Search (366 results, page 1 of 19)

  • × language_ss:"e"
  • × type_ss:"el"
  1. Kleineberg, M.: Context analysis and context indexing : formal pragmatics in knowledge organization (2014) 0.41
    0.41066927 = product of:
      0.547559 = sum of:
        0.12395725 = product of:
          0.37187174 = sum of:
            0.37187174 = weight(_text_:3a in 1826) [ClassicSimilarity], result of:
              0.37187174 = score(doc=1826,freq=2.0), product of:
                0.39700332 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.046827413 = queryNorm
                0.93669677 = fieldWeight in 1826, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.078125 = fieldNorm(doc=1826)
          0.33333334 = coord(1/3)
        0.37187174 = weight(_text_:2f in 1826) [ClassicSimilarity], result of:
          0.37187174 = score(doc=1826,freq=2.0), product of:
            0.39700332 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.046827413 = queryNorm
            0.93669677 = fieldWeight in 1826, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.078125 = fieldNorm(doc=1826)
        0.05173004 = weight(_text_:data in 1826) [ClassicSimilarity], result of:
          0.05173004 = score(doc=1826,freq=2.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.34936053 = fieldWeight in 1826, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.078125 = fieldNorm(doc=1826)
      0.75 = coord(3/4)
    
    Content
    Präsentation anlässlich: European Conference on Data Analysis (ECDA 2014) in Bremen, Germany, July 2nd to 4th 2014, LIS-Workshop.
    Source
    http://www.google.de/url?sa=t&rct=j&q=&esrc=s&source=web&cd=5&ved=0CDQQFjAE&url=http%3A%2F%2Fdigbib.ubka.uni-karlsruhe.de%2Fvolltexte%2Fdocuments%2F3131107&ei=HzFWVYvGMsiNsgGTyoFI&usg=AFQjCNE2FHUeR9oQTQlNC4TPedv4Mo3DaQ&sig2=Rlzpr7a3BLZZkqZCXXN_IA&bvm=bv.93564037,d.bGg&cad=rja
  2. Popper, K.R.: Three worlds : the Tanner lecture on human values. Deliverd at the University of Michigan, April 7, 1978 (1978) 0.20
    0.1983316 = product of:
      0.3966632 = sum of:
        0.0991658 = product of:
          0.2974974 = sum of:
            0.2974974 = weight(_text_:3a in 230) [ClassicSimilarity], result of:
              0.2974974 = score(doc=230,freq=2.0), product of:
                0.39700332 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.046827413 = queryNorm
                0.7493574 = fieldWeight in 230, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.0625 = fieldNorm(doc=230)
          0.33333334 = coord(1/3)
        0.2974974 = weight(_text_:2f in 230) [ClassicSimilarity], result of:
          0.2974974 = score(doc=230,freq=2.0), product of:
            0.39700332 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.046827413 = queryNorm
            0.7493574 = fieldWeight in 230, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.0625 = fieldNorm(doc=230)
      0.5 = coord(2/4)
    
    Source
    https%3A%2F%2Ftannerlectures.utah.edu%2F_documents%2Fa-to-z%2Fp%2Fpopper80.pdf&usg=AOvVaw3f4QRTEH-OEBmoYr2J_c7H
  3. Blosser, J.; Michaelson, R.; Routh. R.; Xia, P.: Defining the landscape of Web resources : Concluding Report of the BAER Web Resources Sub-Group (2000) 0.06
    0.056690704 = product of:
      0.11338141 = sum of:
        0.029262928 = weight(_text_:data in 1447) [ClassicSimilarity], result of:
          0.029262928 = score(doc=1447,freq=4.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.19762816 = fieldWeight in 1447, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.03125 = fieldNorm(doc=1447)
        0.08411848 = sum of:
          0.058740605 = weight(_text_:processing in 1447) [ClassicSimilarity], result of:
            0.058740605 = score(doc=1447,freq=6.0), product of:
              0.18956426 = queryWeight, product of:
                4.048147 = idf(docFreq=2097, maxDocs=44218)
                0.046827413 = queryNorm
              0.30987173 = fieldWeight in 1447, product of:
                2.4494898 = tf(freq=6.0), with freq of:
                  6.0 = termFreq=6.0
                4.048147 = idf(docFreq=2097, maxDocs=44218)
                0.03125 = fieldNorm(doc=1447)
          0.025377871 = weight(_text_:22 in 1447) [ClassicSimilarity], result of:
            0.025377871 = score(doc=1447,freq=2.0), product of:
              0.16398162 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046827413 = queryNorm
              0.15476047 = fieldWeight in 1447, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.03125 = fieldNorm(doc=1447)
      0.5 = coord(2/4)
    
    Abstract
