Search (178 results, page 1 of 9)

  • × theme_ss:"Visualisierung"
  1. Platis, N. et al.: Visualization of uncertainty in tag clouds (2016) 0.27
    0.2719194 = product of:
      0.3625592 = sum of:
        0.006476338 = weight(_text_:a in 2755) [ClassicSimilarity], result of:
          0.006476338 = score(doc=2755,freq=2.0), product of:
            0.05083672 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.044089027 = queryNorm
            0.12739488 = fieldWeight in 2755, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.078125 = fieldNorm(doc=2755)
        0.15165876 = weight(_text_:et in 2755) [ClassicSimilarity], result of:
          0.15165876 = score(doc=2755,freq=4.0), product of:
            0.20686594 = queryWeight, product of:
              4.692005 = idf(docFreq=1101, maxDocs=44218)
              0.044089027 = queryNorm
            0.7331258 = fieldWeight in 2755, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.692005 = idf(docFreq=1101, maxDocs=44218)
              0.078125 = fieldNorm(doc=2755)
        0.20442411 = sum of:
          0.14468956 = weight(_text_:al in 2755) [ClassicSimilarity], result of:
            0.14468956 = score(doc=2755,freq=4.0), product of:
              0.20205697 = queryWeight, product of:
                4.582931 = idf(docFreq=1228, maxDocs=44218)
                0.044089027 = queryNorm
              0.716083 = fieldWeight in 2755, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                4.582931 = idf(docFreq=1228, maxDocs=44218)
                0.078125 = fieldNorm(doc=2755)
          0.059734546 = weight(_text_:22 in 2755) [ClassicSimilarity], result of:
            0.059734546 = score(doc=2755,freq=2.0), product of:
              0.15439226 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.044089027 = queryNorm
              0.38690117 = fieldWeight in 2755, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.078125 = fieldNorm(doc=2755)
      0.75 = coord(3/4)
    
    Date
    1. 2.2016 18:25:22
    Source
    Semantic keyword-based search on structured data sources: First COST Action IC1302 International KEYSTONE Conference, IKC 2015, Coimbra, Portugal, September 8-9, 2015. Revised Selected Papers. Eds.: J. Cardoso et al
    Type
    a
  2. Wu, Y.; Bai, R.: ¬An event relationship model for knowledge organization and visualization (2017) 0.08
    0.07841616 = product of:
      0.104554884 = sum of:
        0.009518234 = weight(_text_:a in 3867) [ClassicSimilarity], result of:
          0.009518234 = score(doc=3867,freq=12.0), product of:
            0.05083672 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.044089027 = queryNorm
            0.18723148 = fieldWeight in 3867, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=3867)
        0.064343356 = weight(_text_:et in 3867) [ClassicSimilarity], result of:
          0.064343356 = score(doc=3867,freq=2.0), product of:
            0.20686594 = queryWeight, product of:
              4.692005 = idf(docFreq=1101, maxDocs=44218)
              0.044089027 = queryNorm
            0.3110389 = fieldWeight in 3867, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.692005 = idf(docFreq=1101, maxDocs=44218)
              0.046875 = fieldNorm(doc=3867)
        0.03069329 = product of:
          0.06138658 = sum of:
            0.06138658 = weight(_text_:al in 3867) [ClassicSimilarity], result of:
              0.06138658 = score(doc=3867,freq=2.0), product of:
                0.20205697 = queryWeight, product of:
                  4.582931 = idf(docFreq=1228, maxDocs=44218)
                  0.044089027 = queryNorm
                0.30380827 = fieldWeight in 3867, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.582931 = idf(docFreq=1228, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3867)
          0.5 = coord(1/2)
      0.75 = coord(3/4)
    
    Abstract
    An event is a specific occurrence involving participants, which is a typed, n-ary association of entities or other events, each identified as a participant in a specific semantic role in the event (Pyysalo et al. 2012; Linguistic Data Consortium 2005). Event types may vary across domains. Representing relationships between events can facilitate the understanding of knowledge in complex systems (such as economic systems, human body, social systems). In the simplest form, an event can be represented as Entity A <Relation> Entity B. This paper evaluates several knowledge organization and visualization models and tools, such as concept maps (Cmap), topic maps (Ontopia), network analysis models (Gephi), and ontology (Protégé), then proposes an event relationship model that aims to integrate the strengths of these models, and can represent complex knowledge expressed in events and their relationships.
    Type
    a
  3. Soylu, A.; Giese, M.; Jimenez-Ruiz, E.; Kharlamov, E.; Zheleznyakov, D.; Horrocks, I.: Towards exploiting query history for adaptive ontology-based visual query formulation (2014) 0.08
    0.07779418 = product of:
      0.10372557 = sum of:
        0.00868892 = weight(_text_:a in 1576) [ClassicSimilarity], result of:
          0.00868892 = score(doc=1576,freq=10.0), product of:
            0.05083672 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.044089027 = queryNorm
            0.1709182 = fieldWeight in 1576, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=1576)
        0.064343356 = weight(_text_:et in 1576) [ClassicSimilarity], result of:
          0.064343356 = score(doc=1576,freq=2.0), product of:
            0.20686594 = queryWeight, product of:
              4.692005 = idf(docFreq=1101, maxDocs=44218)
              0.044089027 = queryNorm
            0.3110389 = fieldWeight in 1576, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.692005 = idf(docFreq=1101, maxDocs=44218)
              0.046875 = fieldNorm(doc=1576)
        0.03069329 = product of:
          0.06138658 = sum of:
            0.06138658 = weight(_text_:al in 1576) [ClassicSimilarity], result of:
              0.06138658 = score(doc=1576,freq=2.0), product of:
                0.20205697 = queryWeight, product of:
                  4.582931 = idf(docFreq=1228, maxDocs=44218)
                  0.044089027 = queryNorm
                0.30380827 = fieldWeight in 1576, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.582931 = idf(docFreq=1228, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1576)
          0.5 = coord(1/2)
      0.75 = coord(3/4)
    
