Search (233 results, page 1 of 12)

  • × theme_ss:"Wissensrepräsentation"
  1. Zeng, Q.; Yu, M.; Yu, W.; Xiong, J.; Shi, Y.; Jiang, M.: Faceted hierarchy : a new graph type to organize scientific concepts and a construction method (2019) 0.35
    0.35397083 = sum of:
      0.07437435 = product of:
        0.22312303 = sum of:
          0.22312303 = weight(_text_:3a in 400) [ClassicSimilarity], result of:
            0.22312303 = score(doc=400,freq=2.0), product of:
              0.39700332 = queryWeight, product of:
                8.478011 = idf(docFreq=24, maxDocs=44218)
                0.046827413 = queryNorm
              0.56201804 = fieldWeight in 400, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                8.478011 = idf(docFreq=24, maxDocs=44218)
                0.046875 = fieldNorm(doc=400)
        0.33333334 = coord(1/3)
      0.22312303 = weight(_text_:2f in 400) [ClassicSimilarity], result of:
        0.22312303 = score(doc=400,freq=2.0), product of:
          0.39700332 = queryWeight, product of:
            8.478011 = idf(docFreq=24, maxDocs=44218)
            0.046827413 = queryNorm
          0.56201804 = fieldWeight in 400, product of:
            1.4142135 = tf(freq=2.0), with freq of:
              2.0 = termFreq=2.0
            8.478011 = idf(docFreq=24, maxDocs=44218)
            0.046875 = fieldNorm(doc=400)
      0.031038022 = weight(_text_:data in 400) [ClassicSimilarity], result of:
        0.031038022 = score(doc=400,freq=2.0), product of:
          0.14807065 = queryWeight, product of:
            3.1620505 = idf(docFreq=5088, maxDocs=44218)
            0.046827413 = queryNorm
          0.2096163 = fieldWeight in 400, product of:
            1.4142135 = tf(freq=2.0), with freq of:
              2.0 = termFreq=2.0
            3.1620505 = idf(docFreq=5088, maxDocs=44218)
            0.046875 = fieldNorm(doc=400)
      0.025435425 = product of:
        0.05087085 = sum of:
          0.05087085 = weight(_text_:processing in 400) [ClassicSimilarity], result of:
            0.05087085 = score(doc=400,freq=2.0), product of:
              0.18956426 = queryWeight, product of:
                4.048147 = idf(docFreq=2097, maxDocs=44218)
                0.046827413 = queryNorm
              0.26835677 = fieldWeight in 400, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                4.048147 = idf(docFreq=2097, maxDocs=44218)
                0.046875 = fieldNorm(doc=400)
        0.5 = coord(1/2)
    
    Abstract
    On a scientific concept hierarchy, a parent concept may have a few attributes, each of which has multiple values being a group of child concepts. We call these attributes facets: classification has a few facets such as application (e.g., face recognition), model (e.g., svm, knn), and metric (e.g., precision). In this work, we aim at building faceted concept hierarchies from scientific literature. Hierarchy construction methods heavily rely on hypernym detection, however, the faceted relations are parent-to-child links but the hypernym relation is a multi-hop, i.e., ancestor-to-descendent link with a specific facet "type-of". We use information extraction techniques to find synonyms, sibling concepts, and ancestor-descendent relations from a data science corpus. And we propose a hierarchy growth algorithm to infer the parent-child links from the three types of relationships. It resolves conflicts by maintaining the acyclic structure of a hierarchy.
    Content
    Vgl.: https%3A%2F%2Faclanthology.org%2FD19-5317.pdf&usg=AOvVaw0ZZFyq5wWTtNTvNkrvjlGA.
    Source
    Graph-Based Methods for Natural Language Processing - proceedings of the Thirteenth Workshop (TextGraphs-13): November 4, 2019, Hong Kong : EMNLP-IJCNLP 2019. Ed.: Dmitry Ustalov
  2. Xiong, C.: Knowledge based text representations for information retrieval (2016) 0.13
    0.12997265 = product of:
      0.2599453 = sum of:
        0.0495829 = product of:
          0.1487487 = sum of:
            0.1487487 = weight(_text_:3a in 5820) [ClassicSimilarity], result of:
              0.1487487 = score(doc=5820,freq=2.0), product of:
                0.39700332 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.046827413 = queryNorm
                0.3746787 = fieldWeight in 5820, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.03125 = fieldNorm(doc=5820)
          0.33333334 = coord(1/3)
        0.2103624 = weight(_text_:2f in 5820) [ClassicSimilarity], result of:
          0.2103624 = score(doc=5820,freq=4.0), product of:
            0.39700332 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.046827413 = queryNorm
            0.5298757 = fieldWeight in 5820, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.03125 = fieldNorm(doc=5820)
      0.5 = coord(2/4)
    
    Content
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Language and Information Technologies. Vgl.: https%3A%2F%2Fwww.cs.cmu.edu%2F~cx%2Fpapers%2Fknowledge_based_text_representation.pdf&usg=AOvVaw0SaTSvhWLTh__Uz_HtOtl3.
