Search (511 results, page 1 of 26)

  • × theme_ss:"Informetrie"
  1. Herb, U.; Beucke, D.: ¬Die Zukunft der Impact-Messung : Social Media, Nutzung und Zitate im World Wide Web (2013) 0.07
    0.07437435 = product of:
      0.2974974 = sum of:
        0.2974974 = weight(_text_:2f in 2188) [ClassicSimilarity], result of:
          0.2974974 = score(doc=2188,freq=2.0), product of:
            0.39700332 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.046827413 = queryNorm
            0.7493574 = fieldWeight in 2188, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.0625 = fieldNorm(doc=2188)
      0.25 = coord(1/4)
    
    Content
    Vgl. unter: https://www.leibniz-science20.de%2Fforschung%2Fprojekte%2Faltmetrics-in-verschiedenen-wissenschaftsdisziplinen%2F&ei=2jTgVaaXGcK4Udj1qdgB&usg=AFQjCNFOPdONj4RKBDf9YDJOLuz3lkGYlg&sig2=5YI3KWIGxBmk5_kv0P_8iQ.
  2. Mingers, J.; Burrell, Q.L.: Modeling citation behavior in Management Science journals (2006) 0.06
    0.05998784 = product of:
      0.11997568 = sum of:
        0.031038022 = weight(_text_:data in 994) [ClassicSimilarity], result of:
          0.031038022 = score(doc=994,freq=2.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.2096163 = fieldWeight in 994, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046875 = fieldNorm(doc=994)
        0.088937655 = sum of:
          0.05087085 = weight(_text_:processing in 994) [ClassicSimilarity], result of:
            0.05087085 = score(doc=994,freq=2.0), product of:
              0.18956426 = queryWeight, product of:
                4.048147 = idf(docFreq=2097, maxDocs=44218)
                0.046827413 = queryNorm
              0.26835677 = fieldWeight in 994, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                4.048147 = idf(docFreq=2097, maxDocs=44218)
                0.046875 = fieldNorm(doc=994)
          0.038066804 = weight(_text_:22 in 994) [ClassicSimilarity], result of:
            0.038066804 = score(doc=994,freq=2.0), product of:
              0.16398162 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046827413 = queryNorm
              0.23214069 = fieldWeight in 994, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=994)
      0.5 = coord(2/4)
    
    Abstract
    Citation rates are becoming increasingly important in judging the research quality of journals, institutions and departments, and individual faculty. This paper looks at the pattern of citations across different management science journals and over time. A stochastic model is proposed which views the generating mechanism of citations as a gamma mixture of Poisson processes generating overall a negative binomial distribution. This is tested empirically with a large sample of papers published in 1990 from six management science journals and found to fit well. The model is extended to include obsolescence, i.e., that the citation rate for a paper varies over its cited lifetime. This leads to the additional citations distribution which shows that future citations are a linear function of past citations with a time-dependent and decreasing slope. This is also verified empirically in a way that allows different obsolescence functions to be fitted to the data. Conclusions concerning the predictability of future citations, and future research in this area are discussed.
