Search (464 results, page 1 of 24)

  • × type_ss:"el"
  1. Kleineberg, M.: Context analysis and context indexing : formal pragmatics in knowledge organization (2014) 0.28
    0.27535927 = product of:
      0.73429143 = sum of:
        0.10489877 = product of:
          0.3146963 = sum of:
            0.3146963 = weight(_text_:3a in 1826) [ClassicSimilarity], result of:
              0.3146963 = score(doc=1826,freq=2.0), product of:
                0.3359639 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.03962768 = queryNorm
                0.93669677 = fieldWeight in 1826, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.078125 = fieldNorm(doc=1826)
          0.33333334 = coord(1/3)
        0.3146963 = weight(_text_:2f in 1826) [ClassicSimilarity], result of:
          0.3146963 = score(doc=1826,freq=2.0), product of:
            0.3359639 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.03962768 = queryNorm
            0.93669677 = fieldWeight in 1826, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.078125 = fieldNorm(doc=1826)
        0.3146963 = weight(_text_:2f in 1826) [ClassicSimilarity], result of:
          0.3146963 = score(doc=1826,freq=2.0), product of:
            0.3359639 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.03962768 = queryNorm
            0.93669677 = fieldWeight in 1826, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.078125 = fieldNorm(doc=1826)
      0.375 = coord(3/8)
    
    Source
    http://www.google.de/url?sa=t&rct=j&q=&esrc=s&source=web&cd=5&ved=0CDQQFjAE&url=http%3A%2F%2Fdigbib.ubka.uni-karlsruhe.de%2Fvolltexte%2Fdocuments%2F3131107&ei=HzFWVYvGMsiNsgGTyoFI&usg=AFQjCNE2FHUeR9oQTQlNC4TPedv4Mo3DaQ&sig2=Rlzpr7a3BLZZkqZCXXN_IA&bvm=bv.93564037,d.bGg&cad=rja
  2. Popper, K.R.: Three worlds : the Tanner lecture on human values. Deliverd at the University of Michigan, April 7, 1978 (1978) 0.22
    0.22028741 = product of:
      0.5874331 = sum of:
        0.08391901 = product of:
          0.25175703 = sum of:
            0.25175703 = weight(_text_:3a in 230) [ClassicSimilarity], result of:
              0.25175703 = score(doc=230,freq=2.0), product of:
                0.3359639 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.03962768 = queryNorm
                0.7493574 = fieldWeight in 230, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.0625 = fieldNorm(doc=230)
          0.33333334 = coord(1/3)
        0.25175703 = weight(_text_:2f in 230) [ClassicSimilarity], result of:
          0.25175703 = score(doc=230,freq=2.0), product of:
            0.3359639 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.03962768 = queryNorm
            0.7493574 = fieldWeight in 230, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.0625 = fieldNorm(doc=230)
        0.25175703 = weight(_text_:2f in 230) [ClassicSimilarity], result of:
          0.25175703 = score(doc=230,freq=2.0), product of:
            0.3359639 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.03962768 = queryNorm
            0.7493574 = fieldWeight in 230, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.0625 = fieldNorm(doc=230)
      0.375 = coord(3/8)
    
    Source
    https%3A%2F%2Ftannerlectures.utah.edu%2F_documents%2Fa-to-z%2Fp%2Fpopper80.pdf&usg=AOvVaw3f4QRTEH-OEBmoYr2J_c7H
  3. Shala, E.: ¬Die Autonomie des Menschen und der Maschine : gegenwärtige Definitionen von Autonomie zwischen philosophischem Hintergrund und technologischer Umsetzbarkeit (2014) 0.14
    0.13767964 = product of:
      0.36714572 = sum of:
        0.052449387 = product of:
          0.15734816 = sum of:
            0.15734816 = weight(_text_:3a in 4388) [ClassicSimilarity], result of:
              0.15734816 = score(doc=4388,freq=2.0), product of:
                0.3359639 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.03962768 = queryNorm
                0.46834838 = fieldWeight in 4388, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4388)
          0.33333334 = coord(1/3)
        0.15734816 = weight(_text_:2f in 4388) [ClassicSimilarity], result of:
          0.15734816 = score(doc=4388,freq=2.0), product of:
            0.3359639 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.03962768 = queryNorm
            0.46834838 = fieldWeight in 4388, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4388)
        0.15734816 = weight(_text_:2f in 4388) [ClassicSimilarity], result of:
          0.15734816 = score(doc=4388,freq=2.0), product of:
            0.3359639 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.03962768 = queryNorm
            0.46834838 = fieldWeight in 4388, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4388)
      0.375 = coord(3/8)
    
