Search (81 results, page 1 of 5)

  • × theme_ss:"Semantisches Umfeld in Indexierung u. Retrieval"
  • × year_i:[2000 TO 2010}
  1. Sacco, G.M.: Accessing multimedia infobases through dynamic taxonomies (2004) 0.03
    0.03375979 = product of:
      0.06751958 = sum of:
        0.027465092 = weight(_text_:information in 2637) [ClassicSimilarity], result of:
          0.027465092 = score(doc=2637,freq=8.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.3103276 = fieldWeight in 2637, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0625 = fieldNorm(doc=2637)
        0.040054493 = product of:
          0.080108985 = sum of:
            0.080108985 = weight(_text_:organization in 2637) [ClassicSimilarity], result of:
              0.080108985 = score(doc=2637,freq=4.0), product of:
                0.17974974 = queryWeight, product of:
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.050415643 = queryNorm
                0.44566956 = fieldWeight in 2637, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.0625 = fieldNorm(doc=2637)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Traditional query methods are good at retrieving items an the basis of a precise specification, but they are not useful when the user wants to explore an information base in order to find interesting items. Dynamic Taxonomies were recently proposed for guided browsing and retrieval from heterogeneous information bases. We discuss their application to multimedia information bases and provide an example of interaction.
    Series
    Advances in knowledge organization; vol.9
    Source
    Knowledge organization and the global information society: Proceedings of the 8th International ISKO Conference 13-16 July 2004, London, UK. Ed.: I.C. McIlwaine
  2. Boyack, K.W.; Wylie,B.N.; Davidson, G.S.: Information Visualization, Human-Computer Interaction, and Cognitive Psychology : Domain Visualizations (2002) 0.03
    0.03273274 = product of:
      0.06546548 = sum of:
        0.017165681 = weight(_text_:information in 1352) [ClassicSimilarity], result of:
          0.017165681 = score(doc=1352,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.19395474 = fieldWeight in 1352, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.078125 = fieldNorm(doc=1352)
        0.0482998 = product of:
          0.0965996 = sum of:
            0.0965996 = weight(_text_:22 in 1352) [ClassicSimilarity], result of:
              0.0965996 = score(doc=1352,freq=4.0), product of:
                0.17654699 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050415643 = queryNorm
                0.54716086 = fieldWeight in 1352, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=1352)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Date
    22. 2.2003 17:25:39
    22. 2.2003 18:17:40
  3. Baofu, P.: ¬The future of information architecture : conceiving a better way to understand taxonomy, network, and intelligence (2008) 0.03
    0.02968271 = product of:
      0.05936542 = sum of:
        0.034331363 = weight(_text_:information in 2257) [ClassicSimilarity], result of:
          0.034331363 = score(doc=2257,freq=32.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.38790947 = fieldWeight in 2257, product of:
              5.656854 = tf(freq=32.0), with freq of:
                32.0 = termFreq=32.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2257)
        0.025034059 = product of:
          0.050068118 = sum of:
            0.050068118 = weight(_text_:organization in 2257) [ClassicSimilarity], result of:
              0.050068118 = score(doc=2257,freq=4.0), product of:
                0.17974974 = queryWeight, product of:
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.050415643 = queryNorm
                0.27854347 = fieldWeight in 2257, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2257)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    The Future of Information Architecture examines issues surrounding why information is processed, stored and applied in the way that it has, since time immemorial. Contrary to the conventional wisdom held by many scholars in human history, the recurrent debate on the explanation of the most basic categories of information (eg space, time causation, quality, quantity) has been misconstrued, to the effect that there exists some deeper categories and principles behind these categories of information - with enormous implications for our understanding of reality in general. To understand this, the book is organised in to four main parts: Part I begins with the vital question concerning the role of information within the context of the larger theoretical debate in the literature. Part II provides a critical examination of the nature of data taxonomy from the main perspectives of culture, society, nature and the mind. Part III constructively invesitgates the world of information network from the main perspectives of culture, society, nature and the mind. Part IV proposes six main theses in the authors synthetic theory of information architecture, namely, (a) the first thesis on the simpleness-complicatedness principle, (b) the second thesis on the exactness-vagueness principle (c) the third thesis on the slowness-quickness principle (d) the fourth thesis on the order-chaos principle, (e) the fifth thesis on the symmetry-asymmetry principle, and (f) the sixth thesis on the post-human stage.