    Date
    26.12.2007 19:22:05
    Source
    Information processing and management. 42(2006) no.6, S.1451-1464
  3. Nicholls, P.T.: Empirical validation of Lotka's law (1986) 0.06
    0.059291773 = product of:
      0.23716709 = sum of:
        0.23716709 = sum of:
          0.13565561 = weight(_text_:processing in 5509) [ClassicSimilarity], result of:
            0.13565561 = score(doc=5509,freq=2.0), product of:
              0.18956426 = queryWeight, product of:
                4.048147 = idf(docFreq=2097, maxDocs=44218)
                0.046827413 = queryNorm
              0.7156181 = fieldWeight in 5509, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                4.048147 = idf(docFreq=2097, maxDocs=44218)
                0.125 = fieldNorm(doc=5509)
          0.101511486 = weight(_text_:22 in 5509) [ClassicSimilarity], result of:
            0.101511486 = score(doc=5509,freq=2.0), product of:
              0.16398162 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046827413 = queryNorm
              0.61904186 = fieldWeight in 5509, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.125 = fieldNorm(doc=5509)
      0.25 = coord(1/4)
    
    Source
    Information processing and management. 22(1986), S.417-419
  4. Kreider, J.: ¬The correlation of local citation data with citation data from Journal Citation Reports (1999) 0.05
    0.053411096 = product of:
      0.10682219 = sum of:
        0.08778879 = weight(_text_:data in 102) [ClassicSimilarity], result of:
          0.08778879 = score(doc=102,freq=16.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.5928845 = fieldWeight in 102, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046875 = fieldNorm(doc=102)
        0.019033402 = product of:
          0.038066804 = sum of:
            0.038066804 = weight(_text_:22 in 102) [ClassicSimilarity], result of:
              0.038066804 = score(doc=102,freq=2.0), product of:
                0.16398162 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046827413 = queryNorm
                0.23214069 = fieldWeight in 102, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=102)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    University librarians continue to face the difficult task of determining which journals remain crucial for their collections during these times of static financial resources and escalating journal costs. One evaluative tool, Journal Citation Reports (JCR), recently has become available on CD-ROM, making it simpler for librarians to use its citation data as input for ranking journals. But many librarians remain unconvinced that the global citation data from the JCR bears enough correspondence to their local situation to be useful. In this project, I explore the correlation between global citation data available from JCR with local citation data generated specifically for the University of British Columbia, for 20 subject fields in the sciences and social sciences. The significant correlations obtained in this study suggest that large research-oriented university libraries could consider substituting global citation data for local citation data when evaluating their journals, with certain cautions.
    Date
    10. 9.2000 17:38:22
  5. Cerda-Cosme, R.; Méndez, E.: Analysis of shared research data in Spanish scientific papers about COVID-19 : a first approach (2023) 0.05
    0.05082287 = product of:
      0.10164574 = sum of:
        0.08578457 = weight(_text_:data in 916) [ClassicSimilarity], result of:
          0.08578457 = score(doc=916,freq=22.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.5793489 = fieldWeight in 916, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=916)
        0.01586117 = product of:
          0.03172234 = sum of:
            0.03172234 = weight(_text_:22 in 916) [ClassicSimilarity], result of:
              0.03172234 = score(doc=916,freq=2.0), product of:
                0.16398162 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046827413 = queryNorm
                0.19345059 = fieldWeight in 916, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=916)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    During the coronavirus pandemic, changes in the way science is done and shared occurred, which motivates meta-research to help understand science communication in crises and improve its effectiveness. The objective is to study how many Spanish scientific papers on COVID-19 published during 2020 share their research data. Qualitative and descriptive study applying nine attributes: (a) availability, (b) accessibility, (c) format, (d) licensing, (e) linkage, (f) funding, (g) editorial policy, (h) content, and (i) statistics. We analyzed 1,340 papers, 1,173 (87.5%) did not have research data. A total of 12.5% share their research data of which 2.1% share their data in repositories, 5% share their data through a simple request, 0.2% do not have permission to share their data, and 5.2% share their data as supplementary material. There is a small percentage that shares their research data; however, it demonstrates the researchers' poor knowledge on how to properly share their research data and their lack of knowledge on what is research data.
    Date
    21. 3.2023 19:22:02
  6. Niemi, T.; Hirvonen, L.; Järvelin, K.: Multidimensional data model and query language for informetrics (2003) 0.05
    0.050731372 = product of:
      0.101462744 = sum of:
        0.07602732 = weight(_text_:data in 1753) [ClassicSimilarity], result of:
          0.07602732 = score(doc=1753,freq=12.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.513453 = fieldWeight in 1753, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046875 = fieldNorm(doc=1753)
        0.025435425 = product of:
          0.05087085 = sum of:
            0.05087085 = weight(_text_:processing in 1753) [ClassicSimilarity], result of:
              0.05087085 = score(doc=1753,freq=2.0), product of:
                0.18956426 = queryWeight, product of:
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.046827413 = queryNorm
                0.26835677 = fieldWeight in 1753, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1753)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Multidimensional data analysis or On-line analytical processing (OLAP) offers a single subject-oriented source for analyzing summary data based an various dimensions. We demonstrate that the OLAP approach gives a promising starting point for advanced analysis and comparison among summary data in informetrics applications. At the moment there is no single precise, commonly accepted logical/conceptual model for multidimensional analysis. This is because the requirements of applications vary considerably. We develop a conceptual/logical multidimensional model for supporting the complex and unpredictable needs of informetrics. Summary data are considered with respect of some dimensions. By changing dimensions the user may construct other views an the same summary data. We develop a multidimensional query language whose basic idea is to support the definition of views in a way, which is natural and intuitive for lay users in the informetrics area. We show that this view-oriented query language has a great expressive power and its degree of declarativity is greater than in contemporary operation-oriented or SQL (Structured Query Language)-like OLAP query languages.
