pictures, books, encyclopaedic articles and scientific articles. All these services are library independent. But must that really be? Can't libraries help with their experience and tools to make user indexing better? On the experience of a project from German language Wikipedia together with the German person authority files (Personen Namen Datei - PND) located at German National Library (Deutsche Nationalbibliothek) I would like to show what is possible. How users can and will use the authority files, if we let them. We will take a look how the project worked and what we can learn for future projects. Conclusions - Authority files can have a role in the web 2.0 - there must be an open interface/ service for retrieval - everything that is indexed on the net with authority files can be easy integrated in a federated search - O'Reilly: You have to found ways that your data get more important that more it will be used
    Content
    Vortrag anlässlich des Workshops: "Extending the multilingual capacity of The European Library in the EDL project Stockholm, Swedish National Library, 22-23 November 2007".
  11. Bentley, C.M.; Labelle, P.R.: ¬A comparison of social tagging designs and user participation (2008) 0.01
    0.014640598 = product of:
      0.029281195 = sum of:
        0.01647001 = weight(_text_:for in 2657) [ClassicSimilarity], result of:
          0.01647001 = score(doc=2657,freq=10.0), product of:
            0.08876751 = queryWeight, product of:
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.047278564 = queryNorm
            0.18554096 = fieldWeight in 2657, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.03125 = fieldNorm(doc=2657)
        0.012811186 = product of:
          0.025622372 = sum of:
            0.025622372 = weight(_text_:22 in 2657) [ClassicSimilarity], result of:
              0.025622372 = score(doc=2657,freq=2.0), product of:
                0.16556148 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.047278564 = queryNorm
                0.15476047 = fieldWeight in 2657, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2657)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Social tagging empowers users to categorize content in a personally meaningful way while harnessing their potential to contribute to a collaborative construction of knowledge (Vander Wal, 2007). In addition, social tagging systems offer innovative filtering mechanisms that facilitate resource discovery and browsing (Mathes, 2004). As a result, social tags may support online communication, informal or intended learning as well as the development of online communities. The purpose of this mixed methods study is to examine how undergraduate students participate in social tagging activities in order to learn about their motivations, behaviours and practices. A better understanding of their knowledge, habits and interactions with such systems will help practitioners and developers identify important factors when designing enhancements. In the first phase of the study, students enrolled at a Canadian university completed 103 questionnaires. Quantitative results focusing on general familiarity with social tagging, frequently used Web 2.0 sites, and the purpose for engaging in social tagging activities were compiled. Eight questionnaire respondents participated in follow-up semi-structured interviews that further explored tagging practices by situating questionnaire responses within concrete experiences using popular websites such as YouTube, Facebook, Del.icio.us, and Flickr. Preliminary results of this study echo findings found in the growing literature concerning social tagging from the fields of computer science (Sen et al., 2006) and information science (Golder & Huberman, 2006; Macgregor & McCulloch, 2006). Generally, two classes of social taggers emerge: those who focus on tagging for individual purposes, and those who view tagging as a way to share or communicate meaning to others. Heavy del.icio.us users, for example, were often focused on simply organizing their own content, and seemed to be conscientiously maintaining their own personally relevant categorizations while, in many cases, placing little importance on the tags of others. Conversely, users tagging items primarily to share content preferred to use specific terms to optimize retrieval and discovery by others. Our findings should inform practitioners of how interaction design can be tailored for different tagging systems applications, and how these findings are positioned within the current debate surrounding social tagging among the resource discovery community. We also hope to direct future research in the field to place a greater importance on exploring the benefits of tagging as a socially-driven endeavour rather than uniquely as a means of managing information.
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas
  12. Choi, Y.; Syn, S.Y.: Characteristics of tagging behavior in digitized humanities online collections (2016) 0.01
    0.014517335 = product of:
      0.02903467 = sum of:
        0.013020686 = weight(_text_:for in 2891) [ClassicSimilarity], result of:
          0.013020686 = score(doc=2891,freq=4.0), product of:
            0.08876751 = queryWeight, product of:
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.047278564 = queryNorm
            0.14668301 = fieldWeight in 2891, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2891)
        0.016013984 = product of:
          0.032027967 = sum of:
            0.032027967 = weight(_text_:22 in 2891) [ClassicSimilarity], result of:
              0.032027967 = score(doc=2891,freq=2.0), product of:
                0.16556148 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.047278564 = queryNorm
                0.19345059 = fieldWeight in 2891, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2891)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    The purpose of this study was to examine user tags that describe digitized archival collections in the field of humanities. A collection of 8,310 tags from a digital portal (Nineteenth-Century Electronic Scholarship, NINES) was analyzed to find out what attributes of primary historical resources users described with tags. Tags were categorized to identify which tags describe the content of the resource, the resource itself, and subjective aspects (e.g., usage or emotion). The study's findings revealed that over half were content-related; tags representing opinion, usage context, or self-reference, however, reflected only a small percentage. The study further found that terms related to genre or physical format of a resource were frequently used in describing primary archival resources. It was also learned that nontextual resources had lower numbers of content-related tags and higher numbers of document-related tags than textual resources and bibliographic materials; moreover, textual resources tended to have more user-context-related tags than other resources. These findings help explain users' tagging behavior and resource interpretation in primary resources in the humanities. Such information provided through tags helps information professionals decide to what extent indexing archival and cultural resources should be done for resource description and discovery, and understand users' terminology.