    LCSH
    Information resources
    Information organization
    Information storage and retrieval systems
    RSWK
    Suchmaschine / Information Retrieval
    Subject
    Information resources
    Information organization
    Information storage and retrieval systems
    Suchmaschine / Information Retrieval
  4. Sacco, G.M.: Dynamic taxonomies and guided searches (2006) 0.03
    0.027311075 = product of:
      0.05462215 = sum of:
        0.020812286 = weight(_text_:information in 5295) [ClassicSimilarity], result of:
          0.020812286 = score(doc=5295,freq=6.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.23515764 = fieldWeight in 5295, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=5295)
        0.033809863 = product of:
          0.067619726 = sum of:
            0.067619726 = weight(_text_:22 in 5295) [ClassicSimilarity], result of:
              0.067619726 = score(doc=5295,freq=4.0), product of:
                0.17654699 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050415643 = queryNorm
                0.38301262 = fieldWeight in 5295, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=5295)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    A new search paradigm, in which the primary user activity is the guided exploration of a complex information space rather than the retrieval of items based on precise specifications, is proposed. The author claims that this paradigm is the norm in most practical applications, and that solutions based on traditional search methods are not effective in this context. He then presents a solution based on dynamic taxonomies, a knowledge management model that effectively guides users to reach their goal while giving them total freedom in exploring the information base. Applications, benefits, and current research are discussed.
    Date
    22. 7.2006 17:56:22
    Source
    Journal of the American Society for Information Science and Technology. 57(2006) no.6, S.792-796
  5. Klas, C.-P.; Fuhr, N.; Schaefer, A.: Evaluating strategic support for information access in the DAFFODIL system (2004) 0.02
    0.022860084 = product of:
      0.045720167 = sum of:
        0.025228297 = weight(_text_:information in 2419) [ClassicSimilarity], result of:
          0.025228297 = score(doc=2419,freq=12.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.2850541 = fieldWeight in 2419, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=2419)
        0.02049187 = product of:
          0.04098374 = sum of:
            0.04098374 = weight(_text_:22 in 2419) [ClassicSimilarity], result of:
              0.04098374 = score(doc=2419,freq=2.0), product of:
                0.17654699 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050415643 = queryNorm
                0.23214069 = fieldWeight in 2419, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2419)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    The digital library system Daffodil is targeted at strategic support of users during the information search process. For searching, exploring and managing digital library objects it provides user-customisable information seeking patterns over a federation of heterogeneous digital libraries. In this paper evaluation results with respect to retrieval effectiveness, efficiency and user satisfaction are presented. The analysis focuses on strategic support for the scientific work-flow. Daffodil supports the whole work-flow, from data source selection over information seeking to the representation, organisation and reuse of information. By embedding high level search functionality into the scientific work-flow, the user experiences better strategic system support due to a more systematic work process. These ideas have been implemented in Daffodil followed by a qualitative evaluation. The evaluation has been conducted with 28 participants, ranging from information seeking novices to experts. The results are promising, as they support the chosen model.
    Date
    16.11.2008 16:22:48
  6. Song, D.; Bruza, P.D.: Towards context sensitive information inference (2003) 0.02
    0.02277131 = product of:
      0.04554262 = sum of:
        0.028466063 = weight(_text_:information in 1428) [ClassicSimilarity], result of:
          0.028466063 = score(doc=1428,freq=22.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.32163754 = fieldWeight in 1428, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1428)
        0.01707656 = product of:
          0.03415312 = sum of:
            0.03415312 = weight(_text_:22 in 1428) [ClassicSimilarity], result of:
              0.03415312 = score(doc=1428,freq=2.0), product of:
                0.17654699 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050415643 = queryNorm
                0.19345059 = fieldWeight in 1428, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1428)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Humans can make hasty, but generally robust judgements about what a text fragment is, or is not, about. Such judgements are termed information inference. This article furnishes an account of information inference from a psychologistic stance. By drawing an theories from nonclassical logic and applied cognition, an information inference mechanism is proposed that makes inferences via computations of information flow through an approximation of a conceptual space. Within a conceptual space information is represented geometrically. In this article, geometric representations of words are realized as vectors in a high dimensional semantic space, which is automatically constructed from a text corpus. Two approaches were presented for priming vector representations according to context. The first approach uses a concept combination heuristic to adjust the vector representation of a concept in the light of the representation of another concept. The second approach computes a prototypical concept an the basis of exemplar trace texts and moves it in the dimensional space according to the context. Information inference is evaluated by measuring the effectiveness of query models derived by information flow computations. Results show that information flow contributes significantly to query model effectiveness, particularly with respect to precision. Moreover, retrieval effectiveness compares favorably with two probabilistic query models, and another based an semantic association. More generally, this article can be seen as a contribution towards realizing operational systems that mimic text-based human reasoning.