    The BAER Web Resources Group was charged in October 1999 with defining and describing the parameters of electronic resources that do not clearly belong to the categories being defined by the BAER Digital Group or the BAER Electronic Journals Group. After some difficulty identifying precisely which resources fell under the Group's charge, we finally named the following types of resources for our consideration: web sites, electronic texts, indexes, databases and abstracts, online reference resources, and networked and non-networked CD-ROMs. Electronic resources are a vast and growing collection that touch nearly every department within the Library. It is unrealistic to think one department can effectively administer all aspects of the collection. The Group then began to focus on the concern of bibliographic access to these varied resources, and to define parameters for handling or processing them within the Library. Some key elements became evident as the work progressed. * Selection process of resources to be acquired for the collection * Duplication of effort * Use of CORC * Resource Finder design * Maintenance of Resource Finder * CD-ROMs not networked * Communications * Voyager search limitations. An unexpected collaboration with the Web Development Committee on the Resource Finder helped to steer the Group to more detailed descriptions of bibliographic access. This collaboration included development of data elements for the Resource Finder database, and some discussions on Library staff processing of the resources. The Web Resources Group invited expert testimony to help the Group broaden its view to envision public use of the resources and discuss concerns related to technical services processing. The first testimony came from members of the Resource Finder Committee. Some background information on the Web Development Resource Finder Committee was shared. The second testimony was from librarians who select electronic texts. Three main themes were addressed: accessing CD-ROMs; the issue of including non-networked CD-ROMs in the Resource Finder; and, some special concerns about electronic texts. The third testimony came from librarians who select indexes and abstracts and also provide Reference services. Appendices to this report include minutes of the meetings with the experts (Appendix A), a list of proposed data elements to be used in the Resource Finder (Appendix B), and recommendations made to the Resource Finder Committee (Appendix C). Below are summaries of the key elements.
    Date
    21. 4.2002 10:22:31
  4. Decimal Classification Editorial Policy Committee (2002) 0.06
    0.05655978 = product of:
      0.11311956 = sum of:
        0.02586502 = weight(_text_:data in 236) [ClassicSimilarity], result of:
          0.02586502 = score(doc=236,freq=2.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.17468026 = fieldWeight in 236, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=236)
        0.08725454 = sum of:
          0.042392377 = weight(_text_:processing in 236) [ClassicSimilarity], result of:
            0.042392377 = score(doc=236,freq=2.0), product of:
              0.18956426 = queryWeight, product of:
                4.048147 = idf(docFreq=2097, maxDocs=44218)
                0.046827413 = queryNorm
              0.22363065 = fieldWeight in 236, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                4.048147 = idf(docFreq=2097, maxDocs=44218)
                0.0390625 = fieldNorm(doc=236)
          0.044862162 = weight(_text_:22 in 236) [ClassicSimilarity], result of:
            0.044862162 = score(doc=236,freq=4.0), product of:
              0.16398162 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046827413 = queryNorm
              0.27358043 = fieldWeight in 236, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=236)
      0.5 = coord(2/4)
    
    Abstract
    The Decimal Classification Editorial Policy Committee (EPC) held its Meeting 117 at the Library Dec. 3-5, 2001, with chair Andrea Stamm (Northwestern University) presiding. Through its actions at this meeting, significant progress was made toward publication of DDC unabridged Edition 22 in mid-2003 and Abridged Edition 14 in early 2004. For Edition 22, the committee approved the revisions to two major segments of the classification: Table 2 through 55 Iran (the first half of the geographic area table) and 900 History and geography. EPC approved updates to several parts of the classification it had already considered: 004-006 Data processing, Computer science; 340 Law; 370 Education; 510 Mathematics; 610 Medicine; Table 3 issues concerning treatment of scientific and technical themes, with folklore, arts, and printing ramifications at 398.2 - 398.3, 704.94, and 758; Table 5 and Table 6 Ethnic Groups and Languages (portions concerning American native peoples and languages); and tourism issues at 647.9 and 790. Reports on the results of testing the approved 200 Religion and 305-306 Social groups schedules were received, as was a progress report on revision work for the manual being done by Ross Trotter (British Library, retired). Revisions for Abridged Edition 14 that received committee approval included 010 Bibliography; 070 Journalism; 150 Psychology; 370 Education; 380 Commerce, communications, and transportation; 621 Applied physics; 624 Civil engineering; and 629.8 Automatic control engineering. At the meeting the committee received print versions of _DC&_ numbers 4 and 5. Primarily for the use of Dewey translators, these cumulations list changes, substantive and cosmetic, to DDC Edition 21 and Abridged Edition 13 for the period October 1999 - December 2001. EPC will hold its Meeting 118 at the Library May 15-17, 2002.