    Date
    21. 4.2016 11:23:22
    Source
    Journal of the Association for Information Science and Technology. 67(2016) no.5, S.1089-1104
  13. DeZelar-Tiedman, V.: Doing the LibraryThing(TM) in an academic library catalog (2008) 0.01
    0.013771205 = product of:
      0.02754241 = sum of:
        0.014731225 = weight(_text_:for in 2666) [ClassicSimilarity], result of:
          0.014731225 = score(doc=2666,freq=8.0), product of:
            0.08876751 = queryWeight, product of:
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.047278564 = queryNorm
            0.16595288 = fieldWeight in 2666, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.03125 = fieldNorm(doc=2666)
        0.012811186 = product of:
          0.025622372 = sum of:
            0.025622372 = weight(_text_:22 in 2666) [ClassicSimilarity], result of:
              0.025622372 = score(doc=2666,freq=2.0), product of:
                0.16556148 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.047278564 = queryNorm
                0.15476047 = fieldWeight in 2666, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2666)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Many libraries and other cultural institutions are incorporating Web 2.0 features and enhanced metadata into their catalogs (Trant 2006). These value-added elements include those typically found in commercial and social networking sites, such as book jacket images, reviews, and usergenerated tags. One such site that libraries are exploring as a model is LibraryThing (www.librarything.com) LibraryThing is a social networking site that allows users to "catalog" their own book collections. Members can add tags and reviews to records for books, as well as engage in online discussions. In addition to its service for individuals, LibraryThing offers a feebased service to libraries, where institutions can add LibraryThing tags, recommendations, and other features to their online catalog records. This poster will present data analyzing the quality and quantity of the metadata that a large academic library would expect to gain if utilizing such a service, focusing on the overlap between titles found in the library's catalog and in LibraryThing's database, and on a comparison between the controlled subject headings in the former and the user-generated tags in the latter. During February through April 2008, a random sample of 383 titles from the University of Minnesota Libraries catalog was searched in LibraryThing. Eighty works, or 21 percent of the sample, had corresponding records available in LibraryThing. Golder and Huberman (2006) outline the advantages and disadvantages of using controlled vocabulary for subject access to information resources versus the growing trend of tags supplied by users or by content creators. Using the 80 matched records from the sample, comparisons were made between the user-supplied tags in LibraryThing (social tags) and the subject headings in the library catalog records (controlled vocabulary system). In the library records, terms from all 6XX MARC fields were used. To make a more meaningful comparison, controlled subject terms were broken down into facets according to their headings and subheadings, and each unique facet counted separately. A total of 227 subject terms were applied to the 80 catalog records, an average of 2.84 per record. In LibraryThing, 698 tags were applied to the same 80 titles, an average of 8.73 per title. The poster will further explore the relationships between the terms applied in each source, and identify where overlaps and complementary levels of access occur.
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas
  14. Vander Wal, T.: Welcome to the Matrix! (2008) 0.01
    0.013771205 = product of:
      0.02754241 = sum of:
        0.014731225 = weight(_text_:for in 2881) [ClassicSimilarity], result of:
          0.014731225 = score(doc=2881,freq=8.0), product of:
            0.08876751 = queryWeight, product of:
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.047278564 = queryNorm
            0.16595288 = fieldWeight in 2881, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.03125 = fieldNorm(doc=2881)
        0.012811186 = product of:
          0.025622372 = sum of:
            0.025622372 = weight(_text_:22 in 2881) [ClassicSimilarity], result of:
              0.025622372 = score(doc=2881,freq=2.0), product of:
                0.16556148 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.047278564 = queryNorm
                0.15476047 = fieldWeight in 2881, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2881)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    My keynote at the workshop "Social Tagging in Knowledge Organization" was a great opportunity to make and share new experiences. For the first time ever, I sat in my office at home and gave a live web video presentation to a conference audience elsewhere on the globe. At the same time, it was also an opportunity to premier my conceptual model "Matrix of Perception" to an interdisciplinary audience of researchers and practitioners with a variety of backgrounds - reaching from philosophy, psychology, pedagogy and computation to library science and economics. The interdisciplinary approach of the conference is also mirrored in the structure of this volume, with articles on the theoretical background, the empirical analysis and the potential applications of tagging, for instance in university libraries, e-learning, or e-commerce. As an introduction to the topic of "social tagging" I would like to draw your attention to some foundation concepts of the phenomenon I have racked my brain with for the last few month. One thing I have seen missing in recent research and system development is a focus on the variety of user perspectives in social tagging. Different people perceive tagging in complex variegated ways and use this form of knowledge organization for a variety of purposes. My analytical interest lies in understanding the personas and patterns in tagging systems and in being able to label their different perceptions. To come up with a concise picture of user expectations, needs and activities, I have broken down the perspectives on tagging into two different categories, namely "faces" and "depth". When put together, they form the "Matrix of Perception" - a nuanced view of stakeholders and their respective levels of participation.
    Date
    22. 6.2009 9:15:45
  15. Stuart, E.: Flickr: organizing and tagging images online (2019) 0.01
    0.0072056293 = product of:
      0.028822517 = sum of:
        0.028822517 = weight(_text_:for in 5233) [ClassicSimilarity], result of:
          0.028822517 = score(doc=5233,freq=10.0), product of:
            0.08876751 = queryWeight, product of:
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.047278564 = queryNorm
            0.3246967 = fieldWeight in 5233, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.0546875 = fieldNorm(doc=5233)
      0.25 = coord(1/4)
    
