Search (83 results, page 1 of 5)

  • × theme_ss:"Klassifikationstheorie: Elemente / Struktur"
  1. Connaway, L.S.; Sievert, M.C.: Comparison of three classification systems for information on health insurance (1996) 0.06
    0.061044957 = product of:
      0.122089915 = sum of:
        0.122089915 = sum of:
          0.07276558 = weight(_text_:subject in 7242) [ClassicSimilarity], result of:
            0.07276558 = score(doc=7242,freq=4.0), product of:
              0.16275941 = queryWeight, product of:
                3.576596 = idf(docFreq=3361, maxDocs=44218)
                0.04550679 = queryNorm
              0.4470745 = fieldWeight in 7242, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                3.576596 = idf(docFreq=3361, maxDocs=44218)
                0.0625 = fieldNorm(doc=7242)
          0.049324334 = weight(_text_:22 in 7242) [ClassicSimilarity], result of:
            0.049324334 = score(doc=7242,freq=2.0), product of:
              0.15935703 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.04550679 = queryNorm
              0.30952093 = fieldWeight in 7242, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0625 = fieldNorm(doc=7242)
      0.5 = coord(1/2)
    
    Abstract
    Reports results of a comparative study of 3 classification schemes: LCC, DDC and NLM Classification to determine their effectiveness in classifying materials on health insurance. Examined 2 hypotheses: that there would be no differences in the scatter of the 3 classification schemes; and that there would be overlap between all 3 schemes but no difference in the classes into which the subject was placed. There was subject scatter in all 3 classification schemes and litlle overlap between the 3 systems
    Date
    22. 4.1997 21:10:19
  2. Zhang, J.; Zeng, M.L.: ¬A new similarity measure for subject hierarchical structures (2014) 0.05
    0.05479938 = product of:
      0.10959876 = sum of:
        0.10959876 = sum of:
          0.078771055 = weight(_text_:subject in 1778) [ClassicSimilarity], result of:
            0.078771055 = score(doc=1778,freq=12.0), product of:
              0.16275941 = queryWeight, product of:
                3.576596 = idf(docFreq=3361, maxDocs=44218)
                0.04550679 = queryNorm
              0.48397237 = fieldWeight in 1778, product of:
                3.4641016 = tf(freq=12.0), with freq of:
                  12.0 = termFreq=12.0
                3.576596 = idf(docFreq=3361, maxDocs=44218)
                0.0390625 = fieldNorm(doc=1778)
          0.03082771 = weight(_text_:22 in 1778) [ClassicSimilarity], result of:
            0.03082771 = score(doc=1778,freq=2.0), product of:
              0.15935703 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.04550679 = queryNorm
              0.19345059 = fieldWeight in 1778, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=1778)
      0.5 = coord(1/2)
    
    Abstract
    Purpose - The purpose of this paper is to introduce a new similarity method to gauge the differences between two subject hierarchical structures. Design/methodology/approach - In the proposed similarity measure, nodes on two hierarchical structures are projected onto a two-dimensional space, respectively, and both structural similarity and subject similarity of nodes are considered in the similarity between the two hierarchical structures. The extent to which the structural similarity impacts on the similarity can be controlled by adjusting a parameter. An experiment was conducted to evaluate soundness of the measure. Eight experts whose research interests were information retrieval and information organization participated in the study. Results from the new measure were compared with results from the experts. Findings - The evaluation shows strong correlations between the results from the new method and the results from the experts. It suggests that the similarity method achieved satisfactory results. Practical implications - Hierarchical structures that are found in subject directories, taxonomies, classification systems, and other classificatory structures play an extremely important role in information organization and information representation. Measuring the similarity between two subject hierarchical structures allows an accurate overarching understanding of the degree to which the two hierarchical structures are similar. Originality/value - Both structural similarity and subject similarity of nodes were considered in the proposed similarity method, and the extent to which the structural similarity impacts on the similarity can be adjusted. In addition, a new evaluation method for a hierarchical structure similarity was presented.
    Date
    8. 4.2015 16:22:13
  3. Winske, E.: ¬The development and structure of an urban, regional, and local documents classification scheme (1996) 0.04
    0.0440901 = product of:
      0.0881802 = sum of:
        0.0881802 = sum of:
          0.045021407 = weight(_text_:subject in 7241) [ClassicSimilarity], result of:
            0.045021407 = score(doc=7241,freq=2.0), product of:
              0.16275941 = queryWeight, product of:
                3.576596 = idf(docFreq=3361, maxDocs=44218)
                0.04550679 = queryNorm
              0.27661324 = fieldWeight in 7241, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.576596 = idf(docFreq=3361, maxDocs=44218)
                0.0546875 = fieldNorm(doc=7241)
          0.043158792 = weight(_text_:22 in 7241) [ClassicSimilarity], result of:
            0.043158792 = score(doc=7241,freq=2.0), product of:
              0.15935703 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.04550679 = queryNorm
              0.2708308 = fieldWeight in 7241, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0546875 = fieldNorm(doc=7241)
      0.5 = coord(1/2)
    