    Footnote
    Vgl. unter: https://www.google.de/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&cad=rja&uact=8&ved=2ahUKEwizweHljdbcAhVS16QKHXcFD9QQFjABegQICRAB&url=https%3A%2F%2Fwww.researchgate.net%2Fpublication%2F271200105_Die_Autonomie_des_Menschen_und_der_Maschine_-_gegenwartige_Definitionen_von_Autonomie_zwischen_philosophischem_Hintergrund_und_technologischer_Umsetzbarkeit_Redigierte_Version_der_Magisterarbeit_Karls&usg=AOvVaw06orrdJmFF2xbCCp_hL26q.
  4. Mitchell, J.S.; Zeng, M.L.; Zumer, M.: Modeling classification systems in multicultural and multilingual contexts (2012) 0.07
    0.07186526 = product of:
      0.14373052 = sum of:
        0.02834915 = weight(_text_:libraries in 1967) [ClassicSimilarity], result of:
          0.02834915 = score(doc=1967,freq=2.0), product of:
            0.13017908 = queryWeight, product of:
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.03962768 = queryNorm
            0.2177704 = fieldWeight in 1967, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.046875 = fieldNorm(doc=1967)
        0.05077526 = weight(_text_:case in 1967) [ClassicSimilarity], result of:
          0.05077526 = score(doc=1967,freq=2.0), product of:
            0.1742197 = queryWeight, product of:
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.03962768 = queryNorm
            0.29144385 = fieldWeight in 1967, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.046875 = fieldNorm(doc=1967)
        0.04182736 = weight(_text_:studies in 1967) [ClassicSimilarity], result of:
          0.04182736 = score(doc=1967,freq=2.0), product of:
            0.15812531 = queryWeight, product of:
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.03962768 = queryNorm
            0.26452032 = fieldWeight in 1967, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.046875 = fieldNorm(doc=1967)
        0.022778753 = product of:
          0.045557506 = sum of:
            0.045557506 = weight(_text_:22 in 1967) [ClassicSimilarity], result of:
              0.045557506 = score(doc=1967,freq=4.0), product of:
                0.13876937 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03962768 = queryNorm
                0.32829654 = fieldWeight in 1967, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1967)
          0.5 = coord(1/2)
      0.5 = coord(4/8)
    
    Abstract
    This paper reports on the second part of an initiative of the authors on researching classification systems with the conceptual model defined by the Functional Requirements for Subject Authority Data (FRSAD) final report. In an earlier study, the authors explored whether the FRSAD conceptual model could be extended beyond subject authority data to model classification data. The focus of the current study is to determine if classification data modeled using FRSAD can be used to solve real-world discovery problems in multicultural and multilingual contexts. The paper discusses the relationships between entities (same type or different types) in the context of classification systems that involve multiple translations and /or multicultural implementations. Results of two case studies are presented in detail: (a) two instances of the DDC (DDC 22 in English, and the Swedish-English mixed translation of DDC 22), and (b) Chinese Library Classification. The use cases of conceptual models in practice are also discussed.
    Source
    Beyond libraries - subject metadata in the digital environment and semantic web. IFLA Satellite Post-Conference, 17-18 August 2012, Tallinn
  5. Faro, S.; Francesconi, E.; Sandrucci, V.: Thesauri KOS analysis and selected thesaurus mapping methodology on the project case-study (2007) 0.06
    0.064870715 = product of:
      0.17298858 = sum of:
        0.09574275 = weight(_text_:case in 2227) [ClassicSimilarity], result of:
          0.09574275 = score(doc=2227,freq=4.0), product of:
            0.1742197 = queryWeight, product of:
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.03962768 = queryNorm
            0.5495518 = fieldWeight in 2227, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.0625 = fieldNorm(doc=2227)
        0.055769812 = weight(_text_:studies in 2227) [ClassicSimilarity], result of:
          0.055769812 = score(doc=2227,freq=2.0), product of:
            0.15812531 = queryWeight, product of:
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.03962768 = queryNorm
            0.35269377 = fieldWeight in 2227, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.0625 = fieldNorm(doc=2227)
        0.021476014 = product of:
          0.042952027 = sum of:
            0.042952027 = weight(_text_:22 in 2227) [ClassicSimilarity], result of:
              0.042952027 = score(doc=2227,freq=2.0), product of:
                0.13876937 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03962768 = queryNorm
                0.30952093 = fieldWeight in 2227, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=2227)
          0.5 = coord(1/2)
      0.375 = coord(3/8)
    
    Abstract
    - Introduction to the Thesaurus Interoperability problem - Analysis of the thesauri for the project case study - Overview of Schema/Ontology Mapping methodologies - The proposed approach for thesaurus mapping - Standards for implementing the proposed methodology
    Date
    7.11.2008 10:40:22
    Series
    TENDER No 10118 - EUROVOC Studies LOT2
  6. Bailey, C.W. Jr.: Scholarly electronic publishing bibliography (2003) 0.06
    0.059740886 = product of:
      0.15930903 = sum of:
        0.02834915 = weight(_text_:libraries in 1656) [ClassicSimilarity], result of:
          0.02834915 = score(doc=1656,freq=2.0), product of:
            0.13017908 = queryWeight, product of:
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.03962768 = queryNorm
            0.2177704 = fieldWeight in 1656, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.046875 = fieldNorm(doc=1656)
        0.071807064 = weight(_text_:case in 1656) [ClassicSimilarity], result of:
          0.071807064 = score(doc=1656,freq=4.0), product of:
            0.1742197 = queryWeight, product of:
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.03962768 = queryNorm
            0.41216385 = fieldWeight in 1656, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.046875 = fieldNorm(doc=1656)
        0.05915282 = weight(_text_:studies in 1656) [ClassicSimilarity], result of:
          0.05915282 = score(doc=1656,freq=4.0), product of:
            0.15812531 = queryWeight, product of:
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.03962768 = queryNorm
            0.37408823 = fieldWeight in 1656, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.046875 = fieldNorm(doc=1656)
      0.375 = coord(3/8)
    