    Abstract
    Grounded on real industrial use cases, we recently proposed an ontology-based visual query system for SPARQL, named OptiqueVQS. Ontology-based visual query systems employ ontologies and visual representations to depict the domain of interest and queries, and are promising to enable end users without any technical background to access data on their own. However, even with considerably small ontologies, the number of ontology elements to choose from increases drastically, and hence hinders usability. Therefore, in this paper, we propose a method using the log of past queries for ranking and suggesting query extensions as a user types a query, and identify emerging issues to be addressed.
    Source
    Metadata and semantics research: 8th Research Conference, MTSR 2014, Karlsruhe, Germany, November 27-29, 2014, Proceedings. Eds.: S. Closs et al
    Type
    a
  4. Information visualization in data mining and knowledge discovery (2002) 0.07
    0.0683563 = product of:
      0.09114173 = sum of:
        0.0066045956 = weight(_text_:a in 1789) [ClassicSimilarity], result of:
          0.0066045956 = score(doc=1789,freq=52.0), product of:
            0.05083672 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.044089027 = queryNorm
            0.12991782 = fieldWeight in 1789, product of:
              7.2111025 = tf(freq=52.0), with freq of:
                52.0 = termFreq=52.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.015625 = fieldNorm(doc=1789)
        0.03714866 = weight(_text_:et in 1789) [ClassicSimilarity], result of:
          0.03714866 = score(doc=1789,freq=6.0), product of:
            0.20686594 = queryWeight, product of:
              4.692005 = idf(docFreq=1101, maxDocs=44218)
              0.044089027 = queryNorm
            0.17957842 = fieldWeight in 1789, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              4.692005 = idf(docFreq=1101, maxDocs=44218)
              0.015625 = fieldNorm(doc=1789)
        0.04738847 = sum of:
          0.035441563 = weight(_text_:al in 1789) [ClassicSimilarity], result of:
            0.035441563 = score(doc=1789,freq=6.0), product of:
              0.20205697 = queryWeight, product of:
                4.582931 = idf(docFreq=1228, maxDocs=44218)
                0.044089027 = queryNorm
              0.1754038 = fieldWeight in 1789, product of:
                2.4494898 = tf(freq=6.0), with freq of:
                  6.0 = termFreq=6.0
                4.582931 = idf(docFreq=1228, maxDocs=44218)
                0.015625 = fieldNorm(doc=1789)
          0.011946909 = weight(_text_:22 in 1789) [ClassicSimilarity], result of:
            0.011946909 = score(doc=1789,freq=2.0), product of:
              0.15439226 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.044089027 = queryNorm
              0.07738023 = fieldWeight in 1789, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.015625 = fieldNorm(doc=1789)
      0.75 = coord(3/4)
    
    Date
    23. 3.2008 19:10:22
    Editor
    Fayyad, U. et al.
    Footnote
    Rez. in: JASIST 54(2003) no.9, S.905-906 (C.A. Badurek): "Visual approaches for knowledge discovery in very large databases are a prime research need for information scientists focused an extracting meaningful information from the ever growing stores of data from a variety of domains, including business, the geosciences, and satellite and medical imagery. This work presents a summary of research efforts in the fields of data mining, knowledge discovery, and data visualization with the goal of aiding the integration of research approaches and techniques from these major fields. The editors, leading computer scientists from academia and industry, present a collection of 32 papers from contributors who are incorporating visualization and data mining techniques through academic research as well application development in industry and government agencies. Information Visualization focuses upon techniques to enhance the natural abilities of humans to visually understand data, in particular, large-scale data sets. It is primarily concerned with developing interactive graphical representations to enable users to more intuitively make sense of multidimensional data as part of the data exploration process. It includes research from computer science, psychology, human-computer interaction, statistics, and information science. Knowledge Discovery in Databases (KDD) most often refers to the process of mining databases for previously unknown patterns and trends in data. Data mining refers to the particular computational methods or algorithms used in this process. The data mining research field is most related to computational advances in database theory, artificial intelligence and machine learning. This work compiles research summaries from these main research areas in order to provide "a reference work containing the collection of thoughts and ideas of noted researchers from the fields of data mining and data visualization" (p. 8). It addresses these areas in three main sections: the first an data visualization, the second an KDD and model visualization, and the last an using visualization in the knowledge discovery process. The seven chapters of Part One focus upon methodologies and successful techniques from the field of Data Visualization. Hoffman and Grinstein (Chapter 2) give a particularly good overview of the field of data visualization and its potential application to data mining. An introduction to the terminology of data visualization, relation to perceptual and cognitive science, and discussion of the major visualization display techniques are presented. Discussion and illustration explain the usefulness and proper context of such data visualization techniques as scatter plots, 2D and 3D isosurfaces, glyphs, parallel coordinates, and radial coordinate visualizations. Remaining chapters present the need for standardization of visualization methods, discussion of user requirements in the development of tools, and examples of using information visualization in addressing research problems.
    In 13 chapters, Part Two provides an introduction to KDD, an overview of data mining techniques, and examples of the usefulness of data model visualizations. The importance of visualization throughout the KDD process is stressed in many of the chapters. In particular, the need for measures of visualization effectiveness, benchmarking for identifying best practices, and the use of standardized sample data sets is convincingly presented. Many of the important data mining approaches are discussed in this complementary context. Cluster and outlier detection, classification techniques, and rule discovery algorithms are presented as the basic techniques common to the KDD process. The potential effectiveness of using visualization in the data modeling process are illustrated in chapters focused an using visualization for helping users understand the KDD process, ask questions and form hypotheses about their data, and evaluate the accuracy and veracity of their results. The 11 chapters of Part Three provide an overview of the KDD process and successful approaches to integrating KDD, data mining, and visualization in complementary domains. Rhodes (Chapter 21) begins this section with an excellent overview of the relation between the KDD process and data mining techniques. He states that the "primary goals of data mining are to describe the existing data and to predict the behavior or characteristics of future data of the same type" (p. 281). These goals are met by data mining tasks such as classification, regression, clustering, summarization, dependency modeling, and change or deviation detection. Subsequent chapters demonstrate how visualization can aid users in the interactive process of knowledge discovery by graphically representing the results from these iterative tasks. Finally, examples of the usefulness of integrating visualization and data mining tools in the domain of business, imagery and text mining, and massive data sets are provided. This text concludes with a thorough and useful 17-page index and lengthy yet integrating 17-page summary of the academic and industrial backgrounds of the contributing authors. A 16-page set of color inserts provide a better representation of the visualizations discussed, and a URL provided suggests that readers may view all the book's figures in color on-line, although as of this submission date it only provides access to a summary of the book and its contents. The overall contribution of this work is its focus an bridging two distinct areas of research, making it a valuable addition to the Morgan Kaufmann Series in Database Management Systems. The editors of this text have met their main goal of providing the first textbook integrating knowledge discovery, data mining, and visualization. Although it contributes greatly to our under- standing of the development and current state of the field, a major weakness of this text is that there is no concluding chapter to discuss the contributions of the sum of these contributed papers or give direction to possible future areas of research. "Integration of expertise between two different disciplines is a difficult process of communication and reeducation. Integrating data mining and visualization is particularly complex because each of these fields in itself must draw an a wide range of research experience" (p. 300). Although this work contributes to the crossdisciplinary communication needed to advance visualization in KDD, a more formal call for an interdisciplinary research agenda in a concluding chapter would have provided a more satisfying conclusion to a very good introductory text.
    With contributors almost exclusively from the computer science field, the intended audience of this work is heavily slanted towards a computer science perspective. However, it is highly readable and provides introductory material that would be useful to information scientists from a variety of domains. Yet, much interesting work in information visualization from other fields could have been included giving the work more of an interdisciplinary perspective to complement their goals of integrating work in this area. Unfortunately, many of the application chapters are these, shallow, and lack complementary illustrations of visualization techniques or user interfaces used. However, they do provide insight into the many applications being developed in this rapidly expanding field. The authors have successfully put together a highly useful reference text for the data mining and information visualization communities. Those interested in a good introduction and overview of complementary research areas in these fields will be satisfied with this collection of papers. The focus upon integrating data visualization with data mining complements texts in each of these fields, such as Advances in Knowledge Discovery and Data Mining (Fayyad et al., MIT Press) and Readings in Information Visualization: Using Vision to Think (Card et. al., Morgan Kauffman). This unique work is a good starting point for future interaction between researchers in the fields of data visualization and data mining and makes a good accompaniment for a course focused an integrating these areas or to the main reference texts in these fields."
  5. Lin, F.-T.: Drawing a knowledge map of smart city knowledge in academia (2019) 0.07
    0.0662671 = product of:
      0.08835614 = sum of:
        0.009158926 = weight(_text_:a in 5454) [ClassicSimilarity], result of:
          0.009158926 = score(doc=5454,freq=16.0), product of:
            0.05083672 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.044089027 = queryNorm
            0.18016359 = fieldWeight in 5454, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5454)
        0.053619467 = weight(_text_:et in 5454) [ClassicSimilarity], result of:
          0.053619467 = score(doc=5454,freq=2.0), product of:
            0.20686594 = queryWeight, product of:
              4.692005 = idf(docFreq=1101, maxDocs=44218)
              0.044089027 = queryNorm
            0.2591991 = fieldWeight in 5454, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.692005 = idf(docFreq=1101, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5454)
        0.025577743 = product of:
          0.051155485 = sum of:
            0.051155485 = weight(_text_:al in 5454) [ClassicSimilarity], result of:
              0.051155485 = score(doc=5454,freq=2.0), product of:
                0.20205697 = queryWeight, product of:
                  4.582931 = idf(docFreq=1228, maxDocs=44218)
                  0.044089027 = queryNorm
                0.25317356 = fieldWeight in 5454, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.582931 = idf(docFreq=1228, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5454)
          0.5 = coord(1/2)
      0.75 = coord(3/4)
    