  3. Stojanovic, N.: Ontology-based Information Retrieval : methods and tools for cooperative query answering (2005) 0.10
    0.0991658 = product of:
      0.1983316 = sum of:
        0.0495829 = product of:
          0.1487487 = sum of:
            0.1487487 = weight(_text_:3a in 701) [ClassicSimilarity], result of:
              0.1487487 = score(doc=701,freq=2.0), product of:
                0.39700332 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.046827413 = queryNorm
                0.3746787 = fieldWeight in 701, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.03125 = fieldNorm(doc=701)
          0.33333334 = coord(1/3)
        0.1487487 = weight(_text_:2f in 701) [ClassicSimilarity], result of:
          0.1487487 = score(doc=701,freq=2.0), product of:
            0.39700332 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.046827413 = queryNorm
            0.3746787 = fieldWeight in 701, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.03125 = fieldNorm(doc=701)
      0.5 = coord(2/4)
    
    Content
    Vgl.: http%3A%2F%2Fdigbib.ubka.uni-karlsruhe.de%2Fvolltexte%2Fdocuments%2F1627&ei=tAtYUYrBNoHKtQb3l4GYBw&usg=AFQjCNHeaxKkKU3-u54LWxMNYGXaaDLCGw&sig2=8WykXWQoDKjDSdGtAakH2Q&bvm=bv.44442042,d.Yms.
  4. Börner, K.: Atlas of knowledge : anyone can map (2015) 0.08
    0.084835626 = product of:
      0.16967125 = sum of:
        0.043894395 = weight(_text_:data in 3355) [ClassicSimilarity], result of:
          0.043894395 = score(doc=3355,freq=4.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.29644224 = fieldWeight in 3355, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046875 = fieldNorm(doc=3355)
        0.12577686 = sum of:
          0.071942255 = weight(_text_:processing in 3355) [ClassicSimilarity], result of:
            0.071942255 = score(doc=3355,freq=4.0), product of:
              0.18956426 = queryWeight, product of:
                4.048147 = idf(docFreq=2097, maxDocs=44218)
                0.046827413 = queryNorm
              0.3795138 = fieldWeight in 3355, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                4.048147 = idf(docFreq=2097, maxDocs=44218)
                0.046875 = fieldNorm(doc=3355)
          0.0538346 = weight(_text_:22 in 3355) [ClassicSimilarity], result of:
            0.0538346 = score(doc=3355,freq=4.0), product of:
              0.16398162 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046827413 = queryNorm
              0.32829654 = fieldWeight in 3355, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=3355)
      0.5 = coord(2/4)
    
    Date
    22. 1.2017 16:54:03
    22. 1.2017 17:10:56
    LCSH
    Communication in science / Data processing
    Subject
    Communication in science / Data processing
  5. Dobrev, P.; Kalaydjiev, O.; Angelova, G.: From conceptual structures to semantic interoperability of content (2007) 0.06
    0.059457123 = product of:
      0.11891425 = sum of:
        0.04479953 = weight(_text_:data in 4607) [ClassicSimilarity], result of:
          0.04479953 = score(doc=4607,freq=6.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.30255508 = fieldWeight in 4607, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4607)
        0.07411472 = sum of:
          0.042392377 = weight(_text_:processing in 4607) [ClassicSimilarity], result of:
            0.042392377 = score(doc=4607,freq=2.0), product of:
              0.18956426 = queryWeight, product of:
                4.048147 = idf(docFreq=2097, maxDocs=44218)
                0.046827413 = queryNorm
              0.22363065 = fieldWeight in 4607, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                4.048147 = idf(docFreq=2097, maxDocs=44218)
                0.0390625 = fieldNorm(doc=4607)
          0.03172234 = weight(_text_:22 in 4607) [ClassicSimilarity], result of:
            0.03172234 = score(doc=4607,freq=2.0), product of:
              0.16398162 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046827413 = queryNorm
              0.19345059 = fieldWeight in 4607, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=4607)
      0.5 = coord(2/4)
    
    Abstract
    Smart applications behave intelligently because they understand at least partially the context where they operate. To do this, they need not only a formal domain model but also formal descriptions of the data they process and their own operational behaviour. Interoperability of smart applications is based on formalised definitions of all their data and processes. This paper studies the semantic interoperability of data in the case of eLearning and describes an experiment and its assessment. New content is imported into a knowledge-based learning environment without real updates of the original domain model, which is encoded as a knowledge base of conceptual graphs. A component called mediator enables the import by assigning dummy metadata annotations for the imported items. However, some functionality of the original system is lost, when processing the imported content, due to the lack of proper metadata annotation which cannot be associated fully automatically. So the paper presents an interoperability scenario when appropriate content items are viewed from the perspective of the original world and can be (partially) reused there.