  7. Fiala, D.: Bibliometric analysis of CiteSeer data for countries (2012) 0.05
    0.050731372 = product of:
      0.101462744 = sum of:
        0.07602732 = weight(_text_:data in 2742) [ClassicSimilarity], result of:
          0.07602732 = score(doc=2742,freq=12.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.513453 = fieldWeight in 2742, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046875 = fieldNorm(doc=2742)
        0.025435425 = product of:
          0.05087085 = sum of:
            0.05087085 = weight(_text_:processing in 2742) [ClassicSimilarity], result of:
              0.05087085 = score(doc=2742,freq=2.0), product of:
                0.18956426 = queryWeight, product of:
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.046827413 = queryNorm
                0.26835677 = fieldWeight in 2742, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2742)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    This article describes the results of our analysis of the data from the CiteSeer digital library. First, we examined the data from the point of view of source top-level Internet domains from which the data were collected. Second, we measured country shares in publications indexed by CiteSeer and compared them to those based on mainstream bibliographic data from the Web of Science and Scopus. And third, we concentrated on analyzing publications and their citations aggregated by countries. This way, we generated rankings of the most influential countries in computer science using several non-recursive as well as recursive methods such as citation counts or PageRank. We conclude that even if East Asian countries are underrepresented in CiteSeer, its data may well be used along with other conventional bibliographic databases for comparing the computer science research productivity and performance of countries.
    Source
    Information processing and management. 48(2012) no.2, S.242-253
  8. Marx, W.; Bornmann, L.: On the problems of dealing with bibliometric data (2014) 0.05
    0.050071426 = product of:
      0.10014285 = sum of:
        0.062076043 = weight(_text_:data in 1239) [ClassicSimilarity], result of:
          0.062076043 = score(doc=1239,freq=2.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.4192326 = fieldWeight in 1239, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.09375 = fieldNorm(doc=1239)
        0.038066804 = product of:
          0.07613361 = sum of:
            0.07613361 = weight(_text_:22 in 1239) [ClassicSimilarity], result of:
              0.07613361 = score(doc=1239,freq=2.0), product of:
                0.16398162 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046827413 = queryNorm
                0.46428138 = fieldWeight in 1239, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=1239)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Date
    18. 3.2014 19:13:22
  9. Fang, Z.; Dudek, J.; Costas, R.: Facing the volatility of tweets in altmetric research (2022) 0.05
    0.047419276 = product of:
      0.09483855 = sum of:
        0.06940313 = weight(_text_:data in 605) [ClassicSimilarity], result of:
          0.06940313 = score(doc=605,freq=10.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.46871632 = fieldWeight in 605, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046875 = fieldNorm(doc=605)
        0.025435425 = product of:
          0.05087085 = sum of:
            0.05087085 = weight(_text_:processing in 605) [ClassicSimilarity], result of:
              0.05087085 = score(doc=605,freq=2.0), product of:
                0.18956426 = queryWeight, product of:
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.046827413 = queryNorm
                0.26835677 = fieldWeight in 605, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.046875 = fieldNorm(doc=605)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    The data re-collection for tweets from data snapshots is a common methodological step in Twitter-based research. Understanding better the volatility of tweets over time is important for validating the reliability of metrics based on Twitter data. We tracked a set of 37,918 original scholarly tweets mentioning COVID-19-related research daily for 56 days and captured the reasons for the changes in their availability over time. Results show that the proportion of unavailable tweets increased from 1.6 to 2.6% in the time window observed. Of the 1,323 tweets that became unavailable at some point in the period observed, 30.5% became available again afterwards. "Revived" tweets resulted mainly from the unprotecting, reactivating, or unsuspending of users' accounts. Our findings highlight the importance of noting this dynamic nature of Twitter data in altmetric research and testify to the challenges that this poses for the retrieval, processing, and interpretation of Twitter data about scientific papers.