    Abstract
    Discusses the reasons for the decision, taken at Florida International University Library to develop an in house classification system for their local documents collections. Reviews the structures of existing classification systems, noting their strengths and weaknesses in relation to the development of an in house system and describes the 5 components of the new system; geography, subject categories, extensions for population group and/or function, extensions for type of publication, and title/series designator
    Footnote
    Paper presented at conference on 'Local documents, a new classification scheme' at the Research Caucus of the Florida Library Association Annual Conference, Fort Lauderdale, Florida 22 Apr 95
  4. Green, R.: Relational aspects of subject authority control : the contributions of classificatory structure (2015) 0.04
    0.0381531 = product of:
      0.0763062 = sum of:
        0.0763062 = sum of:
          0.04547849 = weight(_text_:subject in 2282) [ClassicSimilarity], result of:
            0.04547849 = score(doc=2282,freq=4.0), product of:
              0.16275941 = queryWeight, product of:
                3.576596 = idf(docFreq=3361, maxDocs=44218)
                0.04550679 = queryNorm
              0.27942157 = fieldWeight in 2282, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                3.576596 = idf(docFreq=3361, maxDocs=44218)
                0.0390625 = fieldNorm(doc=2282)
          0.03082771 = weight(_text_:22 in 2282) [ClassicSimilarity], result of:
            0.03082771 = score(doc=2282,freq=2.0), product of:
              0.15935703 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.04550679 = queryNorm
              0.19345059 = fieldWeight in 2282, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=2282)
      0.5 = coord(1/2)
    
    Abstract
    The structure of a classification system contributes in a variety of ways to representing semantic relationships between its topics in the context of subject authority control. We explore this claim using the Dewey Decimal Classification (DDC) system as a case study. The DDC links its classes into a notational hierarchy, supplemented by a network of relationships between topics, expressed in class descriptions and in the Relative Index (RI). Topics/subjects are expressed both by the natural language text of the caption and notes (including Manual notes) in a class description and by the controlled vocabulary of the RI's alphabetic index, which shows where topics are treated in the classificatory structure. The expression of relationships between topics depends on paradigmatic and syntagmatic relationships between natural language terms in captions, notes, and RI terms; on the meaning of specific note types; and on references recorded between RI terms. The specific means used in the DDC for capturing hierarchical (including disciplinary), equivalence and associative relationships are surveyed.
    Date
    8.11.2015 21:27:22
  5. Dousa, T.M.: Categories and the architectonics of system in Julius Otto Kaiser's method of systematic indexing (2014) 0.03
    0.03149293 = product of:
      0.06298586 = sum of:
        0.06298586 = sum of:
          0.032158148 = weight(_text_:subject in 1418) [ClassicSimilarity], result of:
            0.032158148 = score(doc=1418,freq=2.0), product of:
              0.16275941 = queryWeight, product of:
                3.576596 = idf(docFreq=3361, maxDocs=44218)
                0.04550679 = queryNorm
              0.19758089 = fieldWeight in 1418, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.576596 = idf(docFreq=3361, maxDocs=44218)
                0.0390625 = fieldNorm(doc=1418)
          0.03082771 = weight(_text_:22 in 1418) [ClassicSimilarity], result of:
            0.03082771 = score(doc=1418,freq=2.0), product of:
              0.15935703 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.04550679 = queryNorm
              0.19345059 = fieldWeight in 1418, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=1418)
      0.5 = coord(1/2)
    