    Content
    Table of Contents 1 Economic Issues* 2 Electronic Books and Texts 2.1 Case Studies and History 2.2 General Works* 2.3 Library Issues* 3 Electronic Serials 3.1 Case Studies and History 3.2 Critiques 3.3 Electronic Distribution of Printed Journals 3.4 General Works* 3.5 Library Issues* 3.6 Research* 4 General Works* 5 Legal Issues 5.1 Intellectual Property Rights* 5.2 License Agreements 5.3 Other Legal Issues 6 Library Issues 6.1 Cataloging, Identifiers, Linking, and Metadata* 6.2 Digital Libraries* 6.3 General Works* 6.4 Information Integrity and Preservation* 7 New Publishing Models* 8 Publisher Issues 8.1 Digital Rights Management* 9 Repositories and E-Prints* Appendix A. Related Bibliographies by the Same Author Appendix B. About the Author
  7. Haslhofer, B.: Uniform SPARQL access to interlinked (digital library) sources (2007) 0.05
    0.047615707 = product of:
      0.12697522 = sum of:
        0.037798867 = weight(_text_:libraries in 541) [ClassicSimilarity], result of:
          0.037798867 = score(doc=541,freq=2.0), product of:
            0.13017908 = queryWeight, product of:
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.03962768 = queryNorm
            0.29036054 = fieldWeight in 541, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.0625 = fieldNorm(doc=541)
        0.06770035 = weight(_text_:case in 541) [ClassicSimilarity], result of:
          0.06770035 = score(doc=541,freq=2.0), product of:
            0.1742197 = queryWeight, product of:
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.03962768 = queryNorm
            0.3885918 = fieldWeight in 541, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.0625 = fieldNorm(doc=541)
        0.021476014 = product of:
          0.042952027 = sum of:
            0.042952027 = weight(_text_:22 in 541) [ClassicSimilarity], result of:
              0.042952027 = score(doc=541,freq=2.0), product of:
                0.13876937 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03962768 = queryNorm
                0.30952093 = fieldWeight in 541, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=541)
          0.5 = coord(1/2)
      0.375 = coord(3/8)
    
    Abstract
    In this presentation, we therefore focus on a solution for providing uniform access to Digital Libraries and other online services. In order to enable uniform query access to heterogeneous sources, we must provide metadata interoperability in a way that a query language - in this case SPARQL - can cope with the incompatibility of the metadata in various sources without changing their already existing information models.
    Date
    26.12.2011 13:22:46
  8. Fagan, J.C.: Usability studies of faceted browsing : a literature review (2010) 0.04
    0.03815141 = product of:
      0.15260564 = sum of:
        0.03307401 = weight(_text_:libraries in 4396) [ClassicSimilarity], result of:
          0.03307401 = score(doc=4396,freq=2.0), product of:
            0.13017908 = queryWeight, product of:
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.03962768 = queryNorm
            0.25406548 = fieldWeight in 4396, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4396)
        0.11953163 = weight(_text_:studies in 4396) [ClassicSimilarity], result of:
          0.11953163 = score(doc=4396,freq=12.0), product of:
            0.15812531 = queryWeight, product of:
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.03962768 = queryNorm
            0.75592977 = fieldWeight in 4396, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4396)
      0.25 = coord(2/8)
    
    Abstract
    Faceted browsing is a common feature of new library catalog interfaces. But to what extent does it improve user performance in searching within today's library catalog systems? This article reviews the literature for user studies involving faceted browsing and user studies of "next-generation" library catalogs that incorporate faceted browsing. Both the results and the methods of these studies are analyzed by asking, What do we currently know about faceted browsing? How can we design better studies of faceted browsing in library catalogs? The article proposes methodological considerations for practicing librarians and provides examples of goals, tasks, and measurements for user studies of faceted browsing in library catalogs.
    Source
    Information technology and libraries. 2010, June, S.58-66
  9. Beall, J.: Approaches to expansions : case studies from the German and Vietnamese translations (2003) 0.03
    0.033971757 = product of:
      0.090591356 = sum of:
        0.042312715 = weight(_text_:case in 1748) [ClassicSimilarity], result of:
          0.042312715 = score(doc=1748,freq=2.0), product of:
            0.1742197 = queryWeight, product of:
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.03962768 = queryNorm
            0.24286987 = fieldWeight in 1748, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1748)
        0.034856133 = weight(_text_:studies in 1748) [ClassicSimilarity], result of:
          0.034856133 = score(doc=1748,freq=2.0), product of:
            0.15812531 = queryWeight, product of:
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.03962768 = queryNorm
            0.22043361 = fieldWeight in 1748, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1748)
        0.013422508 = product of:
          0.026845016 = sum of:
            0.026845016 = weight(_text_:22 in 1748) [ClassicSimilarity], result of:
              0.026845016 = score(doc=1748,freq=2.0), product of:
                0.13876937 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03962768 = queryNorm
                0.19345059 = fieldWeight in 1748, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1748)
          0.5 = coord(1/2)
      0.375 = coord(3/8)
    
    Object
    DDC-22
  10. Qin, J.; Paling, S.: Converting a controlled vocabulary into an ontology : the case of GEM (2001) 0.03
    0.033441134 = product of:
      0.13376454 = sum of:
        0.10155052 = weight(_text_:case in 3895) [ClassicSimilarity], result of:
          0.10155052 = score(doc=3895,freq=2.0), product of:
            0.1742197 = queryWeight, product of:
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.03962768 = queryNorm
            0.5828877 = fieldWeight in 3895, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.09375 = fieldNorm(doc=3895)
        0.03221402 = product of:
          0.06442804 = sum of:
            0.06442804 = weight(_text_:22 in 3895) [ClassicSimilarity], result of:
              0.06442804 = score(doc=3895,freq=2.0), product of:
                0.13876937 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03962768 = queryNorm
                0.46428138 = fieldWeight in 3895, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=3895)
          0.5 = coord(1/2)
      0.25 = coord(2/8)
    