  5. Autonomy, Inc.: Automatic classification (o.J.) 0.05
    0.046219878 = product of:
      0.092439756 = sum of:
        0.058525857 = weight(_text_:data in 1666) [ClassicSimilarity], result of:
          0.058525857 = score(doc=1666,freq=4.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.3952563 = fieldWeight in 1666, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0625 = fieldNorm(doc=1666)
        0.033913903 = product of:
          0.067827806 = sum of:
            0.067827806 = weight(_text_:processing in 1666) [ClassicSimilarity], result of:
              0.067827806 = score(doc=1666,freq=2.0), product of:
                0.18956426 = queryWeight, product of:
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.046827413 = queryNorm
                0.35780904 = fieldWeight in 1666, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1666)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Autonomy's Classification solutions remove the necessity for organizations to rely on human intervention or manual processing of information, such as manual tagging, typically required to make most other e-business applications work. Autonomy's ability to consistently and accurately classify data automatically is a unique infrastructure solution that overcomes the predicaments surrounding the exponential growth of unstructured data.
  6. Durno, J.: Digital archaeology and/or forensics : working with floppy disks from the 1980s (2016) 0.05
    0.046219878 = product of:
      0.092439756 = sum of:
        0.058525857 = weight(_text_:data in 3196) [ClassicSimilarity], result of:
          0.058525857 = score(doc=3196,freq=4.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.3952563 = fieldWeight in 3196, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0625 = fieldNorm(doc=3196)
        0.033913903 = product of:
          0.067827806 = sum of:
            0.067827806 = weight(_text_:processing in 3196) [ClassicSimilarity], result of:
              0.067827806 = score(doc=3196,freq=2.0), product of:
                0.18956426 = queryWeight, product of:
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.046827413 = queryNorm
                0.35780904 = fieldWeight in 3196, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3196)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    While software originating from the domain of digital forensics has demonstrated utility for data recovery from contemporary storage media, it is not as effective for working with floppy disks from the 1980s. This paper details alternative strategies for recovering data from floppy disks employing software originating from the software preservation and retro-computing communities. Imaging hardware, storage formats and processing workflows are also discussed.
  7. Mitchell, J.S.; Zeng, M.L.; Zumer, M.: Modeling classification systems in multicultural and multilingual contexts (2012) 0.04
    0.04449667 = product of:
      0.08899334 = sum of:
        0.062076043 = weight(_text_:data in 1967) [ClassicSimilarity], result of:
          0.062076043 = score(doc=1967,freq=8.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.4192326 = fieldWeight in 1967, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046875 = fieldNorm(doc=1967)
        0.0269173 = product of:
          0.0538346 = sum of:
            0.0538346 = weight(_text_:22 in 1967) [ClassicSimilarity], result of:
              0.0538346 = score(doc=1967,freq=4.0), product of:
                0.16398162 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046827413 = queryNorm
                0.32829654 = fieldWeight in 1967, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1967)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    This paper reports on the second part of an initiative of the authors on researching classification systems with the conceptual model defined by the Functional Requirements for Subject Authority Data (FRSAD) final report. In an earlier study, the authors explored whether the FRSAD conceptual model could be extended beyond subject authority data to model classification data. The focus of the current study is to determine if classification data modeled using FRSAD can be used to solve real-world discovery problems in multicultural and multilingual contexts. The paper discusses the relationships between entities (same type or different types) in the context of classification systems that involve multiple translations and /or multicultural implementations. Results of two case studies are presented in detail: (a) two instances of the DDC (DDC 22 in English, and the Swedish-English mixed translation of DDC 22), and (b) Chinese Library Classification. The use cases of conceptual models in practice are also discussed.