    Source
    Conceptual structures: knowledge architectures for smart applications: 15th International Conference on Conceptual Structures, ICCS 2007, Sheffield, UK, July 22 - 27, 2007 ; proceedings. Eds.: U. Priss u.a
  6. Jia, J.: From data to knowledge : the relationships between vocabularies, linked data and knowledge graphs (2021) 0.05
    0.054559413 = product of:
      0.10911883 = sum of:
        0.09325766 = weight(_text_:data in 106) [ClassicSimilarity], result of:
          0.09325766 = score(doc=106,freq=26.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.6298187 = fieldWeight in 106, product of:
              5.0990195 = tf(freq=26.0), with freq of:
                26.0 = termFreq=26.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=106)
        0.01586117 = product of:
          0.03172234 = sum of:
            0.03172234 = weight(_text_:22 in 106) [ClassicSimilarity], result of:
              0.03172234 = score(doc=106,freq=2.0), product of:
                0.16398162 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046827413 = queryNorm
                0.19345059 = fieldWeight in 106, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=106)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Purpose The purpose of this paper is to identify the concepts, component parts and relationships between vocabularies, linked data and knowledge graphs (KGs) from the perspectives of data and knowledge transitions. Design/methodology/approach This paper uses conceptual analysis methods. This study focuses on distinguishing concepts and analyzing composition and intercorrelations to explore data and knowledge transitions. Findings Vocabularies are the cornerstone for accurately building understanding of the meaning of data. Vocabularies provide for a data-sharing model and play an important role in supporting the semantic expression of linked data and defining the schema layer; they are also used for entity recognition, alignment and linkage for KGs. KGs, which consist of a schema layer and a data layer, are presented as cubes that organically combine vocabularies, linked data and big data. Originality/value This paper first describes the composition of vocabularies, linked data and KGs. More importantly, this paper innovatively analyzes and summarizes the interrelatedness of these factors, which comes from frequent interactions between data and knowledge. The three factors empower each other and can ultimately empower the Semantic Web.
    Date
    22. 1.2021 14:24:32
  7. Wang, H.; Liu, Q.; Penin, T.; Fu, L.; Zhang, L.; Tran, T.; Yu, Y.; Pan, Y.: Semplore: a scalable IR approach to search the Web of Data (2009) 0.05
    0.053777162 = product of:
      0.107554324 = sum of:
        0.0821189 = weight(_text_:data in 1638) [ClassicSimilarity], result of:
          0.0821189 = score(doc=1638,freq=14.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.55459267 = fieldWeight in 1638, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046875 = fieldNorm(doc=1638)
        0.025435425 = product of:
          0.05087085 = sum of:
            0.05087085 = weight(_text_:processing in 1638) [ClassicSimilarity], result of:
              0.05087085 = score(doc=1638,freq=2.0), product of:
                0.18956426 = queryWeight, product of:
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.046827413 = queryNorm
                0.26835677 = fieldWeight in 1638, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1638)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    The Web of Data keeps growing rapidly. However, the full exploitation of this large amount of structured data faces numerous challenges like usability, scalability, imprecise information needs and data change. We present Semplore, an IR-based system that aims at addressing these issues. Semplore supports intuitive faceted search and complex queries both on text and structured data. It combines imprecise keyword search and precise structured query in a unified ranking scheme. Scalable query processing is supported by leveraging inverted indexes traditionally used in IR systems. This is combined with a novel block-based index structure to support efficient index update when data changes. The experimental results show that Semplore is an efficient and effective system for searching the Web of Data and can be used as a basic infrastructure for Web-scale Semantic Web search engines.