    Date
    24. 8.2005 19:20:22
  11. Wake, S.; Nicholson, D.: HILT: High-Level Thesaurus Project : building consensus for interoperable subject access across communities (2001) 0.03
    0.030688863 = product of:
      0.08183697 = sum of:
        0.026727835 = weight(_text_:libraries in 1224) [ClassicSimilarity], result of:
          0.026727835 = score(doc=1224,freq=4.0), product of:
            0.13017908 = queryWeight, product of:
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.03962768 = queryNorm
            0.2053159 = fieldWeight in 1224, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.03125 = fieldNorm(doc=1224)
        0.033850174 = weight(_text_:case in 1224) [ClassicSimilarity], result of:
          0.033850174 = score(doc=1224,freq=2.0), product of:
            0.1742197 = queryWeight, product of:
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.03962768 = queryNorm
            0.1942959 = fieldWeight in 1224, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.03125 = fieldNorm(doc=1224)
        0.02125896 = product of:
          0.04251792 = sum of:
            0.04251792 = weight(_text_:area in 1224) [ClassicSimilarity], result of:
              0.04251792 = score(doc=1224,freq=2.0), product of:
                0.1952553 = queryWeight, product of:
                  4.927245 = idf(docFreq=870, maxDocs=44218)
                  0.03962768 = queryNorm
                0.21775553 = fieldWeight in 1224, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.927245 = idf(docFreq=870, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1224)
          0.5 = coord(1/2)
      0.375 = coord(3/8)
    
    Abstract
    This article provides an overview of the work carried out by the HILT Project <http://hilt.cdlr.strath.ac.uk> in making recommendations towards interoperable subject access, or cross-searching and browsing distributed services amongst the archives, libraries, museums and electronic services sectors. The article details consensus achieved at the 19 June 2001 HILT Workshop and discusses the HILT Stakeholder Survey. In 1999 Péter Jascó wrote that "savvy searchers" are asking for direction. Three years later the scenario he describes, that of searchers cross-searching databases where the subject vocabulary used in each case is different, still rings true. Jascó states that, in many cases, databases do not offer the necessary aids required to use the "preferred terms of the subject-controlled vocabulary". The databases to which Jascó refers are Dialog and DataStar. However, the situation he describes applies as well to the area that HILT is researching: that of cross-searching and browsing by subject across databases and catalogues in archives, libraries, museums and online information services. So how does a user access information on a particular subject when it is indexed across a multitude of services under different, but quite often similar, subject terms? Also, if experienced searchers are having problems, what about novice searchers? As information professionals, it is our role to investigate such problems and recommend solutions. Although there is no hard empirical evidence one way or another, HILT participants agree that the problem for users attempting to search across databases is real. There is a strong likelihood that users are disadvantaged by the use of different subject terminology combined with a multitude of different practices taking place within the archive, library, museums and online communities. Arguably, failure to address this problem of interoperability undermines the value of cross-searching and browsing facilities, and wastes public money because relevant resources are 'hidden' from searchers. HILT is charged with analysing this broad problem through qualitative methods, with the main aim of presenting a set of recommendations on how to make it easier to cross-search and browse distributed services. Because this is a very large problem composed of many strands, HILT recognizes that any proposed solutions must address a host of issues. Recommended solutions must be affordable, sustainable, politically acceptable, useful, future-proof and international in scope. It also became clear to the HILT team that progress toward finding solutions to the interoperability problem could only be achieved through direct dialogue with other parties keen to solve this problem, and that the problem was as much about consensus building as it was about finding a solution. This article describes how HILT approached the cross-searching problem; how it investigated the nature of the problem, detailing results from the HILT Stakeholder Survey; and how it achieved consensus through the recent HILT Workshop.
  12. Proceedings of the 2nd International Workshop on Semantic Digital Archives held in conjunction with the 16th Int. Conference on Theory and Practice of Digital Libraries (TPDL) on September 27, 2012 in Paphos, Cyprus (2012) 0.03
    0.030361729 = product of:
      0.08096461 = sum of:
        0.0375024 = weight(_text_:libraries in 468) [ClassicSimilarity], result of:
          0.0375024 = score(doc=468,freq=14.0), product of:
            0.13017908 = queryWeight, product of:
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.03962768 = queryNorm
            0.28808317 = fieldWeight in 468, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.0234375 = fieldNorm(doc=468)
        0.02091368 = weight(_text_:studies in 468) [ClassicSimilarity], result of:
          0.02091368 = score(doc=468,freq=2.0), product of:
            0.15812531 = queryWeight, product of:
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.03962768 = queryNorm
            0.13226016 = fieldWeight in 468, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.0234375 = fieldNorm(doc=468)
        0.022548532 = product of:
          0.045097064 = sum of:
            0.045097064 = weight(_text_:area in 468) [ClassicSimilarity], result of:
              0.045097064 = score(doc=468,freq=4.0), product of:
                0.1952553 = queryWeight, product of:
                  4.927245 = idf(docFreq=870, maxDocs=44218)
                  0.03962768 = queryNorm
                0.23096462 = fieldWeight in 468, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.927245 = idf(docFreq=870, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=468)
          0.5 = coord(1/2)
      0.375 = coord(3/8)
    