  10. Kurtz, M.J.; Eichhorn, G.; Accomazzi, A.; Grant, C.; Demleitner, M.; Henneken, E.; Murray, S.S.: ¬The effect of use and access on citations (2005) 0.05
    0.046219878 = product of:
      0.092439756 = sum of:
        0.058525857 = weight(_text_:data in 1064) [ClassicSimilarity], result of:
          0.058525857 = score(doc=1064,freq=4.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.3952563 = fieldWeight in 1064, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0625 = fieldNorm(doc=1064)
        0.033913903 = product of:
          0.067827806 = sum of:
            0.067827806 = weight(_text_:processing in 1064) [ClassicSimilarity], result of:
              0.067827806 = score(doc=1064,freq=2.0), product of:
                0.18956426 = queryWeight, product of:
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.046827413 = queryNorm
                0.35780904 = fieldWeight in 1064, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1064)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    It has been shown (Lawrence, S. (2001). Online or invisible? Nature, 411, 521) that journal articles which have been posted without charge on the internet are more heavily cited than those which have not been. Using data from the NASA Astrophysics Data System (ads.harvard.edu) and from the ArXiv e-print archive at Cornell University (arXiv.org) we examine the causes of this effect.
    Source
    Information processing and management. 41(2005) no.6, S.1395-1402
  11. Boyack; K.W.; Börner, K.: Indicator-assisted evaluation and funding of research : visualizing the influence of grants on the number and citation counts of research papers (2003) 0.04
    0.043755732 = product of:
      0.087511465 = sum of:
        0.062076043 = weight(_text_:data in 1471) [ClassicSimilarity], result of:
          0.062076043 = score(doc=1471,freq=8.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.4192326 = fieldWeight in 1471, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046875 = fieldNorm(doc=1471)
        0.025435425 = product of:
          0.05087085 = sum of:
            0.05087085 = weight(_text_:processing in 1471) [ClassicSimilarity], result of:
              0.05087085 = score(doc=1471,freq=2.0), product of:
                0.18956426 = queryWeight, product of:
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.046827413 = queryNorm
                0.26835677 = fieldWeight in 1471, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1471)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    This article reports research an analyzing and visualizing the impact of governmental funding an the amount and citation counts of research publications. For the first time, grant and publication data appear interlinked in one map. We start with an overview of related work and a discussion of available techniques. A concrete example- grant and publication data from Behavioral and Social Science Research, one of four extramural research programs at the National Institute an Aging (NIA)-is analyzed and visualized using the Vxlnsight® visualization tool. The analysis also illustrates current existing problems related to the quality and existence of data, data analysis, and processing. The article concludes with a list of recommendations an how to improve the quality of grant-publication maps and a discussion of research challenges for indicator-assisted evaluation and funding of research.
  12. Kronegger, L.; Mali, F.; Ferligoj, A.; Doreian, P.: Classifying scientific disciplines in Slovenia : a study of the evolution of collaboration structures (2015) 0.04
    0.040554725 = product of:
      0.08110945 = sum of:
        0.062076043 = weight(_text_:data in 1639) [ClassicSimilarity], result of:
          0.062076043 = score(doc=1639,freq=8.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.4192326 = fieldWeight in 1639, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046875 = fieldNorm(doc=1639)
        0.019033402 = product of:
          0.038066804 = sum of:
            0.038066804 = weight(_text_:22 in 1639) [ClassicSimilarity], result of:
              0.038066804 = score(doc=1639,freq=2.0), product of:
                0.16398162 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046827413 = queryNorm
                0.23214069 = fieldWeight in 1639, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1639)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    We explore classifying scientific disciplines including their temporal features by focusing on their collaboration structures over time. Bibliometric data for Slovenian researchers registered at the Slovenian Research Agency were used. These data were obtained from the Slovenian National Current Research Information System. We applied a recently developed hierarchical clustering procedure for symbolic data to the coauthorship structure of scientific disciplines. To track temporal changes, we divided data for the period 1986-2010 into five 5-year time periods. The clusters of disciplines for the Slovene science system revealed 5 clusters of scientific disciplines that, in large measure, correspond with the official national classification of sciences. However, there were also some significant differences pointing to the need for a dynamic classification system of sciences to better characterize them. Implications stemming from these results, especially with regard to classifying scientific disciplines, understanding the collaborative structure of science, and research and development policies, are discussed.