    Date
    22. 3.2003 19:35:46
    Footnote
    Beitrag eines Themenheftes: Mathematical, logical, and formal methods in information retrieval
    Source
    Journal of the American Society for Information Science and technology. 54(2003) no.4, S.321-334
  7. Shiri, A.A.; Revie, C.: End-user interaction with thesauri : an evaluation of cognitive overlap in search term selection (2004) 0.02
    0.020170141 = product of:
      0.040340282 = sum of:
        0.01029941 = weight(_text_:information in 2658) [ClassicSimilarity], result of:
          0.01029941 = score(doc=2658,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.116372846 = fieldWeight in 2658, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=2658)
        0.030040871 = product of:
          0.060081743 = sum of:
            0.060081743 = weight(_text_:organization in 2658) [ClassicSimilarity], result of:
              0.060081743 = score(doc=2658,freq=4.0), product of:
                0.17974974 = queryWeight, product of:
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.050415643 = queryNorm
                0.33425218 = fieldWeight in 2658, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2658)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Series
    Advances in knowledge organization; vol.9
    Source
    Knowledge organization and the global information society: Proceedings of the 8th International ISKO Conference 13-16 July 2004, London, UK. Ed.: I.C. McIlwaine
  8. Sanderson, M.; Lawrie, D.: Building, testing, and applying concept hierarchies (2000) 0.02
    0.019540602 = product of:
      0.039081205 = sum of:
        0.017839102 = weight(_text_:information in 37) [ClassicSimilarity], result of:
          0.017839102 = score(doc=37,freq=6.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.20156369 = fieldWeight in 37, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=37)
        0.021242103 = product of:
          0.042484205 = sum of:
            0.042484205 = weight(_text_:organization in 37) [ClassicSimilarity], result of:
              0.042484205 = score(doc=37,freq=2.0), product of:
                0.17974974 = queryWeight, product of:
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.050415643 = queryNorm
                0.23635197 = fieldWeight in 37, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.046875 = fieldNorm(doc=37)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    A means of automatically deriving a hierarchical organization of concepts from a set of documents without use of training data or standard clustering techniques is presented. Using a process that extracts salient words and phrases from the documents, these terms are organized hierarchically using a type of co-occurrence known as subsumption. The resulting structure is displayed as a series of hierarchical menus. When generated from a set of retrieved documents, a user browsing the menus gains an overview of their content in a manner distinct from existing techniques. The methods used to build the structure are simple and appear to be effective. The formation and presentation of the hierarchy is described along with a study of some of its properties, including a preliminary experiment, which indicates that users may find the hierarchy a more efficient means of locating relevant documents than the classic method of scanning a ranked document list
    Series
    The Kluwer international series on information retrieval; 7
    Source
    Advances in information retrieval: Recent research from the Center for Intelligent Information Retrieval. Ed.: W.B. Croft
  9. Faaborg, A.; Lagoze, C.: Semantic browsing (2003) 0.02
    0.01796158 = product of:
      0.03592316 = sum of:
        0.012015978 = weight(_text_:information in 1026) [ClassicSimilarity], result of:
          0.012015978 = score(doc=1026,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.13576832 = fieldWeight in 1026, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1026)
        0.023907183 = product of:
          0.047814365 = sum of:
            0.047814365 = weight(_text_:22 in 1026) [ClassicSimilarity], result of:
              0.047814365 = score(doc=1026,freq=2.0), product of:
                0.17654699 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050415643 = queryNorm
                0.2708308 = fieldWeight in 1026, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1026)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    We have created software applications that allow users to both author and use Semantic Web metadata. To create and use a layer of semantic content on top of the existing Web, we have (1) implemented a user interface that expedites the task of attributing metadata to resources on the Web, and (2) augmented a Web browser to leverage this semantic metadata to provide relevant information and tasks to the user. This project provides a framework for annotating and reorganizing existing files, pages, and sites on the Web that is similar to Vannevar Bushrsquos original concepts of trail blazing and associative indexing.