    Abstract
    Archival Information Systems (AIS) are becoming increasingly important. For decades, the amount of content created digitally is growing and its complete life cycle nowadays tends to remain digital. A selection of this content is expected to be of value for the future and can thus be considered being part of our cultural heritage. However, digital content poses many challenges for long-term or indefinite preservation, e.g. digital publications become increasingly complex by the embedding of different kinds of multimedia, data in arbitrary formats and software. As soon as these digital publications become obsolete, but are still deemed to be of value in the future, they have to be transferred smoothly into appropriate AIS where they need to be kept accessible even through changing technologies. The successful previous SDA workshop in 2011 showed: Both, the library and the archiving community have made valuable contributions to the management of huge amounts of knowledge and data. However, both are approaching this topic from different views which shall be brought together to cross-fertilize each other. There are promising combinations of pertinence and provenance models since those are traditionally the prevailing knowledge organization principles of the library and archiving community, respectively. Another scientific discipline providing promising technical solutions for knowledge representation and knowledge management is semantic technologies, which is supported by appropriate W3C recommendations and a large user community. At the forefront of making the semantic web a mature and applicable reality is the linked data initiative, which already has started to be adopted by the library community. It can be expected that using semantic (web) technologies in general and linked data in particular can mature the area of digital archiving as well as technologically tighten the natural bond between digital libraries and digital archives. Semantic representations of contextual knowledge about cultural heritage objects will enhance organization and access of data and knowledge. In order to achieve a comprehensive investigation, the information seeking and document triage behaviors of users (an area also classified under the field of Human Computer Interaction) will also be included in the research.
    Semantic search & semantic information retrieval in digital archives and digital libraries Semantic multimedia archives Ontologies & linked data for digital archives and digital libraries Ontologies & linked data for multimedia archives Implementations and evaluations of semantic digital archives Visualization and exploration of digital content User interfaces for semantic digital libraries User interfaces for intelligent multimedia information retrieval User studies focusing on end-user needs and information seeking behavior of end-users Theoretical and practical archiving frameworks using Semantic (Web) technologies Logical theories for digital archives Semantic (Web) services implementing the OAIS standard Semantic or logical provenance models for digital archives or digital libraries Information integration/semantic ingest (e.g. from digital libraries) Trust for ingest and data security/integrity check for long-term storage of archival records Semantic extensions of emulation/virtualization methodologies tailored for digital archives Semantic long-term storage and hardware organization tailored for AIS Migration strategies based on Semantic (Web) technologies Knowledge evolution We expect new insights and results for sustainable technical solutions for digital archiving using knowledge management techniques based on semantic technologies. The workshop emphasizes interdisciplinarity and aims at an audience consisting of scientists and scholars from the digital library, digital archiving, multimedia technology and semantic web community, the information and library sciences, as well as, from the social sciences and (digital) humanities, in particular people working on the mentioned topics. We encourage end-users, practitioners and policy-makers from cultural heritage institutions to participate as well.
  13. Lavoie, B.; Connaway, L.S.; Dempsey, L.: Anatomy of aggregate collections : the example of Google print for libraries (2005) 0.03
    0.029276006 = product of:
      0.07806935 = sum of:
        0.04910217 = weight(_text_:libraries in 1184) [ClassicSimilarity], result of:
          0.04910217 = score(doc=1184,freq=24.0), product of:
            0.13017908 = queryWeight, product of:
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.03962768 = queryNorm
            0.3771894 = fieldWeight in 1184, product of:
              4.8989797 = tf(freq=24.0), with freq of:
                24.0 = termFreq=24.0
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.0234375 = fieldNorm(doc=1184)
        0.02091368 = weight(_text_:studies in 1184) [ClassicSimilarity], result of:
          0.02091368 = score(doc=1184,freq=2.0), product of:
            0.15812531 = queryWeight, product of:
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.03962768 = queryNorm
            0.13226016 = fieldWeight in 1184, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.0234375 = fieldNorm(doc=1184)
        0.008053505 = product of:
          0.01610701 = sum of:
            0.01610701 = weight(_text_:22 in 1184) [ClassicSimilarity], result of:
              0.01610701 = score(doc=1184,freq=2.0), product of:
                0.13876937 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03962768 = queryNorm
                0.116070345 = fieldWeight in 1184, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=1184)
          0.5 = coord(1/2)
      0.375 = coord(3/8)
    