    Date
    21. 1.2015 14:55:22
  13. Small, H.: Update on science mapping : creating large document spaces (1997) 0.04
    0.040442396 = product of:
      0.08088479 = sum of:
        0.051210128 = weight(_text_:data in 410) [ClassicSimilarity], result of:
          0.051210128 = score(doc=410,freq=4.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.34584928 = fieldWeight in 410, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0546875 = fieldNorm(doc=410)
        0.029674664 = product of:
          0.05934933 = sum of:
            0.05934933 = weight(_text_:processing in 410) [ClassicSimilarity], result of:
              0.05934933 = score(doc=410,freq=2.0), product of:
                0.18956426 = queryWeight, product of:
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.046827413 = queryNorm
                0.3130829 = fieldWeight in 410, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=410)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Science mapping projects have been revived by the advent of virtual reality (VR) software capable of navigating large sysnthetic 3 dimensional spaces. Unlike the earlier mapping efforts aimed at creating simple maps at either a global or local level, the focus is now on creating large scale maps displaying many thousands of documents which can be input into the new VR systems. Presents a general framework for creating large scale document spaces as well as some new methods which perform some of the individual processing steps. The methods are designed primarily for citation data but could be applied to other types of data, including hypertext links
  14. Liu, Y.; Rousseau, R.: Towards a representation of diffusion and interaction of scientific ideas : the case of fiber optics communication (2012) 0.04
    0.040442396 = product of:
      0.08088479 = sum of:
        0.051210128 = weight(_text_:data in 2723) [ClassicSimilarity], result of:
          0.051210128 = score(doc=2723,freq=4.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.34584928 = fieldWeight in 2723, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2723)
        0.029674664 = product of:
          0.05934933 = sum of:
            0.05934933 = weight(_text_:processing in 2723) [ClassicSimilarity], result of:
              0.05934933 = score(doc=2723,freq=2.0), product of:
                0.18956426 = queryWeight, product of:
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.046827413 = queryNorm
                0.3130829 = fieldWeight in 2723, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2723)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    The research question studied in this contribution is how to find an adequate representation to describe the diffusion of scientific ideas over time. We claim that citation data, at least of articles that act as concept symbols, can be considered to contain this information. As a case study we show how the founding article by Nobel Prize winner Kao illustrates the evolution of the field of fiber optics communication. We use a continuous description of discrete citation data in order to accentuate turning points and breakthroughs in the history of this field. Applying the principles explained in this contribution informetrics may reveal the trajectories along which science is developing.
    Source
    Information processing and management. 48(2012) no.4, S.791-801
  15. Yang, S.; Han, R.; Ding, J.; Song, Y.: ¬The distribution of Web citations (2012) 0.04
    0.03959743 = product of:
      0.07919486 = sum of:
        0.053759433 = weight(_text_:data in 2735) [ClassicSimilarity], result of:
          0.053759433 = score(doc=2735,freq=6.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.3630661 = fieldWeight in 2735, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046875 = fieldNorm(doc=2735)
        0.025435425 = product of:
          0.05087085 = sum of:
            0.05087085 = weight(_text_:processing in 2735) [ClassicSimilarity], result of:
              0.05087085 = score(doc=2735,freq=2.0), product of:
                0.18956426 = queryWeight, product of:
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.046827413 = queryNorm
                0.26835677 = fieldWeight in 2735, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2735)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    A substantial amount of research has focused on the persistence or availability of Web citations. The present study analyzes Web citation distributions. Web citations are defined as the mentions of the URLs of Web pages (Web resources) as references in academic papers. The present paper primarily focuses on the analysis of the URLs of Web citations and uses three sets of data, namely, Set 1 from the Humanities and Social Science Index in China (CSSCI, 1998-2009), Set 2 from the publications of two international computer science societies, Communications of the ACM and IEEE Computer (1995-1999), and Set 3 from the medical science database, MEDLINE, of the National Library of Medicine (1994-2006). Web citation distributions are investigated based on Web site types, Web page types, URL frequencies, URL depths, URL lengths, and year of article publication. Results show significant differences in the Web citation distributions among the three data sets. However, when the URLs of Web citations with the same hostnames are aggregated, the distributions in the three data sets are consistent with the power law (the Lotka function).
