Search (5 results, page 1 of 1)

  • × author_ss:"Bar-Ilan, J."
  • × theme_ss:"Benutzerstudien"
  1. Bergman, O.; Gradovitch, N.; Bar-Ilan, J.; Beyth-Marom, R.: Folder versus tag preference in personal information management (2013) 0.00
    0.0025760243 = product of:
      0.010304097 = sum of:
        0.010304097 = weight(_text_:information in 1103) [ClassicSimilarity], result of:
          0.010304097 = score(doc=1103,freq=6.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.16796975 = fieldWeight in 1103, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1103)
      0.25 = coord(1/4)
    
    Abstract
    Users' preferences for folders versus tags was studied in 2 working environments where both options were available to them. In the Gmail study, we informed 75 participants about both folder-labeling and tag-labeling, observed their storage behavior after 1 month, and asked them to estimate the proportions of different retrieval options in their behavior. In the Windows 7 study, we informed 23 participants about tags and asked them to tag all their files for 2 weeks, followed by a period of 5 weeks of free choice between the 2 methods. Their storage and retrieval habits were tested prior to the learning session and, after 7 weeks, using special classification recording software and a retrieval-habits questionnaire. A controlled retrieval task and an in-depth interview were conducted. Results of both studies show a strong preference for folders over tags for both storage and retrieval. In the minority of cases where tags were used for storage, participants typically used a single tag per information item. Moreover, when multiple classification was used for storage, it was only marginally used for retrieval. The controlled retrieval task showed lower success rates and slower retrieval speeds for tag use. Possible reasons for participants' preferences are discussed.
    Source
    Journal of the American Society for Information Science and Technology. 64(2013) no.10, S.1995-2012
  2. Bar-Ilan, J.; Belous, Y.: Children as architects of Web directories : an exploratory study (2007) 0.00
    0.0021033147 = product of:
      0.008413259 = sum of:
        0.008413259 = weight(_text_:information in 289) [ClassicSimilarity], result of:
          0.008413259 = score(doc=289,freq=4.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.13714671 = fieldWeight in 289, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=289)
      0.25 = coord(1/4)
    
    Abstract
    Children are increasingly using the Web. Cognitive theory tells us that directory structures are especially suited for information retrieval by children; however, empirical results show that they prefer keyword searching. One of the reasons for these findings could be that the directory structures and terminology are created by grown-ups. Using a card-sorting method and an enveloping system, we simulated the structure of a directory. Our goal was to try to understand what browsable, hierarchical subject categories children create when suggested terms are supplied and they are free to add or delete terms. Twelve groups of four children each (fourth and fifth graders) participated in our exploratory study. The initial terminology presented to the children was based on names of categories used in popular directories, in the sections on Arts, Television, Music, Cinema, and Celebrities. The children were allowed to introduce additional cards and change the terms appearing on the 61 cards. Findings show that the different groups reached reasonable consensus; the majority of the category names used by existing directories were acceptable by them and only a small minority of the terms caused confusion. Our recommendation is to include children in the design process of directories, not only in designing the interface but also in designing the content structure as well.
    Source
    Journal of the American Society for Information Science and Technology. 58(2007) no.6, S.895-907
  3. Bar-Ilan, J.; Keenoy, K.; Yaari, E.; Levene, M.: User rankings of search engine results (2007) 0.00
    0.0021033147 = product of:
      0.008413259 = sum of:
        0.008413259 = weight(_text_:information in 470) [ClassicSimilarity], result of:
          0.008413259 = score(doc=470,freq=4.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.13714671 = fieldWeight in 470, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=470)
      0.25 = coord(1/4)
    
    Abstract
    In this study, we investigate the similarities and differences between rankings of search results by users and search engines. Sixty-seven students took part in a 3-week-long experiment, during which they were asked to identify and rank the top 10 documents from the set of URLs that were retrieved by three major search engines (Google, MSN Search, and Yahoo!) for 12 selected queries. The URLs and accompanying snippets were displayed in random order, without disclosing which search engine(s) retrieved any specific URL for the query. We computed the similarity of the rankings of the users and search engines using four nonparametric correlation measures in [0,1] that complement each other. The findings show that the similarities between the users' choices and the rankings of the search engines are low. We examined the effects of the presentation order of the results, and of the thinking styles of the participants. Presentation order influences the rankings, but overall the results indicate that there is no "average user," and even if the users have the same basic knowledge of a topic, they evaluate information in their own context, which is influenced by cognitive, affective, and physical factors. This is the first large-scale experiment in which users were asked to rank the results of identical queries. The analysis of the experimental results demonstrates the potential for personalized search.
    Source
    Journal of the American Society for Information Science and Technology. 58(2007) no.9, S.1254-1266
  4. Lazinger, S.S.; Bar-Ilan, J.; Peritz, B.C.: Internet use by faculty members in various disciplines : a comparative case study (1997) 0.00
    0.0020821756 = product of:
      0.008328702 = sum of:
        0.008328702 = weight(_text_:information in 390) [ClassicSimilarity], result of:
          0.008328702 = score(doc=390,freq=2.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.13576832 = fieldWeight in 390, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=390)
      0.25 = coord(1/4)
    
    Source
    Journal of the American Society for Information Science. 48(1997) no.6, S.508-518
  5. Zhitomirsky-Geffet, M.; Bar-Ilan, J.; Levene, M.: Analysis of change in users' assessment of search results over time (2017) 0.00
    0.0014872681 = product of:
      0.0059490725 = sum of:
        0.0059490725 = weight(_text_:information in 3593) [ClassicSimilarity], result of:
          0.0059490725 = score(doc=3593,freq=2.0), product of:
            0.06134496 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.034944877 = queryNorm
            0.09697737 = fieldWeight in 3593, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3593)
      0.25 = coord(1/4)
    
    Source
    Journal of the Association for Information Science and Technology. 68(2017) no.5, S.1137-1148