    Abstract
    Google's December 2004 announcement of its intention to collaborate with five major research libraries - Harvard University, the University of Michigan, Stanford University, the University of Oxford, and the New York Public Library - to digitize and surface their print book collections in the Google searching universe has, predictably, stirred conflicting opinion, with some viewing the project as a welcome opportunity to enhance the visibility of library collections in new environments, and others wary of Google's prospective role as gateway to these collections. The project has been vigorously debated on discussion lists and blogs, with the participating libraries commonly referred to as "the Google 5". One point most observers seem to concede is that the questions raised by this initiative are both timely and significant. The Google Print Library Project (GPLP) has galvanized a long overdue, multi-faceted discussion about library print book collections. The print book is core to library identity and practice, but in an era of zero-sum budgeting, it is almost inevitable that print book budgets will decline as budgets for serials, digital resources, and other materials expand. As libraries re-allocate resources to accommodate changing patterns of user needs, print book budgets may be adversely impacted. Of course, the degree of impact will depend on a library's perceived mission. A public library may expect books to justify their shelf-space, with de-accession the consequence of minimal use. A national library, on the other hand, has a responsibility to the scholarly and cultural record and may seek to collect comprehensively within particular areas, with the attendant obligation to secure the long-term retention of its print book collections. The combination of limited budgets, changing user needs, and differences in library collection strategies underscores the need to think about a collective, or system-wide, print book collection - in particular, how can an inter-institutional system be organized to achieve goals that would be difficult, and/or prohibitively expensive, for any one library to undertake individually [4]? Mass digitization programs like GPLP cast new light on these and other issues surrounding the future of library print book collections, but at this early stage, it is light that illuminates only dimly. It will be some time before GPLP's implications for libraries and library print book collections can be fully appreciated and evaluated. But the strong interest and lively debate generated by this initiative suggest that some preliminary analysis - premature though it may be - would be useful, if only to undertake a rough mapping of the terrain over which GPLP potentially will extend. At the least, some early perspective helps shape interesting questions for the future, when the boundaries of GPLP become settled, workflows for producing and managing the digitized materials become systematized, and usage patterns within the GPLP framework begin to emerge.
    This article offers some perspectives on GPLP in light of what is known about library print book collections in general, and those of the Google 5 in particular, from information in OCLC's WorldCat bibliographic database and holdings file. Questions addressed include: * Coverage: What proportion of the system-wide print book collection will GPLP potentially cover? What is the degree of holdings overlap across the print book collections of the five participating libraries? * Language: What is the distribution of languages associated with the print books held by the GPLP libraries? Which languages are predominant? * Copyright: What proportion of the GPLP libraries' print book holdings are out of copyright? * Works: How many distinct works are represented in the holdings of the GPLP libraries? How does a focus on works impact coverage and holdings overlap? * Convergence: What are the effects on coverage of using a different set of five libraries? What are the effects of adding the holdings of additional libraries to those of the GPLP libraries, and how do these effects vary by library type? These questions certainly do not exhaust the analytical possibilities presented by GPLP. More in-depth analysis might look at Google 5 coverage in particular subject areas; it also would be interesting to see how many books covered by the GPLP have already been digitized in other contexts. However, these questions are left to future studies. The purpose here is to explore a few basic questions raised by GPLP, and in doing so, provide an empirical context for the debate that is sure to continue for some time to come. A secondary objective is to lay some groundwork for a general set of questions that could be used to explore the implications of any mass digitization initiative. A suggested list of questions is provided in the conclusion of the article.
    Date
    26.12.2011 14:08:22
  14. El-Ramly, N.; Peterson. R.E.; Volonino, L.: Top ten Web sites using search engines : the case of the desalination industry (1996) 0.03
    0.028408606 = product of:
      0.11363442 = sum of:
        0.071807064 = weight(_text_:case in 945) [ClassicSimilarity], result of:
          0.071807064 = score(doc=945,freq=4.0), product of:
            0.1742197 = queryWeight, product of:
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.03962768 = queryNorm
            0.41216385 = fieldWeight in 945, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.046875 = fieldNorm(doc=945)
        0.04182736 = weight(_text_:studies in 945) [ClassicSimilarity], result of:
          0.04182736 = score(doc=945,freq=2.0), product of:
            0.15812531 = queryWeight, product of:
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.03962768 = queryNorm
            0.26452032 = fieldWeight in 945, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.046875 = fieldNorm(doc=945)
      0.25 = coord(2/8)
    
    Abstract
    The desalination industry involves the desalting of sea or brackish water and achieves the purpose of increasing the worls's effective water supply. There are approximately 4.000 desalination Web sites. The six major Internet search engines were used to determine, according to each of the six, the top twenty sites for desalination. Each site was visited and the 120 gross returns were pared down to the final ten - the 'Top Ten'. The Top Ten were then analyzed to determine what it was that made the sites useful and informative. The major attributes were: a) currency (up-to-date); b) search site capability; c) access to articles on desalination; d) newsletters; e) databases; f) product information; g) online conferencing; h) valuable links to other sites; l) communication links; j) site maps; and k) case studies. Reasons for having a Web site and the current status and prospects for Internet commerce are discussed
  15. Hollink, L.; Assem, M. van; Wang, S.; Isaac, A.; Schreiber, G.: Two variations on ontology alignment evaluation : methodological issues (2008) 0.03
    0.028408606 = product of:
      0.11363442 = sum of:
        0.071807064 = weight(_text_:case in 4645) [ClassicSimilarity], result of:
          0.071807064 = score(doc=4645,freq=4.0), product of:
            0.1742197 = queryWeight, product of:
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.03962768 = queryNorm
            0.41216385 = fieldWeight in 4645, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.046875 = fieldNorm(doc=4645)
        0.04182736 = weight(_text_:studies in 4645) [ClassicSimilarity], result of:
          0.04182736 = score(doc=4645,freq=2.0), product of:
            0.15812531 = queryWeight, product of:
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.03962768 = queryNorm
            0.26452032 = fieldWeight in 4645, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.046875 = fieldNorm(doc=4645)
      0.25 = coord(2/8)
    
    Abstract
    Evaluation of ontology alignments is in practice done in two ways: (1) assessing individual correspondences and (2) comparing the alignment to a reference alignment. However, this type of evaluation does not guarantee that an application which uses the alignment will perform well. In this paper, we contribute to the current ontology alignment evaluation practices by proposing two alternative evaluation methods that take into account some characteristics of a usage scenario without doing a full-fledged end-to-end evaluation. We compare different evaluation approaches in three case studies, focussing on methodological issues. Each case study considers an alignment between a different pair of ontologies, ranging from rich and well-structured to small and poorly structured. This enables us to conclude on the use of different evaluation approaches in different settings.
  16. Mixter, J.; Childress, E.R.: FAST (Faceted Application of Subject Terminology) users : summary and case studies (2013) 0.03
    0.027283307 = product of:
      0.10913323 = sum of:
        0.059839215 = weight(_text_:case in 2011) [ClassicSimilarity], result of:
          0.059839215 = score(doc=2011,freq=4.0), product of:
            0.1742197 = queryWeight, product of:
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.03962768 = queryNorm
            0.34346986 = fieldWeight in 2011, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2011)
        0.049294014 = weight(_text_:studies in 2011) [ClassicSimilarity], result of:
          0.049294014 = score(doc=2011,freq=4.0), product of:
            0.15812531 = queryWeight, product of:
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.03962768 = queryNorm
            0.3117402 = fieldWeight in 2011, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2011)
      0.25 = coord(2/8)
    