    Source
    Research and advanced technology for digital libraries : 7th European Conference, proceedings / ECDL 2003, Trondheim, Norway, August 17-22, 2003
  10. Knorz, G.; Rein, B.: Semantische Suche in einer Hochschulontologie (2005) 0.02
    0.01796158 = product of:
      0.03592316 = sum of:
        0.012015978 = weight(_text_:information in 1852) [ClassicSimilarity], result of:
          0.012015978 = score(doc=1852,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.13576832 = fieldWeight in 1852, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1852)
        0.023907183 = product of:
          0.047814365 = sum of:
            0.047814365 = weight(_text_:22 in 1852) [ClassicSimilarity], result of:
              0.047814365 = score(doc=1852,freq=2.0), product of:
                0.17654699 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050415643 = queryNorm
                0.2708308 = fieldWeight in 1852, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1852)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Date
    11. 2.2011 18:22:58
    Source
    Information - Wissenschaft und Praxis. 56(2005) H.5/6, S.281-290
  11. Knorz, G.; Rein, B.: Semantische Suche in einer Hochschulontologie : Ontologie-basiertes Information-Filtering und -Retrieval mit relationalen Datenbanken (2005) 0.02
    0.01796158 = product of:
      0.03592316 = sum of:
        0.012015978 = weight(_text_:information in 4324) [ClassicSimilarity], result of:
          0.012015978 = score(doc=4324,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.13576832 = fieldWeight in 4324, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4324)
        0.023907183 = product of:
          0.047814365 = sum of:
            0.047814365 = weight(_text_:22 in 4324) [ClassicSimilarity], result of:
              0.047814365 = score(doc=4324,freq=2.0), product of:
                0.17654699 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050415643 = queryNorm
                0.2708308 = fieldWeight in 4324, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4324)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Date
    11. 2.2011 18:22:25
  12. Bradford, R.B.: Relationship discovery in large text collections using Latent Semantic Indexing (2006) 0.02
    0.015913848 = product of:
      0.031827696 = sum of:
        0.01816645 = weight(_text_:information in 1163) [ClassicSimilarity], result of:
          0.01816645 = score(doc=1163,freq=14.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.20526241 = fieldWeight in 1163, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=1163)
        0.013661247 = product of:
          0.027322493 = sum of:
            0.027322493 = weight(_text_:22 in 1163) [ClassicSimilarity], result of:
              0.027322493 = score(doc=1163,freq=2.0), product of:
                0.17654699 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050415643 = queryNorm
                0.15476047 = fieldWeight in 1163, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1163)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    This paper addresses the problem of information discovery in large collections of text. For users, one of the key problems in working with such collections is determining where to focus their attention. In selecting documents for examination, users must be able to formulate reasonably precise queries. Queries that are too broad will greatly reduce the efficiency of information discovery efforts by overwhelming the users with peripheral information. In order to formulate efficient queries, a mechanism is needed to automatically alert users regarding potentially interesting information contained within the collection. This paper presents the results of an experiment designed to test one approach to generation of such alerts. The technique of latent semantic indexing (LSI) is used to identify relationships among entities of interest. Entity extraction software is used to pre-process the text of the collection so that the LSI space contains representation vectors for named entities in addition to those for individual terms. In the LSI space, the cosine of the angle between the representation vectors for two entities captures important information regarding the degree of association of those two entities. For appropriate choices of entities, determining the entity pairs with the highest mutual cosine values yields valuable information regarding the contents of the text collection. The test database used for the experiment consists of 150,000 news articles. The proposed approach for alert generation is tested using a counterterrorism analysis example. The approach is shown to have significant potential for aiding users in rapidly focusing on information of potential importance in large text collections. The approach also has value in identifying possible use of aliases.