  8. Prud'hommeaux, E.; Gayo, E.: RDF ventures to boldly meet your most pedestrian needs (2015) 0.05
    0.04753036 = product of:
      0.09506072 = sum of:
        0.07602732 = weight(_text_:data in 2024) [ClassicSimilarity], result of:
          0.07602732 = score(doc=2024,freq=12.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.513453 = fieldWeight in 2024, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046875 = fieldNorm(doc=2024)
        0.019033402 = product of:
          0.038066804 = sum of:
            0.038066804 = weight(_text_:22 in 2024) [ClassicSimilarity], result of:
              0.038066804 = score(doc=2024,freq=2.0), product of:
                0.16398162 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046827413 = queryNorm
                0.23214069 = fieldWeight in 2024, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2024)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Defined in 1999 and paired with XML, the Resource Description Framework (RDF) has been cast as an RDF Schema, producing data that is well-structured but not validated, permitting certain illogical relationships. When stakeholders convened in 2014 to consider solutions to the data validation challenge, a W3C working group proposed Resource Shapes and Shape Expressions to describe the properties expected for an RDF node. Resistance rose from concerns about data and schema reuse, key principles in RDF. Ideally data types and properties are designed for broad use, but they are increasingly adopted with local restrictions for specific purposes. Resource Shapes are commonly treated as record classes, standing in for data structures but losing flexibility for later reuse. Of various solutions to the resulting tensions, the concept of record classes may be the most reasonable basis for agreement, satisfying stakeholders' objectives while allowing for variations with constraints.
    Footnote
    Contribution to a special section "Linked data and the charm of weak semantics".
    Source
    Bulletin of the Association for Information Science and Technology. 41(2015) no.4, S.18-22
  9. Drewer, P.; Massion, F; Pulitano, D: Was haben Wissensmodellierung, Wissensstrukturierung, künstliche Intelligenz und Terminologie miteinander zu tun? (2017) 0.04
    0.04172619 = product of:
      0.08345238 = sum of:
        0.05173004 = weight(_text_:data in 5576) [ClassicSimilarity], result of:
          0.05173004 = score(doc=5576,freq=2.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.34936053 = fieldWeight in 5576, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.078125 = fieldNorm(doc=5576)
        0.03172234 = product of:
          0.06344468 = sum of:
            0.06344468 = weight(_text_:22 in 5576) [ClassicSimilarity], result of:
              0.06344468 = score(doc=5576,freq=2.0), product of:
                0.16398162 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046827413 = queryNorm
                0.38690117 = fieldWeight in 5576, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=5576)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Diese Publikation beschreibt die Zusammenhänge zwischen wissenshaltigen begriffsorientierten Terminologien, Ontologien, Big Data und künstliche Intelligenz.
    Date
    13.12.2017 14:17:22
  10. Muljarto, A.-R.; Salmon, J.-M.; Neveu, P.; Charnomordic, B.; Buche, P.: Ontology-based model for food transformation processes : application to winemaking (2014) 0.04
    0.03959743 = product of:
      0.07919486 = sum of:
        0.053759433 = weight(_text_:data in 1594) [ClassicSimilarity], result of:
          0.053759433 = score(doc=1594,freq=6.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.3630661 = fieldWeight in 1594, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046875 = fieldNorm(doc=1594)
        0.025435425 = product of:
          0.05087085 = sum of:
            0.05087085 = weight(_text_:processing in 1594) [ClassicSimilarity], result of:
              0.05087085 = score(doc=1594,freq=2.0), product of:
                0.18956426 = queryWeight, product of:
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.046827413 = queryNorm
                0.26835677 = fieldWeight in 1594, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1594)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    This paper describes an ontology for modeling any food processing chain. It is intended for data and knowledge integration and sharing. The proposed ontology (Onto-FP) is built based on four main concepts: Product, Operation, Attribute and Observation. This ontology is able to represent food product transformations as well as temporal sequence of food processes. The Onto-FP can be easy integrated to other domains due to its consistencies with DOLCE ontology. We detail an application in the domain of winemaking and prove that it can be easy queried to answer questions related to data classification, food process itineraries and incomplete data identification.
  11. Järvelin, K.; Kristensen, J.; Niemi, T.; Sormunen, E.; Keskustalo, H.: ¬A deductive data model for query expansion (1996) 0.04
    0.036396418 = product of:
      0.072792836 = sum of:
        0.053759433 = weight(_text_:data in 2230) [ClassicSimilarity], result of:
          0.053759433 = score(doc=2230,freq=6.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.3630661 = fieldWeight in 2230, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046875 = fieldNorm(doc=2230)
        0.019033402 = product of:
          0.038066804 = sum of:
            0.038066804 = weight(_text_:22 in 2230) [ClassicSimilarity], result of:
              0.038066804 = score(doc=2230,freq=2.0), product of:
                0.16398162 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046827413 = queryNorm
                0.23214069 = fieldWeight in 2230, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2230)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    We present a deductive data model for concept-based query expansion. It is based on three abstraction levels: the conceptual, linguistic and occurrence levels. Concepts and relationships among them are represented at the conceptual level. The expression level represents natural language expressions for concepts. Each expression has one or more matching models at the occurrence level. Each model specifies the matching of the expression in database indices built in varying ways. The data model supports a concept-based query expansion and formulation tool, the ExpansionTool, for environments providing heterogeneous IR systems. Expansion is controlled by adjustable matching reliability.
