Search (6 results, page 1 of 1)

  • × theme_ss:"Formale Begriffsanalyse"
  • × year_i:[2010 TO 2020}
  1. De Maio, C.; Fenza, G.; Loia, V.; Senatore, S.: Hierarchical web resources retrieval by exploiting Fuzzy Formal Concept Analysis (2012) 0.02
    0.017903835 = product of:
      0.03580767 = sum of:
        0.014565565 = weight(_text_:information in 2737) [ClassicSimilarity], result of:
          0.014565565 = score(doc=2737,freq=4.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.16457605 = fieldWeight in 2737, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=2737)
        0.021242103 = product of:
          0.042484205 = sum of:
            0.042484205 = weight(_text_:organization in 2737) [ClassicSimilarity], result of:
              0.042484205 = score(doc=2737,freq=2.0), product of:
                0.17974974 = queryWeight, product of:
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.050415643 = queryNorm
                0.23635197 = fieldWeight in 2737, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2737)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    In recent years, knowledge structuring is assuming important roles in several real world applications such as decision support, cooperative problem solving, e-commerce, Semantic Web and, even in planning systems. Ontologies play an important role in supporting automated processes to access information and are at the core of new strategies for the development of knowledge-based systems. Yet, developing an ontology is a time-consuming task which often needs an accurate domain expertise to tackle structural and logical difficulties in the definition of concepts as well as conceivable relationships. This work presents an ontology-based retrieval approach, that supports data organization and visualization and provides a friendly navigation model. It exploits the fuzzy extension of the Formal Concept Analysis theory to elicit conceptualizations from datasets and generate a hierarchy-based representation of extracted knowledge. An intuitive graphical interface provides a multi-facets view of the built ontology. Through a transparent query-based retrieval, final users navigate across concepts, relations and population.
    Source
    Information processing and management. 48(2012) no.3, S.399-418
  2. Priss, U.; Old, L.J.: Concept neighbourhoods in knowledge organisation systems (2010) 0.01
    0.010013623 = product of:
      0.040054493 = sum of:
        0.040054493 = product of:
          0.080108985 = sum of:
            0.080108985 = weight(_text_:organization in 3527) [ClassicSimilarity], result of:
              0.080108985 = score(doc=3527,freq=4.0), product of:
                0.17974974 = queryWeight, product of:
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.050415643 = queryNorm
                0.44566956 = fieldWeight in 3527, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3527)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Series
    Advances in knowledge organization; vol.12
    Source
    Paradigms and conceptual systems in knowledge organization: Proceedings of the Eleventh International ISKO Conference, 23-26 February 2010 Rome, Italy. Edited by Claudio Gnoli and Fulvio Mazzocchi
  3. Kumar, C.A.; Radvansky, M.; Annapurna, J.: Analysis of Vector Space Model, Latent Semantic Indexing and Formal Concept Analysis for information retrieval (2012) 0.01
    0.006007989 = product of:
      0.024031956 = sum of:
        0.024031956 = weight(_text_:information in 2710) [ClassicSimilarity], result of:
          0.024031956 = score(doc=2710,freq=8.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.27153665 = fieldWeight in 2710, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2710)
      0.25 = coord(1/4)
    
    Abstract
    Latent Semantic Indexing (LSI), a variant of classical Vector Space Model (VSM), is an Information Retrieval (IR) model that attempts to capture the latent semantic relationship between the data items. Mathematical lattices, under the framework of Formal Concept Analysis (FCA), represent conceptual hierarchies in data and retrieve the information. However both LSI and FCA uses the data represented in form of matrices. The objective of this paper is to systematically analyze VSM, LSI and FCA for the task of IR using the standard and real life datasets.
    Source
    Cybernetics and information technologies. 12(2012) no.1, S.34-48
  4. Negm, E.; AbdelRahman, S.; Bahgat, R.: PREFCA: a portal retrieval engine based on formal concept analysis (2017) 0.00
    0.0038383633 = product of:
      0.015353453 = sum of:
        0.015353453 = weight(_text_:information in 3291) [ClassicSimilarity], result of:
          0.015353453 = score(doc=3291,freq=10.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.1734784 = fieldWeight in 3291, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=3291)
      0.25 = coord(1/4)
    