    Source
    Information processing and management. 48(2012) no.4, S.779-790
  16. Leydesdorff, L.; Bornmann, L.; Wagner, C.S.: ¬The relative influences of government funding and international collaboration on citation impact (2019) 0.04
    0.036396418 = product of:
      0.072792836 = sum of:
        0.053759433 = weight(_text_:data in 4681) [ClassicSimilarity], result of:
          0.053759433 = score(doc=4681,freq=6.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.3630661 = fieldWeight in 4681, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046875 = fieldNorm(doc=4681)
        0.019033402 = product of:
          0.038066804 = sum of:
            0.038066804 = weight(_text_:22 in 4681) [ClassicSimilarity], result of:
              0.038066804 = score(doc=4681,freq=2.0), product of:
                0.16398162 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046827413 = queryNorm
                0.23214069 = fieldWeight in 4681, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4681)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    A recent publication in Nature reports that public R&D funding is only weakly correlated with the citation impact of a nation's articles as measured by the field-weighted citation index (FWCI; defined by Scopus). On the basis of the supplementary data, we up-scaled the design using Web of Science data for the decade 2003-2013 and OECD funding data for the corresponding decade assuming a 2-year delay (2001-2011). Using negative binomial regression analysis, we found very small coefficients, but the effects of international collaboration are positive and statistically significant, whereas the effects of government funding are negative, an order of magnitude smaller, and statistically nonsignificant (in two of three analyses). In other words, international collaboration improves the impact of research articles, whereas more government funding tends to have a small adverse effect when comparing OECD countries.
    Date
    8. 1.2019 18:22:45
  17. Marshakova-Shaikevich, I.: Bibliometric maps of field of science (2005) 0.03
    0.03466491 = product of:
      0.06932982 = sum of:
        0.043894395 = weight(_text_:data in 1069) [ClassicSimilarity], result of:
          0.043894395 = score(doc=1069,freq=4.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.29644224 = fieldWeight in 1069, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046875 = fieldNorm(doc=1069)
        0.025435425 = product of:
          0.05087085 = sum of:
            0.05087085 = weight(_text_:processing in 1069) [ClassicSimilarity], result of:
              0.05087085 = score(doc=1069,freq=2.0), product of:
                0.18956426 = queryWeight, product of:
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.046827413 = queryNorm
                0.26835677 = fieldWeight in 1069, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1069)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    The present paper is devoted to two directions in algorithmic classificatory procedures: the journal co-citation analysis as an example of citation networks and lexical analysis of keywords in the titles and texts. What is common to those approaches is the general idea of normalization of deviations of the observed data from the mathematical expectation. The application of the same formula leads to discovery of statistically significant links between objects (journals in one case, keywords - in the other). The results of the journal co-citation analysis are reflected in tables and map for field "Women's Studies" and for field "Information Science and Library Science". An experimental attempt at establishing textual links between words was carried out on two samples from SSCI Data base: (1) EDUCATION and (2) ETHICS. The EDUCATION file included 2180 documents (of which 751 had abstracts); the ETHICS file included 807 documents (289 abstracts). Some examples of the results of this pilot study are given in tabular form . The binary links between words discovered in this way may form triplets or other groups with more than two member words.