  8. Wolfe, EW.: a case study in automated metadata enhancement : Natural Language Processing in the humanities (2019) 0.04
    0.03908867 = product of:
      0.07817734 = sum of:
        0.036211025 = weight(_text_:data in 5236) [ClassicSimilarity], result of:
          0.036211025 = score(doc=5236,freq=2.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.24455236 = fieldWeight in 5236, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0546875 = fieldNorm(doc=5236)
        0.041966315 = product of:
          0.08393263 = sum of:
            0.08393263 = weight(_text_:processing in 5236) [ClassicSimilarity], result of:
              0.08393263 = score(doc=5236,freq=4.0), product of:
                0.18956426 = queryWeight, product of:
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.046827413 = queryNorm
                0.4427661 = fieldWeight in 5236, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=5236)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    The Black Book Interactive Project at the University of Kansas (KU) is developing an expanded corpus of novels by African American authors, with an emphasis on lesser known writers and a goal of expanding research in this field. Using a custom metadata schema with an emphasis on race-related elements, each novel is analyzed for a variety of elements such as literary style, targeted content analysis, historical context, and other areas. Librarians at KU have worked to develop a variety of computational text analysis processes designed to assist with specific aspects of this metadata collection, including text mining and natural language processing, automated subject extraction based on word sense disambiguation, harvesting data from Wikidata, and other actions.
  9. Miller, E.; Schloss. B.; Lassila, O.; Swick, R.R.: Resource Description Framework (RDF) : model and syntax (1997) 0.04
    0.037649848 = product of:
      0.075299695 = sum of:
        0.05431654 = weight(_text_:data in 5903) [ClassicSimilarity], result of:
          0.05431654 = score(doc=5903,freq=18.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.36682853 = fieldWeight in 5903, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.02734375 = fieldNorm(doc=5903)
        0.020983158 = product of:
          0.041966315 = sum of:
            0.041966315 = weight(_text_:processing in 5903) [ClassicSimilarity], result of:
              0.041966315 = score(doc=5903,freq=4.0), product of:
                0.18956426 = queryWeight, product of:
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.046827413 = queryNorm
                0.22138305 = fieldWeight in 5903, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=5903)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    RDF - the Resource Description Framework - is a foundation for processing metadata; it provides interoperability between applications that exchange machine-understandable information on the Web. RDF emphasizes facilities to enable automated processing of Web resources. RDF metadata can be used in a variety of application areas; for example: in resource discovery to provide better search engine capabilities; in cataloging for describing the content and content relationships available at a particular Web site, page, or digital library; by intelligent software agents to facilitate knowledge sharing and exchange; in content rating; in describing collections of pages that represent a single logical "document"; for describing intellectual property rights of Web pages, and in many others. RDF with digital signatures will be key to building the "Web of Trust" for electronic commerce, collaboration, and other applications. Metadata is "data about data" or specifically in the context of RDF "data describing web resources." The distinction between "data" and "metadata" is not an absolute one; it is a distinction created primarily by a particular application. Many times the same resource will be interpreted in both ways simultaneously. RDF encourages this view by using XML as the encoding syntax for the metadata. The resources being described by RDF are, in general, anything that can be named via a URI. The broad goal of RDF is to define a mechanism for describing resources that makes no assumptions about a particular application domain, nor defines the semantics of any application domain. The definition of the mechanism should be domain neutral, yet the mechanism should be suitable for describing information about any domain. This document introduces a model for representing RDF metadata and one syntax for expressing and transporting this metadata in a manner that maximizes the interoperability of independently developed web servers and clients. The syntax described in this document is best considered as a "serialization syntax" for the underlying RDF representation model. The serialization syntax is XML, XML being the W3C's work-in-progress to define a richer Web syntax for a variety of applications. RDF and XML are complementary; there will be alternate ways to represent the same RDF data model, some more suitable for direct human authoring. Future work may lead to including such alternatives in this document.