    Abstract
    The web is a network of linked sites whereby each site either forms a physical portal or a standalone page. In the former case, the portal presents an access point to its embedded web pages that coherently present a specific topic. In the latter case, there are millions of standalone web pages, that are scattered throughout the web, having the same topic and could be conceptually linked together to form virtual portals. Search engines have been developed to help users in reaching the adequate pages in an efficient and effective manner. All the known current search engine techniques rely on the web page as the basic atomic search unit. They ignore the conceptual links, that reveal the implicit web related meanings, among the retrieved pages. However, building a semantic model for the whole portal may contain more semantic information than a model of scattered individual pages. In addition, user queries can be poor and contain imprecise terms that do not reflect the real user intention. Consequently, retrieving the standalone individual pages that are directly related to the query may not satisfy the user's need. In this paper, we propose PREFCA, a Portal Retrieval Engine based on Formal Concept Analysis that relies on the portal as the main search unit. PREFCA consists of three phases: First, the information extraction phase that is concerned with extracting portal's semantic data. Second, the formal concept analysis phase that utilizes formal concept analysis to discover the conceptual links among portal and attributes. Finally, the information retrieval phase where we propose a portal ranking method to retrieve ranked pairs of portals and embedded pages. Additionally, we apply the network analysis rules to output some portal characteristics. We evaluated PREFCA using two data sets, namely the Forum for Information Retrieval Evaluation 2010 and ClueWeb09 (category B) test data, for physical and virtual portals respectively. PREFCA proves higher F-measure accuracy, better Mean Average Precision ranking and comparable network analysis and efficiency results than other search engine approaches, namely Term Frequency Inverse Document Frequency (TF-IDF), Latent Semantic Analysis (LSA), and BM25 techniques. As well, it gains high Mean Average Precision in comparison with learning to rank techniques. Moreover, PREFCA also gains better reach time than Carrot as a well-known topic-based search engine.
    Source
    Information processing and management. 53(2017) no.1, S.203-222
  5. Kaytoue, M.; Kuznetsov, S.O.; Assaghir, Z.; Napoli, A.: Embedding tolerance relations in concept lattices : an application in information fusion (2010) 0.00
    0.0037164795 = product of:
      0.014865918 = sum of:
        0.014865918 = weight(_text_:information in 4843) [ClassicSimilarity], result of:
          0.014865918 = score(doc=4843,freq=6.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.16796975 = fieldWeight in 4843, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4843)
      0.25 = coord(1/4)
    
    Abstract
    Formal Concept Analysis (FCA) is a well founded mathematical framework used for conceptual classication and knowledge management. Given a binary table describing a relation between objects and attributes, FCA consists in building a set of concepts organized by a subsumption relation within a concept lattice. Accordingly, FCA requires to transform complex data, e.g. numbers, intervals, graphs, into binary data leading to loss of information and poor interpretability of object classes. In this paper, we propose a pre-processing method producing binary data from complex data taking advantage of similarity between objects. As a result, the concept lattice is composed of classes being maximal sets of pairwise similar objects. This method is based on FCA and on a formalization of similarity as a tolerance relation (reexive and symmetric). It applies to complex object descriptions and especially here to interval data. Moreover, it can be applied to any kind of structured data for which a similarity can be dened (sequences, graphs, etc.). Finally, an application highlights that the resulting concept lattice plays an important role in information fusion problem, as illustrated with a real-world example in agronomy.
  6. Helmerich, M.: Liniendiagramme in der Wissenskommunikation : eine mathematisch-didaktische Untersuchung (2011) 0.00
    0.0030344925 = product of:
      0.01213797 = sum of:
        0.01213797 = weight(_text_:information in 4390) [ClassicSimilarity], result of:
          0.01213797 = score(doc=4390,freq=4.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.13714671 = fieldWeight in 4390, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4390)
      0.25 = coord(1/4)
    
    Abstract
    Die Kommunikation von Wissen nimmt in der modernen Wissensgesellschaft einen entscheidenden Stellenwert ein. Kommunikation im Habermas'schen Sinne eines intersubjektiven Verständigungsprozesses ist dann aber auch mehr als nur der Austausch von Zeichen: es geht um Sinn und Bedeutung und die Aushandlungsprozesse darüber, wie wir als Kommunikationsgemeinschaft Zeichen interpretieren und darin Informationen codieren. Als Medium für solche Kommunikations - prozesse eignen sich besonders gut Liniendiagramme aus der Theorie der Formalen Begriffsanalyse. Diese Liniendiagramme sind nicht nur geeignet, die Wissenskommunikation zu unterstützen, sondern auch Kommunikationsprozesse überhaupt erst zu initiieren. Solche Liniendiagramme können die Wissenskommunikation gut unterstützen, da sie durch ihre Einfachheit, Ordnung, Prägnanz und ergänzende Stimulanz für Verständigung über die wissensgenerierende Information sorgen. Außerdem wird mit den Liniendiagrammen ein Kommunikationsmittel bereitgestellt, dass inter- und transdisziplinär wirksam werden kann und so Wissensgebiete für verschiedene Disziplinen erschließt, da es mit den Diagrammen gelingt, die allgemeine, zugrundeliegende logische Struktur mit Hilfe eines mathematisch fundierten Verfahrens herauszuarbeiten. Liniendiagramme stellen nicht nur Wissensgebiete in einer geordneten, strukturierten Form dar, sondern verwenden dafür auch formale Begriffe und knüpfen damit an Begriffe als Objekte des menschlichen Denkens an. In den Begriffe verschmilzt ein Ausschnitt der betrachteten Objekte (im Beispiel die verschiedenen Gewässerarten) mit den ihnen gemeinsamen Merkmalen zu neuen Denkeinheiten und geben somit dem Wissen eine Form, in der Kommunikation über diese Denkeinheiten und die darin konzentrierte Information ermöglicht wird.