    Abstract
    This research takes the academic articles in the Web of Science's core collection database as a corpus to draw a series of knowledge maps, to explore the relationships, connectivity, dis-tribution, and evolution among their keywords with respect to smart cities in the last decade. Beyond just drawing a text cloud or measuring their sizes, we further explore their texture by iden-tifying the hottest keywords in academic articles, construct links between and among them that share common keywords, identify islands, rocks, reefs that are formed by connected articles-a metaphor inspired by Ong et al. (2005)-and analyze trends in their evolution. We found the following phenomena: 1) "Internet of Things" is the most frequently mentioned keyword in recent research articles; 2) the numbers of islands and reefs are increas-ing; 3) the evolutions of the numbers of weighted links have frac-tal-like structure; and, 4) the coverage of the largest rock, formed by articles that share a common keyword, in the largest island is converging into around 10% to 20%. These phenomena imply that a common interest in the technology of smart cities has been emerging among researchers. However, the administrative, social, economic, and cultural issues need more attention in academia in the future.
    Type
    a
  6. Rolling, L.: ¬The role of graphic display of concept relationships in indexing and retrieval vocabularies (1985) 0.05
    0.0539622 = product of:
      0.0719496 = sum of:
        0.008591834 = weight(_text_:a in 3646) [ClassicSimilarity], result of:
          0.008591834 = score(doc=3646,freq=22.0), product of:
            0.05083672 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.044089027 = queryNorm
            0.16900843 = fieldWeight in 3646, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.03125 = fieldNorm(doc=3646)
        0.042895574 = weight(_text_:et in 3646) [ClassicSimilarity], result of:
          0.042895574 = score(doc=3646,freq=2.0), product of:
            0.20686594 = queryWeight, product of:
              4.692005 = idf(docFreq=1101, maxDocs=44218)
              0.044089027 = queryNorm
            0.20735928 = fieldWeight in 3646, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.692005 = idf(docFreq=1101, maxDocs=44218)
              0.03125 = fieldNorm(doc=3646)
        0.020462193 = product of:
          0.040924385 = sum of:
            0.040924385 = weight(_text_:al in 3646) [ClassicSimilarity], result of:
              0.040924385 = score(doc=3646,freq=2.0), product of:
                0.20205697 = queryWeight, product of:
                  4.582931 = idf(docFreq=1228, maxDocs=44218)
                  0.044089027 = queryNorm
                0.20253885 = fieldWeight in 3646, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.582931 = idf(docFreq=1228, maxDocs=44218)
                  0.03125 = fieldNorm(doc=3646)
          0.5 = coord(1/2)
      0.75 = coord(3/4)
    