    Source
    Proceedings of the 19th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (ACM SIGIR '96), Zürich, Switzerland, August 18-22, 1996. Eds.: H.P. Frei et al
  12. Hauff-Hartig, S.: Wissensrepräsentation durch RDF: Drei angewandte Forschungsbeispiele : Bitte recht vielfältig: Wie Wissensgraphen, Disco und FaBiO Struktur in Mangas und die Humanities bringen (2021) 0.03
    0.03338095 = product of:
      0.0667619 = sum of:
        0.04138403 = weight(_text_:data in 318) [ClassicSimilarity], result of:
          0.04138403 = score(doc=318,freq=2.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.2794884 = fieldWeight in 318, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0625 = fieldNorm(doc=318)
        0.025377871 = product of:
          0.050755743 = sum of:
            0.050755743 = weight(_text_:22 in 318) [ClassicSimilarity], result of:
              0.050755743 = score(doc=318,freq=2.0), product of:
                0.16398162 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046827413 = queryNorm
                0.30952093 = fieldWeight in 318, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=318)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Date
    22. 5.2021 12:43:05
    Source
    Open Password. 2021, Nr.925 vom 21.05.2021 [https://www.password-online.de/?mailpoet_router&endpoint=view_in_browser&action=view&data=WzI5NSwiZDdlZGY4MTk0NWJhIiwwLDAsMjY1LDFd]
  13. Chaudhury, S.; Mallik, A.; Ghosh, H.: Multimedia ontology : representation and applications (2016) 0.03
    0.032997858 = product of:
      0.065995716 = sum of:
        0.04479953 = weight(_text_:data in 2801) [ClassicSimilarity], result of:
          0.04479953 = score(doc=2801,freq=6.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.30255508 = fieldWeight in 2801, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2801)
        0.021196188 = product of:
          0.042392377 = sum of:
            0.042392377 = weight(_text_:processing in 2801) [ClassicSimilarity], result of:
              0.042392377 = score(doc=2801,freq=2.0), product of:
                0.18956426 = queryWeight, product of:
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.046827413 = queryNorm
                0.22363065 = fieldWeight in 2801, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2801)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    The book covers multimedia ontology in heritage preservation with intellectual explorations of various themes of Indian cultural heritage. The result of more than 15 years of collective research, Multimedia Ontology: Representation and Applications provides a theoretical foundation for understanding the nature of media data and the principles involved in its interpretation. The book presents a unified approach to recent advances in multimedia and explains how a multimedia ontology can fill the semantic gap between concepts and the media world. It relays real-life examples of implementations in different domains to illustrate how this gap can be filled. The book contains information that helps with building semantic, content-based search and retrieval engines and also with developing vertical application-specific search applications. It guides you in designing multimedia tools that aid in logical and conceptual organization of large amounts of multimedia data. As a practical demonstration, it showcases multimedia applications in cultural heritage preservation efforts and the creation of virtual museums. The book describes the limitations of existing ontology techniques in semantic multimedia data processing, as well as some open problems in the representations and applications of multimedia ontology. As an antidote, it introduces new ontology representation and reasoning schemes that overcome these limitations. The long, compiled efforts reflected in Multimedia Ontology: Representation and Applications are a signpost for new achievements and developments in efficiency and accessibility in the field.
  14. Hollink, L.; Assem, M. van: Estimating the relevance of search results in the Culture-Web : a study of semantic distance measures (2010) 0.03
    0.0314639 = product of:
      0.0629278 = sum of:
        0.043894395 = weight(_text_:data in 4649) [ClassicSimilarity], result of:
          0.043894395 = score(doc=4649,freq=4.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.29644224 = fieldWeight in 4649, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046875 = fieldNorm(doc=4649)
        0.019033402 = product of:
          0.038066804 = sum of:
            0.038066804 = weight(_text_:22 in 4649) [ClassicSimilarity], result of:
              0.038066804 = score(doc=4649,freq=2.0), product of:
                0.16398162 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046827413 = queryNorm
                0.23214069 = fieldWeight in 4649, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4649)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    More and more cultural heritage institutions publish their collections, vocabularies and metadata on the Web. The resulting Web of linked cultural data opens up exciting new possibilities for searching and browsing through these cultural heritage collections. We report on ongoing work in which we investigate the estimation of relevance in this Web of Culture. We study existing measures of semantic distance and how they apply to two use cases. The use cases relate to the structured, multilingual and multimodal nature of the Culture Web. We distinguish between measures using the Web, such as Google distance and PMI, and measures using the Linked Data Web, i.e. the semantic structure of metadata vocabularies. We perform a small study in which we compare these semantic distance measures to human judgements of relevance. Although it is too early to draw any definitive conclusions, the study provides new insights into the applicability of semantic distance measures to the Web of Culture, and clear starting points for further research.