    Source
    Information processing and management. 41(2005) no.6, S.1534-1547
  18. Mingers, J.; Macri, F.; Petrovici, D.: Using the h-index to measure the quality of journals in the field of business and management (2012) 0.03
    0.03466491 = product of:
      0.06932982 = sum of:
        0.043894395 = weight(_text_:data in 2741) [ClassicSimilarity], result of:
          0.043894395 = score(doc=2741,freq=4.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.29644224 = fieldWeight in 2741, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046875 = fieldNorm(doc=2741)
        0.025435425 = product of:
          0.05087085 = sum of:
            0.05087085 = weight(_text_:processing in 2741) [ClassicSimilarity], result of:
              0.05087085 = score(doc=2741,freq=2.0), product of:
                0.18956426 = queryWeight, product of:
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.046827413 = queryNorm
                0.26835677 = fieldWeight in 2741, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2741)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    This paper considers the use of the h-index as a measure of a journal's research quality and contribution. We study a sample of 455 journals in business and management all of which are included in the ISI Web of Science (WoS) and the Association of Business School's peer review journal ranking list. The h-index is compared with both the traditional impact factors, and with the peer review judgements. We also consider two sources of citation data - the WoS itself and Google Scholar. The conclusions are that the h-index is preferable to the impact factor for a variety of reasons, especially the selective coverage of the impact factor and the fact that it disadvantages journals that publish many papers. Google Scholar is also preferred to WoS as a data source. However, the paper notes that it is not sufficient to use any single metric to properly evaluate research achievements.
    Source
    Information processing and management. 48(2012) no.2, S.234-241
  19. Zhao, D.: Challenges of scholarly publications on the Web to the evaluation of science : a comparison of author visibility on the Web and in print journals (2005) 0.03
    0.032942846 = product of:
      0.06588569 = sum of:
        0.036211025 = weight(_text_:data in 1065) [ClassicSimilarity], result of:
          0.036211025 = score(doc=1065,freq=2.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.24455236 = fieldWeight in 1065, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1065)
        0.029674664 = product of:
          0.05934933 = sum of:
            0.05934933 = weight(_text_:processing in 1065) [ClassicSimilarity], result of:
              0.05934933 = score(doc=1065,freq=2.0), product of:
                0.18956426 = queryWeight, product of:
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.046827413 = queryNorm
                0.3130829 = fieldWeight in 1065, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1065)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    This article reveals different patterns of scholarly communication in the XML research field on the Web and in print journals in terms of author visibility, and challenges the common practice of exclusively using the ISI's databases to obtain citation counts as scientific performance indicators. Results from this study demonstrate both the importance and the feasibility of the use of multiple citation data sources in citation analysis studies of scholarly communication, and provide evidence for a developing "two tier" scholarly communication system.
    Source
    Information processing and management. 41(2005) no.6, S.1403-1418
  20. Payne, N.; Thelwall, M.: Mathematical models for academic webs : linear relationship or non-linear power law? (2005) 0.03
    0.032942846 = product of:
      0.06588569 = sum of:
        0.036211025 = weight(_text_:data in 1066) [ClassicSimilarity], result of:
          0.036211025 = score(doc=1066,freq=2.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.24455236 = fieldWeight in 1066, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1066)
        0.029674664 = product of:
          0.05934933 = sum of:
            0.05934933 = weight(_text_:processing in 1066) [ClassicSimilarity], result of:
              0.05934933 = score(doc=1066,freq=2.0), product of:
                0.18956426 = queryWeight, product of:
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.046827413 = queryNorm
                0.3130829 = fieldWeight in 1066, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1066)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Previous studies of academic web interlinking have tended to hypothesise that the relationship between the research of a university and links to or from its web site should follow a linear trend, yet the typical distribution of web data, in general, seems to be a non-linear power law. This paper assesses whether a linear trend or a power law is the most appropriate method with which to model the relationship between research and web site size or outlinks. Following linear regression, analysis of the confidence intervals for the logarithmic graphs, and analysis of the outliers, the results suggest that a linear trend is more appropriate than a non-linear power law.
    Source
    Information processing and management. 41(2005) no.6, S.1495-1510

Years

Languages

Types

  • a 501
  • el 10
  • m 8
  • s 3
  • r 1
  • More… Less…