    Abstract
    The use of diagrams to express relationships in classification is not new. Many classificationists have used this approach, but usually in a minor display to make a point or for part of a difficult relational situation. Ranganathan, for example, used diagrams for some of his more elusive concepts. The thesaurus in particular and subject headings in general, with direct and indirect crossreferences or equivalents, need many more diagrams than normally are included to make relationships and even semantics clear. A picture very often is worth a thousand words. Rolling has used directed graphs (arrowgraphs) to join terms as a practical method for rendering relationships between indexing terms lucid. He has succeeded very weIl in this endeavor. Four diagrams in this selection are all that one needs to explain how to employ the system; from initial listing to completed arrowgraph. The samples of his work include illustration of off-page connectors between arrowgraphs. The great advantage to using diagrams like this is that they present relations between individual terms in a format that is easy to comprehend. But of even greater value is the fact that one can use his arrowgraphs as schematics for making three-dimensional wire-and-ball models, in which the relationships may be seen even more clearly. In fact, errors or gaps in relations are much easier to find with this methodology. One also can get across the notion of the threedimensionality of classification systems with such models. Pettee's "hand reaching up and over" (q.v.) is not a figment of the imagination. While the actual hand is a wire or stick, the concept visualized is helpful in illuminating the three-dimensional figure that is latent in all systems that have cross-references or "broader," "narrower," or, especially, "related" terms. Classification schedules, being hemmed in by the dimensions of the printed page, also benefit from such physical illustrations. Rolling, an engineer by conviction, was the developer of information systems for the Cobalt Institute, the European Atomic Energy Community, and European Coal and Steel Community. He also developed and promoted computer-aided translation at the Commission of the European Communities in Luxembourg. One of his objectives has always been to increase the efficiency of mono- and multilingual thesauri for use in multinational information systems.
    Source
    Theory of subject analysis: a sourcebook. Ed.: L.M. Chan, et al
    Type
    a
  7. Chowdhury, S.; Chowdhury, G.G.: Using DDC to create a visual knowledge map as an aid to online information retrieval (2004) 0.05
    0.05265876 = product of:
      0.07021168 = sum of:
        0.0068539125 = weight(_text_:a in 2643) [ClassicSimilarity], result of:
          0.0068539125 = score(doc=2643,freq=14.0), product of:
            0.05083672 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.044089027 = queryNorm
            0.13482209 = fieldWeight in 2643, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.03125 = fieldNorm(doc=2643)
        0.042895574 = weight(_text_:et in 2643) [ClassicSimilarity], result of:
          0.042895574 = score(doc=2643,freq=2.0), product of:
            0.20686594 = queryWeight, product of:
              4.692005 = idf(docFreq=1101, maxDocs=44218)
              0.044089027 = queryNorm
            0.20735928 = fieldWeight in 2643, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.692005 = idf(docFreq=1101, maxDocs=44218)
              0.03125 = fieldNorm(doc=2643)
        0.020462193 = product of:
          0.040924385 = sum of:
            0.040924385 = weight(_text_:al in 2643) [ClassicSimilarity], result of:
              0.040924385 = score(doc=2643,freq=2.0), product of:
                0.20205697 = queryWeight, product of:
                  4.582931 = idf(docFreq=1228, maxDocs=44218)
                  0.044089027 = queryNorm
                0.20253885 = fieldWeight in 2643, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.582931 = idf(docFreq=1228, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2643)
          0.5 = coord(1/2)
      0.75 = coord(3/4)
    
    Abstract
    Selection of search terms in an online search environment can be facilitated by the visual display of a knowledge map showing the various concepts and their links. This paper reports an a preliminary research aimed at designing a prototype knowledge map using DDC and its visual display. The prototype knowledge map created using the Protégé and TGViz freeware has been demonstrated, and further areas of research in this field are discussed.
    Content
    1. Introduction Web search engines and digital libraries usually expect the users to use search terms that most accurately represent their information needs. Finding the most appropriate search terms to represent an information need is an age old problem in information retrieval. Keyword or phrase search may produce good search results as long as the search terms or phrase(s) match those used by the authors and have been chosen for indexing by the concerned information retrieval system. Since this does not always happen, a large number of false drops are produced by information retrieval systems. The retrieval results become worse in very large systems that deal with millions of records, such as the Web search engines and digital libraries. Vocabulary control tools are used to improve the performance of text retrieval systems. Thesauri, the most common type of vocabulary control tool used in information retrieval, appeared in the late fifties, designed for use with the emerging post-coordinate indexing systems of that time. They are used to exert terminology control in indexing, and to aid in searching by allowing the searcher to select appropriate search terms. A large volume of literature exists describing the design features, and experiments with the use, of thesauri in various types of information retrieval systems (see for example, Furnas et.al., 1987; Bates, 1986, 1998; Milstead, 1997, and Shiri et al., 2002).
    Type
    a
  8. Singh, A.; Sinha, U.; Sharma, D.k.: Semantic Web and data visualization (2020) 0.05
    0.052277446 = product of:
      0.06970326 = sum of:
        0.00634549 = weight(_text_:a in 79) [ClassicSimilarity], result of:
          0.00634549 = score(doc=79,freq=12.0), product of:
            0.05083672 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.044089027 = queryNorm
            0.12482099 = fieldWeight in 79, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.03125 = fieldNorm(doc=79)
        0.042895574 = weight(_text_:et in 79) [ClassicSimilarity], result of:
          0.042895574 = score(doc=79,freq=2.0), product of:
            0.20686594 = queryWeight, product of:
              4.692005 = idf(docFreq=1101, maxDocs=44218)
              0.044089027 = queryNorm
            0.20735928 = fieldWeight in 79, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.692005 = idf(docFreq=1101, maxDocs=44218)
              0.03125 = fieldNorm(doc=79)
        0.020462193 = product of:
          0.040924385 = sum of:
            0.040924385 = weight(_text_:al in 79) [ClassicSimilarity], result of:
              0.040924385 = score(doc=79,freq=2.0), product of:
                0.20205697 = queryWeight, product of:
                  4.582931 = idf(docFreq=1228, maxDocs=44218)
                  0.044089027 = queryNorm
                0.20253885 = fieldWeight in 79, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.582931 = idf(docFreq=1228, maxDocs=44218)
                  0.03125 = fieldNorm(doc=79)
          0.5 = coord(1/2)
      0.75 = coord(3/4)
    