    Content
    RDF Data Model At the core of RDF is a model for representing named properties and their values. These properties serve both to represent attributes of resources (and in this sense correspond to usual attribute-value-pairs) and to represent relationships between resources. The RDF data model is a syntax-independent way of representing RDF statements. RDF statements that are syntactically very different could mean the same thing. This concept of equivalence in meaning is very important when performing queries, aggregation and a number of other tasks at which RDF is aimed. The equivalence is defined in a clean machine understandable way. Two pieces of RDF are equivalent if and only if their corresponding data model representations are the same. Table of contents 1. Introduction 2. RDF Data Model 3. RDF Grammar 4. Signed RDF 5. Examples 6. Appendix A: Brief Explanation of XML Namespaces
  10. Heflin, J.; Hendler, J.: Semantic interoperability on the Web (2000) 0.04
    0.03670788 = product of:
      0.07341576 = sum of:
        0.051210128 = weight(_text_:data in 759) [ClassicSimilarity], result of:
          0.051210128 = score(doc=759,freq=4.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.34584928 = fieldWeight in 759, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0546875 = fieldNorm(doc=759)
        0.022205638 = product of:
          0.044411276 = sum of:
            0.044411276 = weight(_text_:22 in 759) [ClassicSimilarity], result of:
              0.044411276 = score(doc=759,freq=2.0), product of:
                0.16398162 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046827413 = queryNorm
                0.2708308 = fieldWeight in 759, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=759)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    XML will have a profound impact on the way data is exchanged on the Internet. An important feature of this language is the separation of content from presentation, which makes it easier to select and/or reformat the data. However, due to the likelihood of numerous industry and domain specific DTDs, those who wish to integrate information will still be faced with the problem of semantic interoperability. In this paper we discuss why this problem is not solved by XML, and then discuss why the Resource Description Framework is only a partial solution. We then present the SHOE language, which we feel has many of the features necessary to enable a semantic web, and describe an existing set of tools that make it easy to use the language.
    Date
    11. 5.2013 19:22:18
  11. Kraker, P.; Kittel, C,; Enkhbayar, A.: Open Knowledge Maps : creating a visual interface to the world's scientific knowledge based on natural language processing (2016) 0.03
    0.033504575 = product of:
      0.06700915 = sum of:
        0.031038022 = weight(_text_:data in 3205) [ClassicSimilarity], result of:
          0.031038022 = score(doc=3205,freq=2.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.2096163 = fieldWeight in 3205, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046875 = fieldNorm(doc=3205)
        0.035971127 = product of:
          0.071942255 = sum of:
            0.071942255 = weight(_text_:processing in 3205) [ClassicSimilarity], result of:
              0.071942255 = score(doc=3205,freq=4.0), product of:
                0.18956426 = queryWeight, product of:
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.046827413 = queryNorm
                0.3795138 = fieldWeight in 3205, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3205)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    The goal of Open Knowledge Maps is to create a visual interface to the world's scientific knowledge. The base for this visual interface consists of so-called knowledge maps, which enable the exploration of existing knowledge and the discovery of new knowledge. Our open source knowledge mapping software applies a mixture of summarization techniques and similarity measures on article metadata, which are iteratively chained together. After processing, the representation is saved in a database for use in a web visualization. In the future, we want to create a space for collective knowledge mapping that brings together individuals and communities involved in exploration and discovery. We want to enable people to guide each other in their discovery by collaboratively annotating and modifying the automatically created maps.
    Theme
    Data Mining
  12. Faro, S.; Francesconi, E.; Marinai, E.; Sandrucci, V.: Report on execution and results of the interoperability tests (2008) 0.03
    0.03338095 = product of:
      0.0667619 = sum of:
        0.04138403 = weight(_text_:data in 7411) [ClassicSimilarity], result of:
          0.04138403 = score(doc=7411,freq=2.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.2794884 = fieldWeight in 7411, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0625 = fieldNorm(doc=7411)
        0.025377871 = product of:
          0.050755743 = sum of:
            0.050755743 = weight(_text_:22 in 7411) [ClassicSimilarity], result of:
              0.050755743 = score(doc=7411,freq=2.0), product of:
                0.16398162 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046827413 = queryNorm
                0.30952093 = fieldWeight in 7411, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=7411)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    - Formal characterization given to the thesaurus mapping problem - Interopearbility workflow - - Thesauri SKOS Core transformation - - Thesaurus Mapping algorithms implementation - The "gold standard" data set and the THALEN application - Thesaurus interoperability assessment measures - Experimental results
    Date
    7.11.2008 10:40:22
  13. Cranefield, S.: Networked knowledge representation and exchange using UML and RDF (2001) 0.03
    0.032942846 = product of:
      0.06588569 = sum of:
        0.036211025 = weight(_text_:data in 5896) [ClassicSimilarity], result of:
          0.036211025 = score(doc=5896,freq=2.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.24455236 = fieldWeight in 5896, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0546875 = fieldNorm(doc=5896)
        0.029674664 = product of:
          0.05934933 = sum of:
            0.05934933 = weight(_text_:processing in 5896) [ClassicSimilarity], result of:
              0.05934933 = score(doc=5896,freq=2.0), product of:
                0.18956426 = queryWeight, product of:
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.046827413 = queryNorm
                0.3130829 = fieldWeight in 5896, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=5896)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    This paper proposes the use of the Unified Modeling Language (UML) as a language for modelling ontologies for Web resources and the knowledge contained within them. To provide a mechanism for serialising and processing object diagrams representing knowledge, a pair of XSI-T stylesheets have been developed to map from XML Metadata Interchange (XMI) encodings of class diagrams to corresponding RDF schemas and to Java classes representing the concepts in the ontologies. The Java code includes methods for marshalling and unmarshalling object-oriented information between in-memory data structures and RDF serialisations of that information. This provides a convenient mechanism for Java applications to share knowledge on the Web
  14. Hollink, L.; Assem, M. van: Estimating the relevance of search results in the Culture-Web : a study of semantic distance measures (2010) 0.03
    0.0314639 = product of:
      0.0629278 = sum of:
        0.043894395 = weight(_text_:data in 4649) [ClassicSimilarity], result of:
          0.043894395 = score(doc=4649,freq=4.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.29644224 = fieldWeight in 4649, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046875 = fieldNorm(doc=4649)
        0.019033402 = product of:
          0.038066804 = sum of:
            0.038066804 = weight(_text_:22 in 4649) [ClassicSimilarity], result of:
              0.038066804 = score(doc=4649,freq=2.0), product of:
                0.16398162 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046827413 = queryNorm
                0.23214069 = fieldWeight in 4649, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4649)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    More and more cultural heritage institutions publish their collections, vocabularies and metadata on the Web. The resulting Web of linked cultural data opens up exciting new possibilities for searching and browsing through these cultural heritage collections. We report on ongoing work in which we investigate the estimation of relevance in this Web of Culture. We study existing measures of semantic distance and how they apply to two use cases. The use cases relate to the structured, multilingual and multimodal nature of the Culture Web. We distinguish between measures using the Web, such as Google distance and PMI, and measures using the Linked Data Web, i.e. the semantic structure of metadata vocabularies. We perform a small study in which we compare these semantic distance measures to human judgements of relevance. Although it is too early to draw any definitive conclusions, the study provides new insights into the applicability of semantic distance measures to the Web of Culture, and clear starting points for further research.
    Date
    26.12.2011 13:40:22
  15. Delsey, T.: ¬The Making of RDA (2016) 0.03
    0.0314639 = product of:
      0.0629278 = sum of:
        0.043894395 = weight(_text_:data in 2946) [ClassicSimilarity], result of:
          0.043894395 = score(doc=2946,freq=4.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.29644224 = fieldWeight in 2946, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046875 = fieldNorm(doc=2946)
        0.019033402 = product of:
          0.038066804 = sum of:
            0.038066804 = weight(_text_:22 in 2946) [ClassicSimilarity], result of:
              0.038066804 = score(doc=2946,freq=2.0), product of:
                0.16398162 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046827413 = queryNorm
                0.23214069 = fieldWeight in 2946, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2946)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    The author revisits the development of RDA from its inception in 2005 through to its initial release in 2010. The development effort is set in the context of an evolving digital environment that was transforming both the production and dissemination of information resources and the technologies used to create, store, and access data describing those resources. The author examines the interplay between strategic commitments to align RDA with new conceptual models, emerging database structures, and metadata developments in allied communities, on the one hand, and compatibility with AACR2 legacy databases on the other. Aspects of the development effort examined include the structuring of RDA as a resource description language, organizing the new standard as a working tool, and refining guidelines and instructions for recording RDA data.
    Date
    17. 5.2016 19:22:40
  16. Jacobs, I.: From chaos, order: W3C standard helps organize knowledge : SKOS Connects Diverse Knowledge Organization Systems to Linked Data (2009) 0.03
    0.0295933 = product of:
      0.0591866 = sum of:
        0.044349268 = weight(_text_:data in 3062) [ClassicSimilarity], result of:
          0.044349268 = score(doc=3062,freq=12.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.29951423 = fieldWeight in 3062, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.02734375 = fieldNorm(doc=3062)
        0.014837332 = product of:
          0.029674664 = sum of:
            0.029674664 = weight(_text_:processing in 3062) [ClassicSimilarity], result of:
              0.029674664 = score(doc=3062,freq=2.0), product of:
                0.18956426 = queryWeight, product of:
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.046827413 = queryNorm
                0.15654145 = fieldWeight in 3062, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=3062)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    18 August 2009 -- Today W3C announces a new standard that builds a bridge between the world of knowledge organization systems - including thesauri, classifications, subject headings, taxonomies, and folksonomies - and the linked data community, bringing benefits to both. Libraries, museums, newspapers, government portals, enterprises, social networking applications, and other communities that manage large collections of books, historical artifacts, news reports, business glossaries, blog entries, and other items can now use Simple Knowledge Organization System (SKOS) to leverage the power of linked data. As different communities with expertise and established vocabularies use SKOS to integrate them into the Semantic Web, they increase the value of the information for everyone.