    Abstract
    Categories, or concepts of high generality representing the most basic kinds of entities in the world, have long been understood to be a fundamental element in the construction of knowledge organization systems (KOSs), particularly faceted ones. Commentators on facet analysis have tended to foreground the role of categories in the structuring of controlled vocabularies and the construction of compound index terms, and the implications of this for subject representation and information retrieval. Less attention has been paid to the variety of ways in which categories can shape the overall architectonic framework of a KOS. This case study explores the range of functions that categories took in structuring various aspects of an early analytico-synthetic KOS, Julius Otto Kaiser's method of Systematic Indexing (SI). Within SI, categories not only functioned as mechanisms to partition an index vocabulary into smaller groupings of terms and as elements in the construction of compound index terms but also served as means of defining the units of indexing, or index items, incorporated into an index; determining the organization of card index files and the articulation of the guide card system serving as a navigational aids thereto; and setting structural constraints to the establishment of cross-references between terms. In all these ways, Kaiser's system of categories contributed to the general systematicity of SI.
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  6. Wang, Z.; Chaudhry, A.S.; Khoo, C.S.G.: Using classification schemes and thesauri to build an organizational taxonomy for organizing content and aiding navigation (2008) 0.03
    0.030522479 = product of:
      0.061044957 = sum of:
        0.061044957 = sum of:
          0.03638279 = weight(_text_:subject in 2346) [ClassicSimilarity], result of:
            0.03638279 = score(doc=2346,freq=4.0), product of:
              0.16275941 = queryWeight, product of:
                3.576596 = idf(docFreq=3361, maxDocs=44218)
                0.04550679 = queryNorm
              0.22353725 = fieldWeight in 2346, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                3.576596 = idf(docFreq=3361, maxDocs=44218)
                0.03125 = fieldNorm(doc=2346)
          0.024662167 = weight(_text_:22 in 2346) [ClassicSimilarity], result of:
            0.024662167 = score(doc=2346,freq=2.0), product of:
              0.15935703 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.04550679 = queryNorm
              0.15476047 = fieldWeight in 2346, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.03125 = fieldNorm(doc=2346)
      0.5 = coord(1/2)
    
    Abstract
    Purpose - Potential and benefits of classification schemes and thesauri in building organizational taxonomies cannot be fully utilized by organizations. Empirical data of building an organizational taxonomy by the top-down approach of using classification schemes and thesauri appear to be lacking. The paper seeks to make a contribution in this regard. Design/methodology/approach - A case study of building an organizational taxonomy was conducted in the information studies domain for the Division of Information Studies at Nanyang Technology University, Singapore. The taxonomy was built by using the Dewey Decimal Classification, the Information Science Taxonomy, two information systems taxonomies, and three thesauri (ASIS&T, LISA, and ERIC). Findings - Classification schemes and thesauri were found to be helpful in creating the structure and categories related to the subject facet of the taxonomy, but organizational community sources had to be consulted and several methods had to be employed. The organizational activities and stakeholders' needs had to be identified to determine the objectives, facets, and the subject coverage of the taxonomy. Main categories were determined by identifying the stakeholders' interests and consulting organizational community sources and domain taxonomies. Category terms were selected from terminologies of classification schemes, domain taxonomies, and thesauri against the stakeholders' interests. Hierarchical structures of the main categories were constructed in line with the stakeholders' perspectives and the navigational role taking advantage of structures/term relationships from classification schemes and thesauri. Categories were determined in line with the concepts and the hierarchical levels. Format of categories were uniformed according to a commonly used standard. The consistency principle was employed to make the taxonomy structure and categories neater. Validation of the draft taxonomy through consultations with the stakeholders further refined the taxonomy. Originality/value - No similar study could be traced in the literature. The steps and methods used in the taxonomy development, and the information studies taxonomy itself, will be helpful for library and information schools and other similar organizations in their effort to develop taxonomies for organizing content and aiding navigation on organizational sites.
    Date
    7.11.2008 15:22:04
  7. Mills, J.; Broughton, V.: Bliss Bibliographic Classification : Introduction and auxiliary schedules (1992) 0.03
    0.025726518 = product of:
      0.051453035 = sum of:
        0.051453035 = product of:
          0.10290607 = sum of:
            0.10290607 = weight(_text_:subject in 821) [ClassicSimilarity], result of:
              0.10290607 = score(doc=821,freq=8.0), product of:
                0.16275941 = queryWeight, product of:
                  3.576596 = idf(docFreq=3361, maxDocs=44218)
                  0.04550679 = queryNorm
                0.63225883 = fieldWeight in 821, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.576596 = idf(docFreq=3361, maxDocs=44218)
                  0.0625 = fieldNorm(doc=821)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    COMPASS
    Documents / Subject classification
    PRECIS
    Documents / Subject classification schemes: Bliss, Henry Evelyn / Bliss bibliographic classification / Texts
    Subject
    Documents / Subject classification schemes: Bliss, Henry Evelyn / Bliss bibliographic classification / Texts
    Documents / Subject classification
  8. Qin, J.: Evolving paradigms of knowledge representation and organization : a comparative study of classification, XML/DTD and ontology (2003) 0.03
    0.025194343 = product of:
      0.050388686 = sum of:
        0.050388686 = sum of:
          0.025726518 = weight(_text_:subject in 2763) [ClassicSimilarity], result of:
            0.025726518 = score(doc=2763,freq=2.0), product of:
              0.16275941 = queryWeight, product of:
                3.576596 = idf(docFreq=3361, maxDocs=44218)
                0.04550679 = queryNorm
              0.15806471 = fieldWeight in 2763, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.576596 = idf(docFreq=3361, maxDocs=44218)
                0.03125 = fieldNorm(doc=2763)
          0.024662167 = weight(_text_:22 in 2763) [ClassicSimilarity], result of:
            0.024662167 = score(doc=2763,freq=2.0), product of:
              0.15935703 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.04550679 = queryNorm
              0.15476047 = fieldWeight in 2763, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.03125 = fieldNorm(doc=2763)
      0.5 = coord(1/2)
    
