Search (139 results, page 1 of 7)

  • × theme_ss:"Data Mining"
  1. Hallonsten, O.; Holmberg, D.: Analyzing structural stratification in the Swedish higher education system : data contextualization with policy-history analysis (2013) 0.11
    0.105380826 = product of:
      0.23183781 = sum of:
        0.12892531 = weight(_text_:higher in 668) [ClassicSimilarity], result of:
          0.12892531 = score(doc=668,freq=12.0), product of:
            0.18138453 = queryWeight, product of:
              5.252756 = idf(docFreq=628, maxDocs=44218)
              0.034531306 = queryNorm
            0.71078444 = fieldWeight in 668, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              5.252756 = idf(docFreq=628, maxDocs=44218)
              0.0390625 = fieldNorm(doc=668)
        0.014751178 = weight(_text_:of in 668) [ClassicSimilarity], result of:
          0.014751178 = score(doc=668,freq=20.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.27317715 = fieldWeight in 668, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=668)
        0.015983174 = weight(_text_:on in 668) [ClassicSimilarity], result of:
          0.015983174 = score(doc=668,freq=6.0), product of:
            0.07594867 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.034531306 = queryNorm
            0.21044704 = fieldWeight in 668, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0390625 = fieldNorm(doc=668)
        0.060481843 = weight(_text_:great in 668) [ClassicSimilarity], result of:
          0.060481843 = score(doc=668,freq=2.0), product of:
            0.19443816 = queryWeight, product of:
              5.6307793 = idf(docFreq=430, maxDocs=44218)
              0.034531306 = queryNorm
            0.31105953 = fieldWeight in 668, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.6307793 = idf(docFreq=430, maxDocs=44218)
              0.0390625 = fieldNorm(doc=668)
        0.011696288 = product of:
          0.023392577 = sum of:
            0.023392577 = weight(_text_:22 in 668) [ClassicSimilarity], result of:
              0.023392577 = score(doc=668,freq=2.0), product of:
                0.12092275 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.034531306 = queryNorm
                0.19345059 = fieldWeight in 668, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=668)
          0.5 = coord(1/2)
      0.45454547 = coord(5/11)
    
    Abstract
    20th century massification of higher education and research in academia is said to have produced structurally stratified higher education systems in many countries. Most manifestly, the research mission of universities appears to be divisive. Authors have claimed that the Swedish system, while formally unified, has developed into a binary state, and statistics seem to support this conclusion. This article makes use of a comprehensive statistical data source on Swedish higher education institutions to illustrate stratification, and uses literature on Swedish research policy history to contextualize the statistics. Highlighting the opportunities as well as constraints of the data, the article argues that there is great merit in combining statistics with a qualitative analysis when studying the structural characteristics of national higher education systems. Not least the article shows that it is an over-simplification to describe the Swedish system as binary; the stratification is more complex. On basis of the analysis, the article also argues that while global trends certainly influence national developments, higher education systems have country-specific features that may enrich the understanding of how systems evolve and therefore should be analyzed as part of a broader study of the increasingly globalized academic system.
    Date
    22. 3.2013 19:43:01
    Source
    Journal of the American Society for Information Science and Technology. 64(2013) no.3, S.574-586
  2. Jones, K.M.L.; Rubel, A.; LeClere, E.: ¬A matter of trust : higher education institutions as information fiduciaries in an age of educational data mining and learning analytics (2020) 0.04
    0.042574536 = product of:
      0.15610662 = sum of:
        0.091163956 = weight(_text_:higher in 5968) [ClassicSimilarity], result of:
          0.091163956 = score(doc=5968,freq=6.0), product of:
            0.18138453 = queryWeight, product of:
              5.252756 = idf(docFreq=628, maxDocs=44218)
              0.034531306 = queryNorm
            0.5026005 = fieldWeight in 5968, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              5.252756 = idf(docFreq=628, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5968)
        0.053516448 = weight(_text_:effect in 5968) [ClassicSimilarity], result of:
          0.053516448 = score(doc=5968,freq=2.0), product of:
            0.18289955 = queryWeight, product of:
              5.29663 = idf(docFreq=601, maxDocs=44218)
              0.034531306 = queryNorm
            0.2926002 = fieldWeight in 5968, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.29663 = idf(docFreq=601, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5968)
        0.011426214 = weight(_text_:of in 5968) [ClassicSimilarity], result of:
          0.011426214 = score(doc=5968,freq=12.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.21160212 = fieldWeight in 5968, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5968)
      0.27272728 = coord(3/11)
    