    Abstract
    With the terrific growth of data volume and data being produced every second on millions of devices across the globe, there is a desperate need to manage the unstructured data available on web pages efficiently. Semantic Web or also known as Web of Trust structures the scattered data on the Internet according to the needs of the user. It is an extension of the World Wide Web (WWW) which focuses on manipulating web data on behalf of Humans. Due to the ability of the Semantic Web to integrate data from disparate sources and hence makes it more user-friendly, it is an emerging trend. Tim Berners-Lee first introduced the term Semantic Web and since then it has come a long way to become a more intelligent and intuitive web. Data Visualization plays an essential role in explaining complex concepts in a universal manner through pictorial representation, and the Semantic Web helps in broadening the potential of Data Visualization and thus making it an appropriate combination. The objective of this chapter is to provide fundamental insights concerning the semantic web technologies and in addition to that it also elucidates the issues as well as the solutions regarding the semantic web. The purpose of this chapter is to highlight the semantic web architecture in detail while also comparing it with the traditional search system. It classifies the semantic web architecture into three major pillars i.e. RDF, Ontology, and XML. Moreover, it describes different semantic web tools used in the framework and technology. It attempts to illustrate different approaches of the semantic web search engines. Besides stating numerous challenges faced by the semantic web it also illustrates the solutions.
    Source
    Data visualization and knowledge engineering. Eds. J. Hemanth, et al
    Type
    a
  9. Representation in scientific practice revisited (2014) 0.05
    0.050883528 = product of:
      0.067844704 = sum of:
        0.004486939 = weight(_text_:a in 3543) [ClassicSimilarity], result of:
          0.004486939 = score(doc=3543,freq=6.0), product of:
            0.05083672 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.044089027 = queryNorm
            0.088261776 = fieldWeight in 3543, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.03125 = fieldNorm(doc=3543)
        0.042895574 = weight(_text_:et in 3543) [ClassicSimilarity], result of:
          0.042895574 = score(doc=3543,freq=2.0), product of:
            0.20686594 = queryWeight, product of:
              4.692005 = idf(docFreq=1101, maxDocs=44218)
              0.044089027 = queryNorm
            0.20735928 = fieldWeight in 3543, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.692005 = idf(docFreq=1101, maxDocs=44218)
              0.03125 = fieldNorm(doc=3543)
        0.020462193 = product of:
          0.040924385 = sum of:
            0.040924385 = weight(_text_:al in 3543) [ClassicSimilarity], result of:
              0.040924385 = score(doc=3543,freq=2.0), product of:
                0.20205697 = queryWeight, product of:
                  4.582931 = idf(docFreq=1228, maxDocs=44218)
                  0.044089027 = queryNorm
                0.20253885 = fieldWeight in 3543, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.582931 = idf(docFreq=1228, maxDocs=44218)
                  0.03125 = fieldNorm(doc=3543)
          0.5 = coord(1/2)
      0.75 = coord(3/4)
    