    Date
    26.12.2011 13:40:22
  15. Jacobs, I.: From chaos, order: W3C standard helps organize knowledge : SKOS Connects Diverse Knowledge Organization Systems to Linked Data (2009) 0.03
    0.0295933 = product of:
      0.0591866 = sum of:
        0.044349268 = weight(_text_:data in 3062) [ClassicSimilarity], result of:
          0.044349268 = score(doc=3062,freq=12.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.29951423 = fieldWeight in 3062, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.02734375 = fieldNorm(doc=3062)
        0.014837332 = product of:
          0.029674664 = sum of:
            0.029674664 = weight(_text_:processing in 3062) [ClassicSimilarity], result of:
              0.029674664 = score(doc=3062,freq=2.0), product of:
                0.18956426 = queryWeight, product of:
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.046827413 = queryNorm
                0.15654145 = fieldWeight in 3062, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=3062)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    18 August 2009 -- Today W3C announces a new standard that builds a bridge between the world of knowledge organization systems - including thesauri, classifications, subject headings, taxonomies, and folksonomies - and the linked data community, bringing benefits to both. Libraries, museums, newspapers, government portals, enterprises, social networking applications, and other communities that manage large collections of books, historical artifacts, news reports, business glossaries, blog entries, and other items can now use Simple Knowledge Organization System (SKOS) to leverage the power of linked data. As different communities with expertise and established vocabularies use SKOS to integrate them into the Semantic Web, they increase the value of the information for everyone.
    Content
    SKOS Adapts to the Diversity of Knowledge Organization Systems A useful starting point for understanding the role of SKOS is the set of subject headings published by the US Library of Congress (LOC) for categorizing books, videos, and other library resources. These headings can be used to broaden or narrow queries for discovering resources. For instance, one can narrow a query about books on "Chinese literature" to "Chinese drama," or further still to "Chinese children's plays." Library of Congress subject headings have evolved within a community of practice over a period of decades. By now publishing these subject headings in SKOS, the Library of Congress has made them available to the linked data community, which benefits from a time-tested set of concepts to re-use in their own data. This re-use adds value ("the network effect") to the collection. When people all over the Web re-use the same LOC concept for "Chinese drama," or a concept from some other vocabulary linked to it, this creates many new routes to the discovery of information, and increases the chances that relevant items will be found. As an example of mapping one vocabulary to another, a combined effort from the STITCH, TELplus and MACS Projects provides links between LOC concepts and RAMEAU, a collection of French subject headings used by the Bibliothèque Nationale de France and other institutions. SKOS can be used for subject headings but also many other approaches to organizing knowledge. Because different communities are comfortable with different organization schemes, SKOS is designed to port diverse knowledge organization systems to the Web. "Active participation from the library and information science community in the development of SKOS over the past seven years has been key to ensuring that SKOS meets a variety of needs," said Thomas Baker, co-chair of the Semantic Web Deployment Working Group, which published SKOS. "One goal in creating SKOS was to provide new uses for well-established knowledge organization systems by providing a bridge to the linked data cloud." SKOS is part of the Semantic Web technology stack. Like the Web Ontology Language (OWL), SKOS can be used to define vocabularies. But the two technologies were designed to meet different needs. SKOS is a simple language with just a few features, tuned for sharing and linking knowledge organization systems such as thesauri and classification schemes. OWL offers a general and powerful framework for knowledge representation, where additional "rigor" can afford additional benefits (for instance, business rule processing). To get started with SKOS, see the SKOS Primer.