    Abstract
    This document presents: a brief overview of FAST; a brief analysis of common characteristics of parties that have either chosen to adopt FAST or chosen against using FAST; suggested improvements for FAST vocabulary and services; tables summarizing FAST adopters and non-adopters; and sixteen individual "case studies" presented as edited write-ups of interviews.
  17. Kirk, J.: Theorising information use : managers and their work (2002) 0.03
    0.0265537 = product of:
      0.1062148 = sum of:
        0.06901162 = weight(_text_:studies in 560) [ClassicSimilarity], result of:
          0.06901162 = score(doc=560,freq=4.0), product of:
            0.15812531 = queryWeight, product of:
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.03962768 = queryNorm
            0.43643627 = fieldWeight in 560, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.0546875 = fieldNorm(doc=560)
        0.037203178 = product of:
          0.074406356 = sum of:
            0.074406356 = weight(_text_:area in 560) [ClassicSimilarity], result of:
              0.074406356 = score(doc=560,freq=2.0), product of:
                0.1952553 = queryWeight, product of:
                  4.927245 = idf(docFreq=870, maxDocs=44218)
                  0.03962768 = queryNorm
                0.38107216 = fieldWeight in 560, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.927245 = idf(docFreq=870, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=560)
          0.5 = coord(1/2)
      0.25 = coord(2/8)
    
    Abstract
    The focus of this thesis is information use. Although a key concept in information behaviour, information use has received little attention from information science researchers. Studies of other key concepts such as information need and information seeking are dominant in information behaviour research. Information use is an area of interest to information professionals who rely on research outcomes to shape their practice. There are few empirical studies of how people actually use information that might guide and refine the development of information systems, products and services.
  18. Beagle, D.: Visualizing keyword distribution across multidisciplinary c-space (2003) 0.03
    0.025926981 = product of:
      0.06913862 = sum of:
        0.014174575 = weight(_text_:libraries in 1202) [ClassicSimilarity], result of:
          0.014174575 = score(doc=1202,freq=2.0), product of:
            0.13017908 = queryWeight, product of:
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.03962768 = queryNorm
            0.1088852 = fieldWeight in 1202, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.0234375 = fieldNorm(doc=1202)
        0.02538763 = weight(_text_:case in 1202) [ClassicSimilarity], result of:
          0.02538763 = score(doc=1202,freq=2.0), product of:
            0.1742197 = queryWeight, product of:
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.03962768 = queryNorm
            0.14572193 = fieldWeight in 1202, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.0234375 = fieldNorm(doc=1202)
        0.02957641 = weight(_text_:studies in 1202) [ClassicSimilarity], result of:
          0.02957641 = score(doc=1202,freq=4.0), product of:
            0.15812531 = queryWeight, product of:
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.03962768 = queryNorm
            0.18704411 = fieldWeight in 1202, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.9902744 = idf(docFreq=2222, maxDocs=44218)
              0.0234375 = fieldNorm(doc=1202)
      0.375 = coord(3/8)
    
    Abstract
    The concept of c-space is proposed as a visualization schema relating containers of content to cataloging surrogates and classification structures. Possible applications of keyword vector clusters within c-space could include improved retrieval rates through the use of captioning within visual hierarchies, tracings of semantic bleeding among subclasses, and access to buried knowledge within subject-neutral publication containers. The Scholastica Project is described as one example, following a tradition of research dating back to the 1980's. Preliminary focus group assessment indicates that this type of classification rendering may offer digital library searchers enriched entry strategies and an expanded range of re-entry vocabularies. Those of us who work in traditional libraries typically assume that our systems of classification: Library of Congress Classification (LCC) and Dewey Decimal Classification (DDC), are descriptive rather than prescriptive. In other words, LCC classes and subclasses approximate natural groupings of texts that reflect an underlying order of knowledge, rather than arbitrary categories prescribed by librarians to facilitate efficient shelving. Philosophical support for this assumption has traditionally been found in a number of places, from the archetypal tree of knowledge, to Aristotelian categories, to the concept of discursive formations proposed by Michel Foucault. Gary P. Radford has elegantly described an encounter with Foucault's discursive formations in the traditional library setting: "Just by looking at the titles on the spines, you can see how the books cluster together...You can identify those books that seem to form the heart of the discursive formation and those books that reside on the margins. Moving along the shelves, you see those books that tend to bleed over into other classifications and that straddle multiple discursive formations. You can physically and sensually experience...those points that feel like state borders or national boundaries, those points where one subject ends and another begins, or those magical places where one subject has morphed into another..."
    But what happens to this awareness in a digital library? Can discursive formations be represented in cyberspace, perhaps through diagrams in a visualization interface? And would such a schema be helpful to a digital library user? To approach this question, it is worth taking a moment to reconsider what Radford is looking at. First, he looks at titles to see how the books cluster. To illustrate, I scanned one hundred books on the shelves of a college library under subclass HT 101-395, defined by the LCC subclass caption as Urban groups. The City. Urban sociology. Of the first 100 titles in this sequence, fifty included the word "urban" or variants (e.g. "urbanization"). Another thirty-five used the word "city" or variants. These keywords appear to mark their titles as the heart of this discursive formation. The scattering of titles not using "urban" or "city" used related terms such as "town," "community," or in one case "skyscrapers." So we immediately see some empirical correlation between keywords and classification. But we also see a problem with the commonly used search technique of title-keyword. A student interested in urban studies will want to know about this entire subclass, and may wish to browse every title available therein. A title-keyword search on "urban" will retrieve only half of the titles, while a search on "city" will retrieve just over a third. There will be no overlap, since no titles in this sample contain both words. The only place where both words appear in a common string is in the LCC subclass caption, but captions are not typically indexed in library Online Public Access Catalogs (OPACs). In a traditional library, this problem is mitigated when the student goes to the shelf looking for any one of the books and suddenly discovers a much wider selection than the keyword search had led him to expect. But in a digital library, the issue of non-retrieval can be more problematic, as studies have indicated. Micco and Popp reported that, in a study funded partly by the U.S. Department of Education, 65 of 73 unskilled users searching for material on U.S./Soviet foreign relations found some material but never realized they had missed a large percentage of what was in the database.
  19. Lynch, C.A.: ¬The Z39.50 information retrieval standard : part I: a strategic view of its past, present and future (1997) 0.02
    0.024706101 = product of:
      0.065882936 = sum of:
        0.024551084 = weight(_text_:libraries in 1262) [ClassicSimilarity], result of:
          0.024551084 = score(doc=1262,freq=6.0), product of:
            0.13017908 = queryWeight, product of:
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.03962768 = queryNorm
            0.1885947 = fieldWeight in 1262, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.0234375 = fieldNorm(doc=1262)
        0.02538763 = weight(_text_:case in 1262) [ClassicSimilarity], result of:
          0.02538763 = score(doc=1262,freq=2.0), product of:
            0.1742197 = queryWeight, product of:
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.03962768 = queryNorm
            0.14572193 = fieldWeight in 1262, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.3964143 = idf(docFreq=1480, maxDocs=44218)
              0.0234375 = fieldNorm(doc=1262)
        0.015944218 = product of:
          0.031888437 = sum of:
            0.031888437 = weight(_text_:area in 1262) [ClassicSimilarity], result of:
              0.031888437 = score(doc=1262,freq=2.0), product of:
                0.1952553 = queryWeight, product of:
                  4.927245 = idf(docFreq=870, maxDocs=44218)
                  0.03962768 = queryNorm
                0.16331664 = fieldWeight in 1262, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.927245 = idf(docFreq=870, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=1262)
          0.5 = coord(1/2)
      0.375 = coord(3/8)
    