    Abstract
    Representation in Scientific Practice, published by the MIT Press in 1990, helped coalesce a long-standing interest in scientific visualization among historians, philosophers, and sociologists of science and remains a touchstone for current investigations in science and technology studies. This volume revisits the topic, taking into account both the changing conceptual landscape of STS and the emergence of new imaging technologies in scientific practice. It offers cutting-edge research on a broad array of fields that study information as well as short reflections on the evolution of the field by leading scholars, including some of the contributors to the 1990 volume. The essays consider the ways in which viewing experiences are crafted in the digital era; the embodied nature of work with digital technologies; the constitutive role of materials and technologies -- from chalkboards to brain scans -- in the production of new scientific knowledge; the metaphors and images mobilized by communities of practice; and the status and significance of scientific imagery in professional and popular culture. ContributorsMorana Alac, Michael Barany, Anne Beaulieu, Annamaria Carusi, Catelijne Coopmans, Lorraine Daston, Sarah de Rijcke, Joseph Dumit, Emma Frow, Yann Giraud, Aud Sissel Hoel, Martin Kemp, Bruno Latour, John Law, Michael Lynch, Donald MacKenzie, Cyrus Mody, Natasha Myers, Rachel Prentice, Arie Rip, Martin Ruivenkamp, Lucy Suchman, Janet Vertesi, Steve Woolgar
    Editor
    Coopmans, C. et al.
  10. Rudolph, S.; Hemmje, M.: Visualisierung von Thesauri zur interaktiven Unterstüzung von visuellen Anfragen an Textdatenbanken (1994) 0.04
    0.039598607 = product of:
      0.07919721 = sum of:
        0.053619467 = weight(_text_:et in 2382) [ClassicSimilarity], result of:
          0.053619467 = score(doc=2382,freq=2.0), product of:
            0.20686594 = queryWeight, product of:
              4.692005 = idf(docFreq=1101, maxDocs=44218)
              0.044089027 = queryNorm
            0.2591991 = fieldWeight in 2382, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.692005 = idf(docFreq=1101, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2382)
        0.025577743 = product of:
          0.051155485 = sum of:
            0.051155485 = weight(_text_:al in 2382) [ClassicSimilarity], result of:
              0.051155485 = score(doc=2382,freq=2.0), product of:
                0.20205697 = queryWeight, product of:
                  4.582931 = idf(docFreq=1228, maxDocs=44218)
                  0.044089027 = queryNorm
                0.25317356 = fieldWeight in 2382, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.582931 = idf(docFreq=1228, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2382)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    In der folgenden Studie wird eine Komponente für eine visuelle Benutzerschnittstelle zu Textdatenbanken entworfen. Mit Hilfe einer Terminologievisualisierung wird dem Benutzer eine Hilfestellung bei der Relevanzbewertung von Dokumenten und bei der Erweiterung seiner visuellen Anfrage an das Retrieval-System gegeben. Dazu werden zuerst die grundlegenden Information-Retrieval-Modelle eingehender vorgestellt, d.h., generelle Retrieval-Modelle, Retrievaloperationen und spezielle Retrieval-Modelle wie Text-Retrieval werden erläutert. Die Funktionalität eines Text-Retrieval-Systems wird vorgestellt. Darüber hinaus werden bereits existierende Implementierungen visueller Information-Retrieval-Benutzerschnittstellen vorgestellt. Im weiteren Verlauf der Arbeit werden mögliche Visualisierungen der mit Hilfe eines Text-Retrieval-Systems gefundenen Dokumente aufgezeigt. Es werden mehrere Vorschläge zur Visualisierung von Thesauri diskutiert. Es wird gezeigt, wie neuronale Netze zur Kartierung eines Eingabebereiches benutzt werden können. Klassifikationsebenen einer objekt-orientierten Annäherung eines Information-Retrieval-Systems werden vorgestellt. In diesem Zusammenhang werden auch die Eigenschaften von Thesauri sowie die Architektur und Funktion eines Parsersystems erläutert. Mit diesen Voraussetzung wird die Implementierung einer visuellen Terminologierunterstützung realisiert. Abschließend wird ein Fazit zur vorgestellten Realisierung basierend auf einem Drei-Schichten-Modell von [Agosti et al. 1990] gezogen.
  11. Börner, K.: Atlas of knowledge : anyone can map (2015) 0.01
    0.014614513 = product of:
      0.029229026 = sum of:
        0.003885803 = weight(_text_:a in 3355) [ClassicSimilarity], result of:
          0.003885803 = score(doc=3355,freq=2.0), product of:
            0.05083672 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.044089027 = queryNorm
            0.07643694 = fieldWeight in 3355, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=3355)
        0.025343223 = product of:
          0.050686445 = sum of:
            0.050686445 = weight(_text_:22 in 3355) [ClassicSimilarity], result of:
              0.050686445 = score(doc=3355,freq=4.0), product of:
                0.15439226 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044089027 = queryNorm
                0.32829654 = fieldWeight in 3355, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3355)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Content
    One of a series of three publications influenced by the travelling exhibit Places & Spaces: Mapping Science, curated by the Cyberinfrastructure for Network Science Center at Indiana University. - Additional materials can be found at http://http://scimaps.org/atlas2. Erweitert durch: Börner, Katy. Atlas of Science: Visualizing What We Know.
    Date
    22. 1.2017 16:54:03
    22. 1.2017 17:10:56
  12. Palm, F.: QVIZ : Query and context based visualization of time-spatial cultural dynamics (2007) 0.01
    0.0133046415 = product of:
      0.026609283 = sum of:
        0.00868892 = weight(_text_:a in 1289) [ClassicSimilarity], result of:
          0.00868892 = score(doc=1289,freq=10.0), product of:
            0.05083672 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.044089027 = queryNorm
            0.1709182 = fieldWeight in 1289, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=1289)
        0.017920362 = product of:
          0.035840724 = sum of:
            0.035840724 = weight(_text_:22 in 1289) [ClassicSimilarity], result of:
              0.035840724 = score(doc=1289,freq=2.0), product of:
                0.15439226 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044089027 = queryNorm
                0.23214069 = fieldWeight in 1289, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1289)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    QVIZ will research and create a framework for visualizing and querying archival resources by a time-space interface based on maps and emergent knowledge structures. The framework will also integrate social software, such as wikis, in order to utilize knowledge in existing and new communities of practice. QVIZ will lead to improved information sharing and knowledge creation, easier access to information in a user-adapted context and innovative ways of exploring and visualizing materials over time, between countries and other administrative units. The common European framework for sharing and accessing archival information provided by the QVIZ project will open a considerably larger commercial market based on archival materials as well as a richer understanding of European history.
    Content
    Vortrag anlässlich des Workshops: "Extending the multilingual capacity of The European Library in the EDL project Stockholm, Swedish National Library, 22-23 November 2007".
  13. Chen, C.: CiteSpace II : detecting and visualizing emerging trends and transient patterns in scientific literature (2006) 0.01
    0.012836715 = product of:
      0.02567343 = sum of:
        0.010739793 = weight(_text_:a in 5272) [ClassicSimilarity], result of:
          0.010739793 = score(doc=5272,freq=22.0), product of:
            0.05083672 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.044089027 = queryNorm
            0.21126054 = fieldWeight in 5272, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5272)
        0.014933636 = product of:
          0.029867273 = sum of:
            0.029867273 = weight(_text_:22 in 5272) [ClassicSimilarity], result of:
              0.029867273 = score(doc=5272,freq=2.0), product of:
                0.15439226 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044089027 = queryNorm
                0.19345059 = fieldWeight in 5272, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5272)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    This article describes the latest development of a generic approach to detecting and visualizing emerging trends and transient patterns in scientific literature. The work makes substantial theoretical and methodological contributions to progressive knowledge domain visualization. A specialty is conceptualized and visualized as a time-variant duality between two fundamental concepts in information science: research fronts and intellectual bases. A research front is defined as an emergent and transient grouping of concepts and underlying research issues. The intellectual base of a research front is its citation and co-citation footprint in scientific literature - an evolving network of scientific publications cited by research-front concepts. Kleinberg's (2002) burst-detection algorithm is adapted to identify emergent research-front concepts. Freeman's (1979) betweenness centrality metric is used to highlight potential pivotal points of paradigm shift over time. Two complementary visualization views are designed and implemented: cluster views and time-zone views. The contributions of the approach are that (a) the nature of an intellectual base is algorithmically and temporally identified by emergent research-front terms, (b) the value of a co-citation cluster is explicitly interpreted in terms of research-front concepts, and (c) visually prominent and algorithmically detected pivotal points substantially reduce the complexity of a visualized network. The modeling and visualization process is implemented in CiteSpace II, a Java application, and applied to the analysis of two research fields: mass extinction (1981-2004) and terrorism (1990-2003). Prominent trends and pivotal points in visualized networks were verified in collaboration with domain experts, who are the authors of pivotal-point articles. Practical implications of the work are discussed. A number of challenges and opportunities for future studies are identified.