    Abstract
    Flickr was launched when digital cameras first began to outsell analog cameras, and people were drawn to the site for the opportunities it offered them to store, organize, and share their images, as well as for the connections that could be made with other like-minded people. This article examines the links between Flickr's success and how images are organized within the site, as well as the types of people and organizations that use Flickr and their motivations for doing so. Factors that have contributed to Flickr's demise in popularity will be explored, and the article finishes with some suggestions for how Flickr could develop in the future, along with some conclusions for image organization.
  16. Sun, A.; Bhowmick, S.S.; Nguyen, K.T.N.; Bai, G.: Tag-based social image retrieval : an empirical evaluation (2011) 0.01
    0.0069052614 = product of:
      0.027621046 = sum of:
        0.027621046 = weight(_text_:for in 4938) [ClassicSimilarity], result of:
          0.027621046 = score(doc=4938,freq=18.0), product of:
            0.08876751 = queryWeight, product of:
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.047278564 = queryNorm
            0.31116164 = fieldWeight in 4938, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4938)
      0.25 = coord(1/4)
    
    Abstract
    Tags associated with social images are valuable information source for superior image search and retrieval experiences. Although various heuristics are valuable to boost tag-based search for images, there is a lack of general framework to study the impact of these heuristics. Specifically, the task of ranking images matching a given tag query based on their associated tags in descending order of relevance has not been well studied. In this article, we take the first step to propose a generic, flexible, and extensible framework for this task and exploit it for a systematic and comprehensive empirical evaluation of various methods for ranking images. To this end, we identified five orthogonal dimensions to quantify the matching score between a tagged image and a tag query. These five dimensions are: (i) tag relatedness to measure the degree of effectiveness of a tag describing the tagged image; (ii) tag discrimination to quantify the degree of discrimination of a tag with respect to the entire tagged image collection; (iii) tag length normalization analogous to document length normalization in web search; (iv) tag-query matching model for the matching score computation between an image tag and a query tag; and (v) query model for tag query rewriting. For each dimension, we identify a few implementations and evaluate their impact on NUS-WIDE dataset, the largest human-annotated dataset consisting of more than 269K tagged images from Flickr. We evaluated 81 single-tag queries and 443 multi-tag queries over 288 search methods and systematically compare their performances using standard metrics including Precision at top-K, Mean Average Precision (MAP), Recall, and Normalized Discounted Cumulative Gain (NDCG).
    Source
    Journal of the American Society for Information Science and Technology. 62(2011) no.12, S.2364-2381
  17. Antin, J.; Earp, M.: With a little help from my friends : self-interested and prosocial behavior on MySpace Music (2010) 0.01
    0.0067657465 = product of:
      0.027062986 = sum of:
        0.027062986 = weight(_text_:for in 3458) [ClassicSimilarity], result of:
          0.027062986 = score(doc=3458,freq=12.0), product of:
            0.08876751 = queryWeight, product of:
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.047278564 = queryNorm
            0.3048749 = fieldWeight in 3458, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.046875 = fieldNorm(doc=3458)
      0.25 = coord(1/4)
    