    Source
    Proceedings of the Fourth Workshop on Link Analysis, Counterterrorism, and Security, SIAM Data Mining Conference, Bethesda, MD, 20-22 April, 2006. [http://www.siam.org/meetings/sdm06/workproceed/Link%20Analysis/15.pdf]
  13. Caro Castro, C.; Travieso Rodríguez, C.: Ariadne's thread : knowledge structures for browsing in OPAC's (2003) 0.02
    0.015479056 = product of:
      0.030958112 = sum of:
        0.013434272 = weight(_text_:information in 2768) [ClassicSimilarity], result of:
          0.013434272 = score(doc=2768,freq=10.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.1517936 = fieldWeight in 2768, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02734375 = fieldNorm(doc=2768)
        0.01752384 = product of:
          0.03504768 = sum of:
            0.03504768 = weight(_text_:organization in 2768) [ClassicSimilarity], result of:
              0.03504768 = score(doc=2768,freq=4.0), product of:
                0.17974974 = queryWeight, product of:
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.050415643 = queryNorm
                0.19498043 = fieldWeight in 2768, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=2768)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Subject searching is the most common but also the most conflictive searching for end user. The aim of this paper is to check how users expressions match subject headings and to prove if knowledge structure used in online catalogs enhances searching effectiveness. A bibliographic revision about difficulties in subject access and proposed methods to improve it is also presented. For the empirical analysis, transaction logs from two university libraries, online catalogs (CISNE and FAMA) were collected. Results show that more than a quarter of user queries are effective due to an alphabetical subject index approach and browsing through hypertextual links. 1. Introduction Since the 1980's, online public access catalogs (OPAC's) have become usual way to access bibliographic information. During the last two decades the technological development has helped to extend their use, making feasible the access for a whole of users that is getting more and more extensive and heterogeneous, and also to incorporate information resources in electronic formats and to interconnect systems. However, technology seems to have developed faster than our knowledge about the tasks where it has been applied and than the evolution of our capacities for adapting to it. The conceptual model of OPAC has been hardly modified recently, and for interacting with them, users still need to combine the same skills and basic knowledge than at the beginning of its introduction (Borgman, 1986, 2000): a) conceptual knowledge to translate the information need into an appropriate query because of a well-designed mental model of the system, b) semantic and syntactic knowledge to be able to implement that query (access fields, searching type, Boolean logic, etc.) and c) basic technical skills in computing. At present many users have the essential technical skills to make use, with more or less expertise, of a computer. This number is substantially reduced when it is referred to the conceptual, semantic and syntactic knowledge that is necessary to achieve a moderately satisfactory search. An added difficulty arises in subject searching, as users should concrete their unknown information needs in terms that the information retrieval system can understand. Many researches have focused an unskilled searchers' difficulties to enter an effective query. The mental models influence, users assumption about characteristics, structure, contents and operation of the system they interact with have been analysed (Dillon, 2000; Dimitroff, 2000). Another issue that implies difficulties is vocabulary: how to find the right terms to implement a query and to modify it as the case may be. Terminology and expressions characteristics used in searching (Bates, 1993), the match between user terms and the subject headings from the catalog (Carlyle, 1989; Drabensttot, 1996; Drabensttot & Vizine-Goetz, 1994), the incidence of spelling errors (Drabensttot and Weller, 1996; Ferl and Millsap, 1996; Walker and Jones, 1987), users problems
    Series
    Advances in knowledge organization; vol.8
    Source
    Challenges in knowledge representation and organization for the 21st century: Integration of knowledge across boundaries. Proceedings of the 7th ISKO International Conference Granada, Spain, July 10-13, 2002. Ed.: M. López-Huertas
  14. Shiri, A.A.; Revie, C.: Query expansion behavior within a thesaurus-enhanced search environment : a user-centered evaluation (2006) 0.01
    0.0128297005 = product of:
      0.025659401 = sum of:
        0.008582841 = weight(_text_:information in 56) [ClassicSimilarity], result of:
          0.008582841 = score(doc=56,freq=2.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.09697737 = fieldWeight in 56, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=56)
        0.01707656 = product of:
          0.03415312 = sum of:
            0.03415312 = weight(_text_:22 in 56) [ClassicSimilarity], result of:
              0.03415312 = score(doc=56,freq=2.0), product of:
                0.17654699 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050415643 = queryNorm
                0.19345059 = fieldWeight in 56, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=56)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Date
    22. 7.2006 16:32:43
    Source
    Journal of the American Society for Information Science and Technology. 57(2006) no.4, S.462-478
  15. Jun, W.: ¬A knowledge network constructed by integrating classification, thesaurus and metadata in a digital library (2003) 0.01