    Content
    SKOS Adapts to the Diversity of Knowledge Organization Systems A useful starting point for understanding the role of SKOS is the set of subject headings published by the US Library of Congress (LOC) for categorizing books, videos, and other library resources. These headings can be used to broaden or narrow queries for discovering resources. For instance, one can narrow a query about books on "Chinese literature" to "Chinese drama," or further still to "Chinese children's plays." Library of Congress subject headings have evolved within a community of practice over a period of decades. By now publishing these subject headings in SKOS, the Library of Congress has made them available to the linked data community, which benefits from a time-tested set of concepts to re-use in their own data. This re-use adds value ("the network effect") to the collection. When people all over the Web re-use the same LOC concept for "Chinese drama," or a concept from some other vocabulary linked to it, this creates many new routes to the discovery of information, and increases the chances that relevant items will be found. As an example of mapping one vocabulary to another, a combined effort from the STITCH, TELplus and MACS Projects provides links between LOC concepts and RAMEAU, a collection of French subject headings used by the Bibliothèque Nationale de France and other institutions. SKOS can be used for subject headings but also many other approaches to organizing knowledge. Because different communities are comfortable with different organization schemes, SKOS is designed to port diverse knowledge organization systems to the Web. "Active participation from the library and information science community in the development of SKOS over the past seven years has been key to ensuring that SKOS meets a variety of needs," said Thomas Baker, co-chair of the Semantic Web Deployment Working Group, which published SKOS. "One goal in creating SKOS was to provide new uses for well-established knowledge organization systems by providing a bridge to the linked data cloud." SKOS is part of the Semantic Web technology stack. Like the Web Ontology Language (OWL), SKOS can be used to define vocabularies. But the two technologies were designed to meet different needs. SKOS is a simple language with just a few features, tuned for sharing and linking knowledge organization systems such as thesauri and classification schemes. OWL offers a general and powerful framework for knowledge representation, where additional "rigor" can afford additional benefits (for instance, business rule processing). To get started with SKOS, see the SKOS Primer.
  17. Si, L.: Encoding formats and consideration of requirements for mapping (2007) 0.03
    0.029208332 = product of:
      0.058416665 = sum of:
        0.036211025 = weight(_text_:data in 540) [ClassicSimilarity], result of:
          0.036211025 = score(doc=540,freq=2.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.24455236 = fieldWeight in 540, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0546875 = fieldNorm(doc=540)
        0.022205638 = product of:
          0.044411276 = sum of:
            0.044411276 = weight(_text_:22 in 540) [ClassicSimilarity], result of:
              0.044411276 = score(doc=540,freq=2.0), product of:
                0.16398162 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046827413 = queryNorm
                0.2708308 = fieldWeight in 540, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=540)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    With the increasing requirement of establishing semantic mappings between different vocabularies, further development of these encoding formats is becoming more and more important. For this reason, four types of knowledge representation formats were assessed:MARC21 for Classification Data in XML, Zthes XML Schema, XTM(XML Topic Map), and SKOS (Simple Knowledge Organisation System). This paper explores the potential of adapting these representation formats to support different semantic mapping methods, and discusses the implication of extending them to represent more complex KOS.
    Date
    26.12.2011 13:22:27
  18. Stephens, O.: Introduction to OpenRefine (2014) 0.03
    0.029033413 = product of:
      0.11613365 = sum of:
        0.11613365 = weight(_text_:data in 2884) [ClassicSimilarity], result of:
          0.11613365 = score(doc=2884,freq=28.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.7843124 = fieldWeight in 2884, product of:
              5.2915025 = tf(freq=28.0), with freq of:
                28.0 = termFreq=28.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046875 = fieldNorm(doc=2884)
      0.25 = coord(1/4)
    
    Abstract
    OpenRefine is described as a tool for working with 'messy' data - but what does this mean? It is probably easiest to describe the kinds of data OpenRefine is good at working with and the sorts of problems it can help you solve. OpenRefine is most useful where you have data in a simple tabular format but with internal inconsistencies either in data formats, or where data appears, or in terminology used. It can help you: Get an overview of a data set Resolve inconsistencies in a data set Help you split data up into more granular parts Match local data up to other data sets Enhance a data set with data from other sources Some common scenarios might be: 1. Where you want to know how many times a particular value appears in a column in your data. 2. Where you want to know how values are distributed across your whole data set. 3. Where you have a list of dates which are formatted in different ways, and want to change all the dates in the list to a single common date format.