    Abstract
    The different points of views an knowledge representation and organization from various research communities reflect underlying philosophies and paradigms in these communities. This paper reviews differences and relations in knowledge representation and organization and generalizes four paradigms-integrative and disintegrative pragmatism and integrative and disintegrative epistemologism. Examples such as classification, XML schemas, and ontologies are compared based an how they specify concepts, build data models, and encode knowledge organization structures. 1. Introduction Knowledge representation (KR) is a term that several research communities use to refer to somewhat different aspects of the same research area. The artificial intelligence (AI) community considers KR as simply "something to do with writing down, in some language or communications medium, descriptions or pictures that correspond in some salient way to the world or a state of the world" (Duce & Ringland, 1988, p. 3). It emphasizes the ways in which knowledge can be encoded in a computer program (Bench-Capon, 1990). For the library and information science (LIS) community, KR is literally the synonym of knowledge organization, i.e., KR is referred to as the process of organizing knowledge into classifications, thesauri, or subject heading lists. KR has another meaning in LIS: it "encompasses every type and method of indexing, abstracting, cataloguing, classification, records management, bibliography and the creation of textual or bibliographic databases for information retrieval" (Anderson, 1996, p. 336). Adding the social dimension to knowledge organization, Hjoerland (1997) states that knowledge is a part of human activities and tied to the division of labor in society, which should be the primary organization of knowledge. Knowledge organization in LIS is secondary or derived, because knowledge is organized in learned institutions and publications. These different points of views an KR suggest that an essential difference in the understanding of KR between both AI and LIS lies in the source of representationwhether KR targets human activities or derivatives (knowledge produced) from human activities. This difference also decides their difference in purpose-in AI KR is mainly computer-application oriented or pragmatic and the result of representation is used to support decisions an human activities, while in LIS KR is conceptually oriented or abstract and the result of representation is used for access to derivatives from human activities.
    Date
    12. 9.2004 17:22:35
  9. Foskett, D.J.: ¬The construction of a faceted classification for a special subject (1959) 0.02
    0.022510704 = product of:
      0.045021407 = sum of:
        0.045021407 = product of:
          0.090042815 = sum of:
            0.090042815 = weight(_text_:subject in 551) [ClassicSimilarity], result of:
              0.090042815 = score(doc=551,freq=2.0), product of:
                0.16275941 = queryWeight, product of:
                  3.576596 = idf(docFreq=3361, maxDocs=44218)
                  0.04550679 = queryNorm
                0.5532265 = fieldWeight in 551, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.576596 = idf(docFreq=3361, maxDocs=44218)
                  0.109375 = fieldNorm(doc=551)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
  10. Svenonius, E.: Ranganathan and classification science (1992) 0.02
    0.02227982 = product of:
      0.04455964 = sum of:
        0.04455964 = product of:
          0.08911928 = sum of:
            0.08911928 = weight(_text_:subject in 2654) [ClassicSimilarity], result of:
              0.08911928 = score(doc=2654,freq=6.0), product of:
                0.16275941 = queryWeight, product of:
                  3.576596 = idf(docFreq=3361, maxDocs=44218)
                  0.04550679 = queryNorm
                0.5475522 = fieldWeight in 2654, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.576596 = idf(docFreq=3361, maxDocs=44218)
                  0.0625 = fieldNorm(doc=2654)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This article discusses some of Ranganathan's contributions to the productive, practical and theoretical aspects of classification science. These include: (1) a set of design criteria to guide the designing of schemes for knowledge / subject classification; (2) a conceptual framework for organizing the universe of subjects; and (3) an understanding of the general principles underlying subject disciplines and classificatory languages. It concludes that Ranganathan has contributed significantly to laying the foundations for a science of subject classification.