    0.011935889 = product of:
      0.023871778 = sum of:
        0.009710376 = weight(_text_:information in 1254) [ClassicSimilarity], result of:
          0.009710376 = score(doc=1254,freq=4.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.10971737 = fieldWeight in 1254, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=1254)
        0.014161401 = product of:
          0.028322803 = sum of:
            0.028322803 = weight(_text_:organization in 1254) [ClassicSimilarity], result of:
              0.028322803 = score(doc=1254,freq=2.0), product of:
                0.17974974 = queryWeight, product of:
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.050415643 = queryNorm
                0.15756798 = fieldWeight in 1254, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5653565 = idf(docFreq=3399, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1254)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Knowledge management in digital libraries is a universal problem. Keyword-based searching is applied everywhere no matter whether the resources are indexed databases or full-text Web pages. In keyword matching, the valuable content description and indexing of the metadata, such as the subject descriptors and the classification notations, are merely treated as common keywords to be matched with the user query. Without the support of vocabulary control tools, such as classification systems and thesauri, the intelligent labor of content analysis, description and indexing in metadata production are seriously wasted. New retrieval paradigms are needed to exploit the potential of the metadata resources. Could classification and thesauri, which contain the condensed intelligence of generations of librarians, be used in a digital library to organize the networked information, especially metadata, to facilitate their usability and change the digital library into a knowledge management environment? To examine that question, we designed and implemented a new paradigm that incorporates a classification system, a thesaurus and metadata. The classification and the thesaurus are merged into a concept network, and the metadata are distributed into the nodes of the concept network according to their subjects. The abstract concept node instantiated with the related metadata records becomes a knowledge node. A coherent and consistent knowledge network is thus formed. It is not only a framework for resource organization but also a structure for knowledge navigation, retrieval and learning. We have built an experimental system based on the Chinese Classification and Thesaurus, which is the most comprehensive and authoritative in China, and we have incorporated more than 5000 bibliographic records in the computing domain from the Peking University Library. The result is encouraging. In this article, we review the tools, the architecture and the implementation of our experimental system, which is called Vision.
    Source
    Bulletin of the American Society for Information Science. 29(2003) no.2, S.24-28
  16. Hetzler, B.: Visual analysis and exploration of relationships (2002) 0.01
    0.0073582535 = product of:
      0.029433014 = sum of:
        0.029433014 = weight(_text_:information in 1189) [ClassicSimilarity], result of:
          0.029433014 = score(doc=1189,freq=12.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.3325631 = fieldWeight in 1189, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1189)
      0.25 = coord(1/4)
    
    Abstract
    Relationships can provide a rich and powerful set of information and can be used to accomplish application goals, such as information retrieval and natural language processing. A growing trend in the information science community is the use of information visualization-taking advantage of people's natural visual capabilities to perceive and understand complex information. This chapter explores how visualization and visual exploration can help users gain insight from known relationships and discover evidence of new relationships not previously anticipated.
    Series
    Information science and knowledge management; vol.3
  17. Johnson, J.D.: On contexts of information seeking (2003) 0.01
    0.0063070743 = product of:
      0.025228297 = sum of:
        0.025228297 = weight(_text_:information in 1082) [ClassicSimilarity], result of:
          0.025228297 = score(doc=1082,freq=12.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.2850541 = fieldWeight in 1082, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=1082)
      0.25 = coord(1/4)
    
    Abstract
    While surprisingly little has been written about context at a meaningful level, context is central to most theoretical approaches to information seeking. In this essay I explore in more detail three senses of context. First, I look at context as equivalent to the situation in which a process is immersed. Second, I discuss contingency approaches that detail active ingredients of the situation that have specific, predictable effects. Third, I examine major frameworks for meaning systems. Then, I discuss how a deeper appreciation of context can enhance our understanding of the process of information seeking by examining two vastly different contexts in which it occurs: organizational and cancer-related, an exemplar of everyday life information seeking. This essay concludes with a discussion of the value that can be added to information seeking research and theory as a result of a deeper appreciation of context, particularly in terms of our current multi-contextual environment and individuals taking an active role in contextualizing.