    Abstract
    In this article, we explore the dynamics of prosocial and self-interested behavior among musicians on MySpace Music. MySpace Music is an important platform for social interactions and at the same time provides musicians with the opportunity for significant profit. We argue that these forces can be in tension with each other, encouraging musicians to make strategic choices about using MySpace to promote their own or others' rewards. We look for evidence of self-interested and prosocial friending strategies in the social network created by Top Friends links. We find strong evidence that individual preferences for prosocial and self-interested behavior influence friending strategies. Furthermore, our data illustrate a robust relationship between increased prominence and increased attention to others' rewards. These results shed light on how musicians manage their interactions in complex online environments and extend research on social values by demonstrating consistent preferences for prosocial or self-interested behavior in a multifaceted online setting.
    Source
    Journal of the American Society for Information Science and Technology. 61(2010) no.5, S.952-963
  18. Chan, L.M.: Social bookmarking and subject indexing (2011) 0.01
    0.006510343 = product of:
      0.026041372 = sum of:
        0.026041372 = weight(_text_:for in 1806) [ClassicSimilarity], result of:
          0.026041372 = score(doc=1806,freq=4.0), product of:
            0.08876751 = queryWeight, product of:
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.047278564 = queryNorm
            0.29336601 = fieldWeight in 1806, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.078125 = fieldNorm(doc=1806)
      0.25 = coord(1/4)
    
    Source
    Subject access: preparing for the future. Conference on August 20 - 21, 2009 in Florence, the IFLA Classification and Indexing Section sponsored an IFLA satellite conference entitled "Looking at the Past and Preparing for the Future". Eds.: P. Landry et al
  19. Aagaard, H.: Social indexing at the Stockholm Public Library (2011) 0.01
    0.006510343 = product of:
      0.026041372 = sum of:
        0.026041372 = weight(_text_:for in 1807) [ClassicSimilarity], result of:
          0.026041372 = score(doc=1807,freq=4.0), product of:
            0.08876751 = queryWeight, product of:
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.047278564 = queryNorm
            0.29336601 = fieldWeight in 1807, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.8775425 = idf(docFreq=18385, maxDocs=44218)
              0.078125 = fieldNorm(doc=1807)
      0.25 = coord(1/4)
    
    Source
    Subject access: preparing for the future. Conference on August 20 - 21, 2009 in Florence, the IFLA Classification and Indexing Section sponsored an IFLA satellite conference entitled "Looking at the Past and Preparing for the Future". Eds.: P. Landry et al
  20. Müller-Prove, M.: Modell und Anwendungsperspektive des Social Tagging (2008) 0.01
    0.006405593 = product of:
      0.025622372 = sum of:
        0.025622372 = product of:
          0.051244743 = sum of:
            0.051244743 = weight(_text_:22 in 2882) [ClassicSimilarity], result of:
              0.051244743 = score(doc=2882,freq=2.0), product of:
                0.16556148 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.047278564 = queryNorm
                0.30952093 = fieldWeight in 2882, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=2882)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Pages
    S.15-22

Years

Languages

  • e 95
  • d 4
  • i 1
  • More… Less…

Types

  • a 89
  • el 11
  • m 4
  • b 2
  • s 1
  • More… Less…