  11. Minnigh, L.D.: Chaos in informatie, onderwerpsontsluiting en kennisoverdracht : de rol van de wetenschappelijke bibliotheek (1993) 0.02
    0.02227982 = product of:
      0.04455964 = sum of:
        0.04455964 = product of:
          0.08911928 = sum of:
            0.08911928 = weight(_text_:subject in 6606) [ClassicSimilarity], result of:
              0.08911928 = score(doc=6606,freq=6.0), product of:
                0.16275941 = queryWeight, product of:
                  3.576596 = idf(docFreq=3361, maxDocs=44218)
                  0.04550679 = queryNorm
                0.5475522 = fieldWeight in 6606, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.576596 = idf(docFreq=3361, maxDocs=44218)
                  0.0625 = fieldNorm(doc=6606)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Existing classification systems require constant expansion to accomodate new subject fields, while subject indexing techniques fail to display the relationship of subjects. Relational databases are currently being developed which will guide users through the differing levels of subjects, using the 'cartography of science'. Such developments will enable librarians to play a more interactive role in information retrieval and will have far-reaching consequences on the design of subject-indexing systems
  12. Szostak, R.: ¬A grammatical approach to subject classification in museums (2017) 0.02
    0.019494843 = product of:
      0.038989685 = sum of:
        0.038989685 = product of:
          0.07797937 = sum of:
            0.07797937 = weight(_text_:subject in 4136) [ClassicSimilarity], result of:
              0.07797937 = score(doc=4136,freq=6.0), product of:
                0.16275941 = queryWeight, product of:
                  3.576596 = idf(docFreq=3361, maxDocs=44218)
                  0.04550679 = queryNorm
                0.4791082 = fieldWeight in 4136, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.576596 = idf(docFreq=3361, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4136)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Several desiderata of a system of subject classification for museums are identified. The limitations of existing approaches are reviewed. It is argued that an approach which synthesizes basic concepts within a grammatical structure can achieve the goals of subject classification in museums while addressing diverse challenges. The same approach can also be applied in galleries, archives, and libraries. The approach is described in some detail and examples are provided of its application. The article closes with brief discussions of thesauri and linked open data.
  13. Holman, E.E.: Statistical properties of large published classifications (1992) 0.02
    0.019294888 = product of:
      0.038589776 = sum of:
        0.038589776 = product of:
          0.07717955 = sum of:
            0.07717955 = weight(_text_:subject in 4250) [ClassicSimilarity], result of:
              0.07717955 = score(doc=4250,freq=2.0), product of:
                0.16275941 = queryWeight, product of:
                  3.576596 = idf(docFreq=3361, maxDocs=44218)
                  0.04550679 = queryNorm
                0.4741941 = fieldWeight in 4250, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.576596 = idf(docFreq=3361, maxDocs=44218)
                  0.09375 = fieldNorm(doc=4250)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Reports the results of a survey of 23 published classifications taken from a variety of subject fields
  14. Austin, D.: Basic concept classes and primitive relations (1982) 0.02
    0.019294888 = product of:
      0.038589776 = sum of:
        0.038589776 = product of:
          0.07717955 = sum of:
            0.07717955 = weight(_text_:subject in 6580) [ClassicSimilarity], result of:
              0.07717955 = score(doc=6580,freq=2.0), product of:
                0.16275941 = queryWeight, product of:
                  3.576596 = idf(docFreq=3361, maxDocs=44218)
                  0.04550679 = queryNorm
                0.4741941 = fieldWeight in 6580, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.576596 = idf(docFreq=3361, maxDocs=44218)
                  0.09375 = fieldNorm(doc=6580)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Source
    Universal classification I: subject analysis and ordering systems. Proc. of the 4th Int. Study Conf. on Classification research, Augsburg, 28.6.-2.7.1982. Ed.: I. Dahlberg
  15. Foskett, D.J.; Bury, S.: Concept organisation and universal classification schemes (1982) 0.02