    Source
    Information processing and management. 39(2003) no.5, S.735-760
  18. Stojanovic, N.: On the query refinement in the ontology-based searching for information (2005) 0.01
    0.006068985 = product of:
      0.02427594 = sum of:
        0.02427594 = weight(_text_:information in 2907) [ClassicSimilarity], result of:
          0.02427594 = score(doc=2907,freq=4.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.27429342 = fieldWeight in 2907, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.078125 = fieldNorm(doc=2907)
      0.25 = coord(1/4)
    
    Source
    Information systems. 30(2005) no.7, S.543-563
  19. Kelly, D.: Measuring online information seeking context : Part 1: background and method (2006) 0.01
    0.006068985 = product of:
      0.02427594 = sum of:
        0.02427594 = weight(_text_:information in 206) [ClassicSimilarity], result of:
          0.02427594 = score(doc=206,freq=16.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.27429342 = fieldWeight in 206, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=206)
      0.25 = coord(1/4)
    
    Abstract
    Context is one of the most important concepts in information seeking and retrieval research. However, the challenges of studying context are great; thus, it is more common for researchers to use context as a post hoc explanatory factor, rather than as a concept that drives inquiry. The purposes of this study were to develop a method for collecting data about information seeking context in natural online environments, and identify which aspects of context should be considered when studying online information seeking. The study is reported in two parts. In this, the first part, the background and method are presented. Results and implications of this research are presented in Part 2 (Kelly, in press). Part 1 discusses previous literature on information seeking context and behavior and situates the current work within this literature. This part further describes the naturalistic, longitudinal research design that was used to examine and measure the online information seeking contexts of users during a 14-week period. In this design, information seeking context was characterized by a user's self-identified tasks and topics, and several attributes of these, such as the length of time the user expected to work on a task and the user's familiarity with a topic. At weekly intervals, users evaluated the usefulness of the documents that they viewed, and classified these documents according to their tasks and topics. At the end of the study, users provided feedback about the study method.
    Source
    Journal of the American Society for Information Science and Technology. 57(2006) no.13, S.1729-1739
  20. Kelly, D.: Measuring online information seeking context : Part 2: Findings and discussion (2006) 0.01
    0.006068985 = product of:
      0.02427594 = sum of:
        0.02427594 = weight(_text_:information in 215) [ClassicSimilarity], result of:
          0.02427594 = score(doc=215,freq=16.0), product of:
            0.08850355 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.050415643 = queryNorm
            0.27429342 = fieldWeight in 215, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=215)
      0.25 = coord(1/4)
    
    Abstract
    Context is one of the most important concepts in information seeking and retrieval research. However, the challenges of studying context are great; thus, it is more common for researchers to use context as a post hoc explanatory factor, rather than as a concept that drives inquiry. The purpose of this study was to develop a method for collecting data about information seeking context in natural online environments, and identify which aspects of context should be considered when studying online information seeking. The study is reported in two parts. In this, the second part, results and implications of this research are presented. Part 1 (Kelly, 2006) discussed previous literature on information seeking context and behavior, situated the current study within this literature, and described the naturalistic, longitudinal research design that was used to examine and measure the online information seeking context of seven users during a 14-week period. Results provide support for the value of the method in studying online information seeking context, the relative importance of various measures of context, how these measures change over time, and, finally, the relationship between these measures. In particular, results demonstrate significant differences in distributions of usefulness ratings according to task and topic.
    Source
    Journal of the American Society for Information Science and Technology. 57(2006) no.14, S.1862-1874

Languages

  • e 70
  • d 11

Types

  • a 75
  • el 6
  • m 5
  • s 1
  • More… Less…