    Date
    22. 7.2006 16:11:05
    Type
    a
  14. Wu, K.-C.; Hsieh, T.-Y.: Affective choosing of clustering and categorization representations in e-book interfaces (2016) 0.01
    0.011750514 = product of:
      0.023501027 = sum of:
        0.008567391 = weight(_text_:a in 3070) [ClassicSimilarity], result of:
          0.008567391 = score(doc=3070,freq=14.0), product of:
            0.05083672 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.044089027 = queryNorm
            0.1685276 = fieldWeight in 3070, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3070)
        0.014933636 = product of:
          0.029867273 = sum of:
            0.029867273 = weight(_text_:22 in 3070) [ClassicSimilarity], result of:
              0.029867273 = score(doc=3070,freq=2.0), product of:
                0.15439226 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044089027 = queryNorm
                0.19345059 = fieldWeight in 3070, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3070)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Purpose - The purpose of this paper is to investigate user experiences with a touch-wall interface featuring both clustering and categorization representations of available e-books in a public library to understand human information interactions under work-focused and recreational contexts. Design/methodology/approach - Researchers collected questionnaires from 251 New Taipei City Library visitors who used the touch-wall interface to search for new titles. The authors applied structural equation modelling to examine relationships among hedonic/utilitarian needs, clustering and categorization representations, perceived ease of use (EU) and the extent to which users experienced anxiety and uncertainty (AU) while interacting with the interface. Findings - Utilitarian users who have an explicit idea of what they intend to find tend to prefer the categorization interface. A hedonic-oriented user tends to prefer clustering interfaces. Users reported EU regardless of which interface they engaged with. Results revealed that use of the clustering interface had a negative correlation with AU. Users that seek to satisfy utilitarian needs tended to emphasize the importance of perceived EU, whilst pleasure-seeking users were a little more tolerant of anxiety or uncertainty. Originality/value - The Online Public Access Catalogue (OPAC) encourages library visitors to borrow digital books through the implementation of an information visualization system. This situation poses an opportunity to validate uses and gratification theory. People with hedonic/utilitarian needs displayed different risk-control attitudes and affected uncertainty using the interface. Knowledge about user interaction with such interfaces is vital when launching the development of a new OPAC.
    Date
    20. 1.2015 18:30:22
    Type
    a
  15. Osinska, V.; Bala, P.: New methods for visualization and improvement of classification schemes : the case of computer science (2010) 0.01
    0.011707859 = product of:
      0.023415718 = sum of:
        0.0054953555 = weight(_text_:a in 3693) [ClassicSimilarity], result of:
          0.0054953555 = score(doc=3693,freq=4.0), product of:
            0.05083672 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.044089027 = queryNorm
            0.10809815 = fieldWeight in 3693, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.046875 = fieldNorm(doc=3693)
        0.017920362 = product of:
          0.035840724 = sum of:
            0.035840724 = weight(_text_:22 in 3693) [ClassicSimilarity], result of:
              0.035840724 = score(doc=3693,freq=2.0), product of:
                0.15439226 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044089027 = queryNorm
                0.23214069 = fieldWeight in 3693, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3693)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Generally, Computer Science (CS) classifications are inconsistent in taxonomy strategies. t is necessary to develop CS taxonomy research to combine its historical perspective, its current knowledge and its predicted future trends - including all breakthroughs in information and communication technology. In this paper we have analyzed the ACM Computing Classification System (CCS) by means of visualization maps. The important achievement of current work is an effective visualization of classified documents from the ACM Digital Library. From the technical point of view, the innovation lies in the parallel use of analysis units: (sub)classes and keywords as well as a spherical 3D information surface. We have compared both the thematic and semantic maps of classified documents and results presented in Table 1. Furthermore, the proposed new method is used for content-related evaluation of the original scheme. Summing up: we improved an original ACM classification in the Computer Science domain by means of visualization.
    Date
    22. 7.2010 19:36:46
    Type
    a
  16. Osinska, V.; Kowalska, M.; Osinski, Z.: ¬The role of visualization in the shaping and exploration of the individual information space : part 1 (2018) 0.01
    0.011087202 = product of:
      0.022174403 = sum of:
        0.0072407667 = weight(_text_:a in 4641) [ClassicSimilarity], result of:
          0.0072407667 = score(doc=4641,freq=10.0), product of:
            0.05083672 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.044089027 = queryNorm
            0.14243183 = fieldWeight in 4641, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4641)
        0.014933636 = product of:
          0.029867273 = sum of:
            0.029867273 = weight(_text_:22 in 4641) [ClassicSimilarity], result of:
              0.029867273 = score(doc=4641,freq=2.0), product of:
                0.15439226 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044089027 = queryNorm
                0.19345059 = fieldWeight in 4641, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4641)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Studies on the state and structure of digital knowledge concerning science generally relate to macro and meso scales. Supported by visualizations, these studies can deliver knowledge about emerging scientific fields or collaboration between countries, scientific centers, or groups of researchers. Analyses of individual activities or single scientific career paths are rarely presented and discussed. The authors decided to fill this gap and developed a web application for visualizing the scientific output of particular researchers. This free software based on bibliographic data from local databases, provides six layouts for analysis. Researchers can see the dynamic characteristics of their own writing activity, the time and place of publication, and the thematic scope of research problems. They can also identify cooperation networks, and consequently, study the dependencies and regularities in their own scientific activity. The current article presents the results of a study of the application's usability and functionality as well as attempts to define different user groups. A survey about the interface was sent to select researchers employed at Nicolaus Copernicus University. The results were used to answer the question as to whether such a specialized visualization tool can significantly augment the individual information space of the contemporary researcher.
    Date
    21.12.2018 17:22:13
    Type
    a
  17. Thissen, F.: Screen-Design-Manual : Communicating Effectively Through Multimedia (2003) 0.01
    0.010271155 = product of:
      0.02054231 = sum of:
        0.005608674 = weight(_text_:a in 1397) [ClassicSimilarity], result of:
          0.005608674 = score(doc=1397,freq=6.0), product of:
            0.05083672 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.044089027 = queryNorm
            0.11032722 = fieldWeight in 1397, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1397)
        0.014933636 = product of:
          0.029867273 = sum of:
            0.029867273 = weight(_text_:22 in 1397) [ClassicSimilarity], result of:
              0.029867273 = score(doc=1397,freq=2.0), product of:
                0.15439226 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044089027 = queryNorm
                0.19345059 = fieldWeight in 1397, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1397)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    The "Screen Design Manual" provides designers of interactive media with a practical working guide for preparing and presenting information that is suitable for both their target groups and the media they are using. It describes background information and relationships, clarifies them with the help of examples, and encourages further development of the language of digital media. In addition to the basics of the psychology of perception and learning, ergonomics, communication theory, imagery research, and aesthetics, the book also explores the design of navigation and orientation elements. Guidelines and checklists, along with the unique presentation of the book, support the application of information in practice.
    Classification
    ST 253 Informatik / Monographien / Software und -entwicklung / Web-Programmierwerkzeuge (A-Z)
    Date
    22. 3.2008 14:29:25
    RVK
    ST 253 Informatik / Monographien / Software und -entwicklung / Web-Programmierwerkzeuge (A-Z)
  18. Batorowska, H.; Kaminska-Czubala, B.: Information retrieval support : visualisation of the information space of a document (2014) 0.01
    0.010269372 = product of:
      0.020538744 = sum of:
        0.008591834 = weight(_text_:a in 1444) [ClassicSimilarity], result of:
          0.008591834 = score(doc=1444,freq=22.0), product of:
            0.05083672 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.044089027 = queryNorm
            0.16900843 = fieldWeight in 1444, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.03125 = fieldNorm(doc=1444)