  19. Knowledge graphs : new directions for knowledge representation on the Semantic Web (2019) 0.03
    0.028887425 = product of:
      0.05777485 = sum of:
        0.03657866 = weight(_text_:data in 51) [ClassicSimilarity], result of:
          0.03657866 = score(doc=51,freq=4.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.24703519 = fieldWeight in 51, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=51)
        0.021196188 = product of:
          0.042392377 = sum of:
            0.042392377 = weight(_text_:processing in 51) [ClassicSimilarity], result of:
              0.042392377 = score(doc=51,freq=2.0), product of:
                0.18956426 = queryWeight, product of:
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.046827413 = queryNorm
                0.22363065 = fieldWeight in 51, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=51)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    The increasingly pervasive nature of the Web, expanding to devices and things in everydaylife, along with new trends in Artificial Intelligence call for new paradigms and a new look onKnowledge Representation and Processing at scale for the Semantic Web. The emerging, but stillto be concretely shaped concept of "Knowledge Graphs" provides an excellent unifying metaphorfor this current status of Semantic Web research. More than two decades of Semantic Webresearch provides a solid basis and a promising technology and standards stack to interlink data,ontologies and knowledge on the Web. However, neither are applications for Knowledge Graphsas such limited to Linked Open Data, nor are instantiations of Knowledge Graphs in enterprises- while often inspired by - limited to the core Semantic Web stack. This report documents theprogram and the outcomes of Dagstuhl Seminar 18371 "Knowledge Graphs: New Directions forKnowledge Representation on the Semantic Web", where a group of experts from academia andindustry discussed fundamental questions around these topics for a week in early September 2018,including the following: what are knowledge graphs? Which applications do we see to emerge?Which open research questions still need be addressed and which technology gaps still need tobe closed?
  20. Favato Barcelos, P.P.; Sales, T.P.; Fumagalli, M.; Guizzardi, G.; Valle Sousa, I.; Fonseca, C.M.; Romanenko, E.; Kritz, J.: ¬A FAIR model catalog for ontology-driven conceptual modeling research (2022) 0.03
    0.028887425 = product of:
      0.05777485 = sum of:
        0.03657866 = weight(_text_:data in 756) [ClassicSimilarity], result of:
          0.03657866 = score(doc=756,freq=4.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.24703519 = fieldWeight in 756, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=756)
        0.021196188 = product of:
          0.042392377 = sum of:
            0.042392377 = weight(_text_:processing in 756) [ClassicSimilarity], result of:
              0.042392377 = score(doc=756,freq=2.0), product of:
                0.18956426 = queryWeight, product of:
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.046827413 = queryNorm
                0.22363065 = fieldWeight in 756, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=756)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Conceptual models are artifacts representing conceptualizations of particular domains. Hence, multi-domain model catalogs serve as empirical sources of knowledge and insights about specific domains, about the use of a modeling language's constructs, as well as about the patterns and anti-patterns recurrent in the models of that language crosscutting different domains. However, to support domain and language learning, model reuse, knowledge discovery for humans, and reliable automated processing and analysis by machines, these catalogs must be built following generally accepted quality requirements for scientific data management. Especially, all scientific (meta)data-including models-should be created using the FAIR principles (Findability, Accessibility, Interoperability, and Reusability). In this paper, we report on the construction of a FAIR model catalog for Ontology-Driven Conceptual Modeling research, a trending paradigm lying at the intersection of conceptual modeling and ontology engineering in which the Unified Foundational Ontology (UFO) and OntoUML emerged among the most adopted technologies. In this initial release, the catalog includes over a hundred models, developed in a variety of contexts and domains. The paper also discusses the research implications for (ontology-driven) conceptual modeling of such a resource.

Years

Types

  • a 191
  • s 12
  • r 8
  • n 6
  • x 5
  • p 3
  • i 1
  • m 1
  • More… Less…