  16. Knowledge graphs : new directions for knowledge representation on the Semantic Web (2019) 0.03
    0.028887425 = product of:
      0.05777485 = sum of:
        0.03657866 = weight(_text_:data in 51) [ClassicSimilarity], result of:
          0.03657866 = score(doc=51,freq=4.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.24703519 = fieldWeight in 51, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=51)
        0.021196188 = product of:
          0.042392377 = sum of:
            0.042392377 = weight(_text_:processing in 51) [ClassicSimilarity], result of:
              0.042392377 = score(doc=51,freq=2.0), product of:
                0.18956426 = queryWeight, product of:
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.046827413 = queryNorm
                0.22363065 = fieldWeight in 51, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=51)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    The increasingly pervasive nature of the Web, expanding to devices and things in everydaylife, along with new trends in Artificial Intelligence call for new paradigms and a new look onKnowledge Representation and Processing at scale for the Semantic Web. The emerging, but stillto be concretely shaped concept of "Knowledge Graphs" provides an excellent unifying metaphorfor this current status of Semantic Web research. More than two decades of Semantic Webresearch provides a solid basis and a promising technology and standards stack to interlink data,ontologies and knowledge on the Web. However, neither are applications for Knowledge Graphsas such limited to Linked Open Data, nor are instantiations of Knowledge Graphs in enterprises- while often inspired by - limited to the core Semantic Web stack. This report documents theprogram and the outcomes of Dagstuhl Seminar 18371 "Knowledge Graphs: New Directions forKnowledge Representation on the Semantic Web", where a group of experts from academia andindustry discussed fundamental questions around these topics for a week in early September 2018,including the following: what are knowledge graphs? Which applications do we see to emerge?Which open research questions still need be addressed and which technology gaps still need tobe closed?
  17. Favato Barcelos, P.P.; Sales, T.P.; Fumagalli, M.; Guizzardi, G.; Valle Sousa, I.; Fonseca, C.M.; Romanenko, E.; Kritz, J.: ¬A FAIR model catalog for ontology-driven conceptual modeling research (2022) 0.03
    0.028887425 = product of:
      0.05777485 = sum of:
        0.03657866 = weight(_text_:data in 756) [ClassicSimilarity], result of:
          0.03657866 = score(doc=756,freq=4.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.24703519 = fieldWeight in 756, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=756)
        0.021196188 = product of:
          0.042392377 = sum of:
            0.042392377 = weight(_text_:processing in 756) [ClassicSimilarity], result of:
              0.042392377 = score(doc=756,freq=2.0), product of:
                0.18956426 = queryWeight, product of:
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.046827413 = queryNorm
                0.22363065 = fieldWeight in 756, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=756)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Conceptual models are artifacts representing conceptualizations of particular domains. Hence, multi-domain model catalogs serve as empirical sources of knowledge and insights about specific domains, about the use of a modeling language's constructs, as well as about the patterns and anti-patterns recurrent in the models of that language crosscutting different domains. However, to support domain and language learning, model reuse, knowledge discovery for humans, and reliable automated processing and analysis by machines, these catalogs must be built following generally accepted quality requirements for scientific data management. Especially, all scientific (meta)data-including models-should be created using the FAIR principles (Findability, Accessibility, Interoperability, and Reusability). In this paper, we report on the construction of a FAIR model catalog for Ontology-Driven Conceptual Modeling research, a trending paradigm lying at the intersection of conceptual modeling and ontology engineering in which the Unified Foundational Ontology (UFO) and OntoUML emerged among the most adopted technologies. In this initial release, the catalog includes over a hundred models, developed in a variety of contexts and domains. The paper also discusses the research implications for (ontology-driven) conceptual modeling of such a resource.
  18. Girju, R.; Beamer, B.; Rozovskaya, A.; Fister, A.; Bhat, S.: ¬A knowledge-rich approach to identifying semantic relations between nominals (2010) 0.03
    0.028236724 = product of:
      0.05647345 = sum of:
        0.031038022 = weight(_text_:data in 4242) [ClassicSimilarity], result of:
          0.031038022 = score(doc=4242,freq=2.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.2096163 = fieldWeight in 4242, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046875 = fieldNorm(doc=4242)
        0.025435425 = product of:
          0.05087085 = sum of:
            0.05087085 = weight(_text_:processing in 4242) [ClassicSimilarity], result of:
              0.05087085 = score(doc=4242,freq=2.0), product of:
                0.18956426 = queryWeight, product of:
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.046827413 = queryNorm
                0.26835677 = fieldWeight in 4242, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4242)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    This paper describes a state-of-the-art supervised, knowledge-intensive approach to the automatic identification of semantic relations between nominals in English sentences. The system employs a combination of rich and varied sets of new and previously used lexical, syntactic, and semantic features extracted from various knowledge sources such as WordNet and additional annotated corpora. The system ranked first at the third most popular SemEval 2007 Task - Classification of Semantic Relations between Nominals and achieved an F-measure of 72.4% and an accuracy of 76.3%. We also show that some semantic relations are better suited for WordNet-based models than other relations. Additionally, we make a distinction between out-of-context (regular) examples and those that require sentence context for relation identification and show that contextual data are important for the performance of a noun-noun semantic parser. Finally, learning curves show that the task difficulty varies across relations and that our learned WordNet-based representation is highly accurate so the performance results suggest the upper bound on what this representation can do.