        0.011946909 = product of:
          0.023893818 = sum of:
            0.023893818 = weight(_text_:22 in 1444) [ClassicSimilarity], result of:
              0.023893818 = score(doc=1444,freq=2.0), product of:
                0.15439226 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044089027 = queryNorm
                0.15476047 = fieldWeight in 1444, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1444)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Acquiring knowledge in any field involves information retrieval, i.e. searching the available documents to identify answers to the queries concerning the selected objects. Knowing the keywords which are names of the objects will enable situating the user's query in the information space organized as a thesaurus or faceted classification. Objectives: Identification the areas in the information space which correspond to gaps in the user's personal knowledge or in the domain knowledge might become useful in theory or practice. The aim of this paper is to present a realistic information-space model of a self-authored full-text document on information culture, indexed by the author of this article. Methodology: Having established the relations between the terms, particular modules (sets of terms connected by relations used in facet classification) are situated on a plain, similarly to a communication map. Conclusions drawn from the "journey" on the map, which is a visualization of the knowledge contained in the analysed document, are the crucial part of this paper. Results: The direct result of the research is the created model of information space visualization of a given document (book, article, website). The proposed procedure can practically be used as a new form of representation in order to map the contents of academic books and articles, beside the traditional index form, especially as an e-book auxiliary tool. In teaching, visualization of the information space of a document can be used to help students understand the issues of: classification, categorization and representation of new knowledge emerging in human mind.
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
    Type
    a
  19. Wu, I.-C.; Vakkari, P.: Effects of subject-oriented visualization tools on search by novices and intermediates (2018) 0.01
    0.00975655 = product of:
      0.0195131 = sum of:
        0.004579463 = weight(_text_:a in 4573) [ClassicSimilarity], result of:
          0.004579463 = score(doc=4573,freq=4.0), product of:
            0.05083672 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.044089027 = queryNorm
            0.090081796 = fieldWeight in 4573, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4573)
        0.014933636 = product of:
          0.029867273 = sum of:
            0.029867273 = weight(_text_:22 in 4573) [ClassicSimilarity], result of:
              0.029867273 = score(doc=4573,freq=2.0), product of:
                0.15439226 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044089027 = queryNorm
                0.19345059 = fieldWeight in 4573, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4573)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    This study explores how user subject knowledge influences search task processes and outcomes, as well as how search behavior is influenced by subject-oriented information visualization (IV) tools. To enable integrated searches, the proposed WikiMap + integrates search functions and IV tools (i.e., a topic network and hierarchical topic tree) and gathers information from Wikipedia pages and Google Search results. To evaluate the effectiveness of the proposed interfaces, we design subject-oriented tasks and adopt extended evaluation measures. We recruited 48 novices and 48 knowledgeable users, that is, intermediates, for the evaluation. Our results show that novices using the proposed interface demonstrate better search performance than intermediates using Wikipedia. We therefore conclude that our tools help close the gap between novices and intermediates in information searches. The results also show that intermediates can take advantage of the search tool by leveraging the IV tools to browse subtopics, and formulate better queries with less effort. We conclude that embedding the IV and the search tools in the interface can result in different search behavior but improved task performance. We provide implications to design search systems to include IV features adapted to user levels of subject knowledge to help them achieve better task performance.
    Date
    9.12.2018 16:22:25
    Type
    a
  20. Graphic details : a scientific study of the importance of diagrams to science (2016) 0.01
    0.009711513 = product of:
      0.019423027 = sum of:
        0.010462845 = weight(_text_:a in 3035) [ClassicSimilarity], result of:
          0.010462845 = score(doc=3035,freq=58.0), product of:
            0.05083672 = queryWeight, product of:
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.044089027 = queryNorm
            0.20581275 = fieldWeight in 3035, product of:
              7.615773 = tf(freq=58.0), with freq of:
                58.0 = termFreq=58.0
              1.153047 = idf(docFreq=37942, maxDocs=44218)
              0.0234375 = fieldNorm(doc=3035)
        0.008960181 = product of:
          0.017920362 = sum of:
            0.017920362 = weight(_text_:22 in 3035) [ClassicSimilarity], result of:
              0.017920362 = score(doc=3035,freq=2.0), product of:
                0.15439226 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.044089027 = queryNorm
                0.116070345 = fieldWeight in 3035, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=3035)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    A PICTURE is said to be worth a thousand words. That metaphor might be expected to pertain a fortiori in the case of scientific papers, where a figure can brilliantly illuminate an idea that might otherwise be baffling. Papers with figures in them should thus be easier to grasp than those without. They should therefore reach larger audiences and, in turn, be more influential simply by virtue of being more widely read. But are they?
    Content
    Bill Howe and his colleagues at the University of Washington, in Seattle, decided to find out. First, they trained a computer algorithm to distinguish between various sorts of figures-which they defined as diagrams, equations, photographs, plots (such as bar charts and scatter graphs) and tables. They exposed their algorithm to between 400 and 600 images of each of these types of figure until it could distinguish them with an accuracy greater than 90%. Then they set it loose on the more-than-650,000 papers (containing more than 10m figures) stored on PubMed Central, an online archive of biomedical-research articles. To measure each paper's influence, they calculated its article-level Eigenfactor score-a modified version of the PageRank algorithm Google uses to provide the most relevant results for internet searches. Eigenfactor scoring gives a better measure than simply noting the number of times a paper is cited elsewhere, because it weights citations by their influence. A citation in a paper that is itself highly cited is worth more than one in a paper that is not.
    As the team describe in a paper posted (http://arxiv.org/abs/1605.04951) on arXiv, they found that figures did indeed matter-but not all in the same way. An average paper in PubMed Central has about one diagram for every three pages and gets 1.67 citations. Papers with more diagrams per page and, to a lesser extent, plots per page tended to be more influential (on average, a paper accrued two more citations for every extra diagram per page, and one more for every extra plot per page). By contrast, including photographs and equations seemed to decrease the chances of a paper being cited by others. That agrees with a study from 2012, whose authors counted (by hand) the number of mathematical expressions in over 600 biology papers and found that each additional equation per page reduced the number of citations a paper received by 22%. This does not mean that researchers should rush to include more diagrams in their next paper. Dr Howe has not shown what is behind the effect, which may merely be one of correlation, rather than causation. It could, for example, be that papers with lots of diagrams tend to be those that illustrate new concepts, and thus start a whole new field of inquiry. Such papers will certainly be cited a lot. On the other hand, the presence of equations really might reduce citations. Biologists (as are most of those who write and read the papers in PubMed Central) are notoriously mathsaverse. If that is the case, looking in a physics archive would probably produce a different result.
    Dr Howe and his colleagues do, however, believe that the study of diagrams can result in new insights. A figure showing new metabolic pathways in a cell, for example, may summarise hundreds of experiments. Since illustrations can convey important scientific concepts in this way, they think that browsing through related figures from different papers may help researchers come up with new theories. As Dr Howe puts it, "the unit of scientific currency is closer to the figure than to the paper." With this thought in mind, the team have created a website (viziometrics.org (http://viziometrics.org/) ) where the millions of images sorted by their program can be searched using key words. Their next plan is to extract the information from particular types of scientific figure, to create comprehensive "super" figures: a giant network of all the known chemical processes in a cell for example, or the best-available tree of life. At just one such superfigure per paper, though, the citation records of articles containing such all-embracing diagrams may very well undermine the correlation that prompted their creation in the first place. Call it the ultimate marriage of chart and science.
    Language
    a
    Type
    a

Years

Languages

  • e 145
  • d 32
  • a 1
  • More… Less…

Types

  • a 157
  • el 30
  • m 10
  • x 4
  • r 2
  • s 2
  • b 1
  • p 1
  • More… Less…

Subjects