    Abstract
    The Z39.50 standard for information retrieval is important from a number of perspectives. While still not widely known within the computer networking community, it is a mature standard that represents the culmination of two decades of thinking and debate about how information retrieval functions can be modeled, standardized, and implemented in a distributed systems environment. And - importantly -- it has been tested through substantial deployment experience. Z39.50 is one of the few examples we have to date of a protocol that actually goes beyond codifying mechanism and moves into the area of standardizing shared semantic knowledge. The extent to which this should be a goal of the protocol has been an ongoing source of controversy and tension within the developer community, and differing views on this issue can be seen both in the standard itself and the way that it is used in practice. Given the growing emphasis on issues such as "semantic interoperability" as part of the research agenda for digital libraries (see Clifford A. Lynch and Hector Garcia-Molina. Interoperability, Scaling, and the Digital Libraries Research Agenda, Report on the May 18-19, 1995 IITA Libraries Workshop, <http://www- diglib.stanford.edu/diglib/pub/reports/iita-dlw/main.html>), the insights gained by the Z39.50 community into the complex interactions among various definitions of semantics and interoperability are particularly relevant. The development process for the Z39.50 standard is also of interest in its own right. Its history, dating back to the 1970s, spans a period that saw the eclipse of formal standards-making agencies by groups such as the Internet Engineering Task Force (IETF) and informal standards development consortia. Moreover, in order to achieve meaningful implementation, Z39.50 had to move beyond its origins in the OSI debacle of the 1980s. Z39.50 has also been, to some extent, a victim of its own success -- or at least promise. Recent versions of the standard are highly extensible, and the consensus process of standards development has made it hospitable to an ever-growing set of new communities and requirements. As this process of extension has proceeded, it has become ever less clear what the appropriate scope and boundaries of the protocol should be, and what expectations one should have of practical interoperability among implementations of the standard. Z39.50 thus offers an excellent case study of the problems involved in managing the evolution of a standard over time. It may well offer useful lessons for the future of other standards such as HTTP and HTML, which seem to be facing some of the same issues.
  20. Lossau, N.: Search engine technology and digital libraries : libraries need to discover the academic internet (2004) 0.02
    0.02362226 = product of:
      0.09448904 = sum of:
        0.057285864 = weight(_text_:libraries in 1161) [ClassicSimilarity], result of:
          0.057285864 = score(doc=1161,freq=6.0), product of:
            0.13017908 = queryWeight, product of:
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.03962768 = queryNorm
            0.4400543 = fieldWeight in 1161, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.2850544 = idf(docFreq=4499, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1161)
        0.037203178 = product of:
          0.074406356 = sum of:
            0.074406356 = weight(_text_:area in 1161) [ClassicSimilarity], result of:
              0.074406356 = score(doc=1161,freq=2.0), product of:
                0.1952553 = queryWeight, product of:
                  4.927245 = idf(docFreq=870, maxDocs=44218)
                  0.03962768 = queryNorm
                0.38107216 = fieldWeight in 1161, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.927245 = idf(docFreq=870, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1161)
          0.5 = coord(1/2)
      0.25 = coord(2/8)
    
    Abstract
    With the development of the World Wide Web, the "information search" has grown to be a significant business sector of a global, competitive and commercial market. Powerful players have entered this market, such as commercial internet search engines, information portals, multinational publishers and online content integrators. Will Google, Yahoo or Microsoft be the only portals to global knowledge in 2010? If libraries do not want to become marginalized in a key area of their traditional services, they need to acknowledge the challenges that come with the globalisation of scholarly information, the existence and further growth of the academic internet

Years

Languages

Types

  • a 246
  • s 14
  • i 12
  • r 10
  • m 9
  • p 6
  • x 4
  • b 3
  • n 1
  • More… Less…

Themes