    Source
    Information processing and management. 46(2010) no.5, S.589-610
  19. De Maio, C.; Fenza, G.; Loia, V.; Senatore, S.: Hierarchical web resources retrieval by exploiting Fuzzy Formal Concept Analysis (2012) 0.03
    0.028236724 = product of:
      0.05647345 = sum of:
        0.031038022 = weight(_text_:data in 2737) [ClassicSimilarity], result of:
          0.031038022 = score(doc=2737,freq=2.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.2096163 = fieldWeight in 2737, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046875 = fieldNorm(doc=2737)
        0.025435425 = product of:
          0.05087085 = sum of:
            0.05087085 = weight(_text_:processing in 2737) [ClassicSimilarity], result of:
              0.05087085 = score(doc=2737,freq=2.0), product of:
                0.18956426 = queryWeight, product of:
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.046827413 = queryNorm
                0.26835677 = fieldWeight in 2737, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2737)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    In recent years, knowledge structuring is assuming important roles in several real world applications such as decision support, cooperative problem solving, e-commerce, Semantic Web and, even in planning systems. Ontologies play an important role in supporting automated processes to access information and are at the core of new strategies for the development of knowledge-based systems. Yet, developing an ontology is a time-consuming task which often needs an accurate domain expertise to tackle structural and logical difficulties in the definition of concepts as well as conceivable relationships. This work presents an ontology-based retrieval approach, that supports data organization and visualization and provides a friendly navigation model. It exploits the fuzzy extension of the Formal Concept Analysis theory to elicit conceptualizations from datasets and generate a hierarchy-based representation of extracted knowledge. An intuitive graphical interface provides a multi-facets view of the built ontology. Through a transparent query-based retrieval, final users navigate across concepts, relations and population.
    Source
    Information processing and management. 48(2012) no.3, S.399-418
  20. Sánchez, D.; Batet, M.; Valls, A.; Gibert, K.: Ontology-driven web-based semantic similarity (2010) 0.03
    0.027920479 = product of:
      0.055840958 = sum of:
        0.02586502 = weight(_text_:data in 335) [ClassicSimilarity], result of:
          0.02586502 = score(doc=335,freq=2.0), product of:
            0.14807065 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.046827413 = queryNorm
            0.17468026 = fieldWeight in 335, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=335)
        0.029975938 = product of:
          0.059951875 = sum of:
            0.059951875 = weight(_text_:processing in 335) [ClassicSimilarity], result of:
              0.059951875 = score(doc=335,freq=4.0), product of:
                0.18956426 = queryWeight, product of:
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.046827413 = queryNorm
                0.3162615 = fieldWeight in 335, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.048147 = idf(docFreq=2097, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=335)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    Estimation of the degree of semantic similarity/distance between concepts is a very common problem in research areas such as natural language processing, knowledge acquisition, information retrieval or data mining. In the past, many similarity measures have been proposed, exploiting explicit knowledge-such as the structure of a taxonomy-or implicit knowledge-such as information distribution. In the former case, taxonomies and/or ontologies are used to introduce additional semantics; in the latter case, frequencies of term appearances in a corpus are considered. Classical measures based on those premises suffer from some problems: in the ?rst case, their excessive dependency of the taxonomical/ontological structure; in the second case, the lack of semantics of a pure statistical analysis of occurrences and/or the ambiguity of estimating concept statistical distribution from term appearances. Measures based on Information Content (IC) of taxonomical concepts combine both approaches. However, they heavily depend on a properly pre-tagged and disambiguated corpus according to the ontological entities in order to computer accurate concept appearance probabilities. This limits the applicability of those measures to other ontologies - like specific domain ontologies - and massive corpus - like the Web. In this paper, several of the presente issues are analyzed. Modifications of classical similarity measures are also proposed. They are based on a contextualized and scalable version of IC computation in the Web by exploiting taxonomical knowledge. The goal is to avoid the measures' dependency on the corpus pre-processing to achieve reliable results and minimize language ambiguity. Our proposals are able to outperform classical approaches when using the Web for estimating concept probabilities.

Authors

Years

Languages

  • e 203
  • d 23
  • pt 2
  • f 1
  • More… Less…

Types

  • a 166
  • el 71
  • m 19
  • x 12
  • s 10
  • n 6
  • p 3
  • r 2
  • More… Less…

Subjects

Classifications