    0.019294888 = product of:
      0.038589776 = sum of:
        0.038589776 = product of:
          0.07717955 = sum of:
            0.07717955 = weight(_text_:subject in 17) [ClassicSimilarity], result of:
              0.07717955 = score(doc=17,freq=2.0), product of:
                0.16275941 = queryWeight, product of:
                  3.576596 = idf(docFreq=3361, maxDocs=44218)
                  0.04550679 = queryNorm
                0.4741941 = fieldWeight in 17, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.576596 = idf(docFreq=3361, maxDocs=44218)
                  0.09375 = fieldNorm(doc=17)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Source
    Universal classification I: subject analysis and ordering systems. Proc. of the 4th Int. Study Conf. on Classification research, Augsburg, 28.6.-2.7.1982. Ed.: I. Dahlberg
  16. Kumar, K.: Theoretical bases for universal classification systems (1982) 0.02
    0.019294888 = product of:
      0.038589776 = sum of:
        0.038589776 = product of:
          0.07717955 = sum of:
            0.07717955 = weight(_text_:subject in 34) [ClassicSimilarity], result of:
              0.07717955 = score(doc=34,freq=2.0), product of:
                0.16275941 = queryWeight, product of:
                  3.576596 = idf(docFreq=3361, maxDocs=44218)
                  0.04550679 = queryNorm
                0.4741941 = fieldWeight in 34, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.576596 = idf(docFreq=3361, maxDocs=44218)
                  0.09375 = fieldNorm(doc=34)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Source
    Universal classification I: subject analysis and ordering systems. Proc. of the 4th Int. Study Conf. on Classification research, Augsburg, 28.6.-2.7.1982. Ed.: I. Dahlberg
  17. Vickery, B.C.: Relations between subject fields : problems of constructing a general classification (1957) 0.02
    0.019294888 = product of:
      0.038589776 = sum of:
        0.038589776 = product of:
          0.07717955 = sum of:
            0.07717955 = weight(_text_:subject in 566) [ClassicSimilarity], result of:
              0.07717955 = score(doc=566,freq=2.0), product of:
                0.16275941 = queryWeight, product of:
                  3.576596 = idf(docFreq=3361, maxDocs=44218)
                  0.04550679 = queryNorm
                0.4741941 = fieldWeight in 566, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.576596 = idf(docFreq=3361, maxDocs=44218)
                  0.09375 = fieldNorm(doc=566)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
  18. Maniez, J.: ¬Des classifications aux thesaurus : du bon usage des facettes (1999) 0.02
    0.018496625 = product of:
      0.03699325 = sum of:
        0.03699325 = product of:
          0.0739865 = sum of:
            0.0739865 = weight(_text_:22 in 6404) [ClassicSimilarity], result of:
              0.0739865 = score(doc=6404,freq=2.0), product of:
                0.15935703 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04550679 = queryNorm
                0.46428138 = fieldWeight in 6404, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=6404)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    1. 8.1996 22:01:00
  19. Maniez, J.: ¬Du bon usage des facettes : des classifications aux thésaurus (1999) 0.02
    0.018496625 = product of:
      0.03699325 = sum of:
        0.03699325 = product of:
          0.0739865 = sum of:
            0.0739865 = weight(_text_:22 in 3773) [ClassicSimilarity], result of:
              0.0739865 = score(doc=3773,freq=2.0), product of:
                0.15935703 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04550679 = queryNorm
                0.46428138 = fieldWeight in 3773, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=3773)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    1. 8.1996 22:01:00
  20. Foskett, D.J.: Systems theory and its relevance to documentary classification (2017) 0.02
    0.018496625 = product of:
      0.03699325 = sum of:
        0.03699325 = product of:
          0.0739865 = sum of:
            0.0739865 = weight(_text_:22 in 3176) [ClassicSimilarity], result of:
              0.0739865 = score(doc=3176,freq=2.0), product of:
                0.15935703 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04550679 = queryNorm
                0.46428138 = fieldWeight in 3176, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=3176)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    6. 5.2017 18:46:22

Years

Languages

Types

  • a 71
  • m 9
  • el 3
  • s 3
  • More… Less…