    Abstract
    Higher education institutions are mining and analyzing student data to effect educational, political, and managerial outcomes. Done under the banner of "learning analytics," this work can-and often does-surface sensitive data and information about, inter alia, a student's demographics, academic performance, offline and online movements, physical fitness, mental wellbeing, and social network. With these data, institutions and third parties are able to describe student life, predict future behaviors, and intervene to address academic or other barriers to student success (however defined). Learning analytics, consequently, raise serious issues concerning student privacy, autonomy, and the appropriate flow of student data. We argue that issues around privacy lead to valid questions about the degree to which students should trust their institution to use learning analytics data and other artifacts (algorithms, predictive scores) with their interests in mind. We argue that higher education institutions are paradigms of information fiduciaries. As such, colleges and universities have a special responsibility to their students. In this article, we use the information fiduciary concept to analyze cases when learning analytics violate an institution's responsibility to its students.
    Source
    Journal of the Association for Information Science and Technology. 71(2020) no.10, S.1227-1241
  3. Mohr, J.W.; Bogdanov, P.: Topic models : what they are and why they matter (2013) 0.04
    0.03795848 = product of:
      0.13918109 = sum of:
        0.017701415 = weight(_text_:of in 1142) [ClassicSimilarity], result of:
          0.017701415 = score(doc=1142,freq=20.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.32781258 = fieldWeight in 1142, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=1142)
        0.105819434 = weight(_text_:innovations in 1142) [ClassicSimilarity], result of:
          0.105819434 = score(doc=1142,freq=2.0), product of:
            0.23478 = queryWeight, product of:
              6.7990475 = idf(docFreq=133, maxDocs=44218)
              0.034531306 = queryNorm
            0.45071742 = fieldWeight in 1142, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              6.7990475 = idf(docFreq=133, maxDocs=44218)
              0.046875 = fieldNorm(doc=1142)
        0.015660247 = weight(_text_:on in 1142) [ClassicSimilarity], result of:
          0.015660247 = score(doc=1142,freq=4.0), product of:
            0.07594867 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.034531306 = queryNorm
            0.20619515 = fieldWeight in 1142, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.046875 = fieldNorm(doc=1142)
      0.27272728 = coord(3/11)
    
    Abstract
    We provide a brief, non-technical introduction to the text mining methodology known as "topic modeling." We summarize the theory and background of the method and discuss what kinds of things are found by topic models. Using a text corpus comprised of the eight articles from the special issue of Poetics on the subject of topic models, we run a topic model on these articles, both as a way to introduce the methodology and also to help summarize some of the ways in which social and cultural scientists are using topic models. We review some of the critiques and debates over the use of the method and finally, we link these developments back to some of the original innovations in the field of content analysis that were pioneered by Harold D. Lasswell and colleagues during and just after World War II.
  4. Organisciak, P.; Schmidt, B.M.; Downie, J.S.: Giving shape to large digital libraries through exploratory data analysis (2022) 0.04
    0.03619787 = product of:
      0.13272552 = sum of:
        0.015832627 = weight(_text_:of in 473) [ClassicSimilarity], result of:
          0.015832627 = score(doc=473,freq=16.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.2932045 = fieldWeight in 473, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=473)
        0.105819434 = weight(_text_:innovations in 473) [ClassicSimilarity], result of:
          0.105819434 = score(doc=473,freq=2.0), product of:
            0.23478 = queryWeight, product of:
              6.7990475 = idf(docFreq=133, maxDocs=44218)
              0.034531306 = queryNorm
            0.45071742 = fieldWeight in 473, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              6.7990475 = idf(docFreq=133, maxDocs=44218)
              0.046875 = fieldNorm(doc=473)
        0.011073467 = weight(_text_:on in 473) [ClassicSimilarity], result of:
          0.011073467 = score(doc=473,freq=2.0), product of:
            0.07594867 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.034531306 = queryNorm
            0.14580199 = fieldWeight in 473, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.046875 = fieldNorm(doc=473)
      0.27272728 = coord(3/11)
    
    Abstract
    The emergence of large multi-institutional digital libraries has opened the door to aggregate-level examinations of the published word. Such large-scale analysis offers a new way to pursue traditional problems in the humanities and social sciences, using digital methods to ask routine questions of large corpora. However, inquiry into multiple centuries of books is constrained by the burdens of scale, where statistical inference is technically complex and limited by hurdles to access and flexibility. This work examines the role that exploratory data analysis and visualization tools may play in understanding large bibliographic datasets. We present one such tool, HathiTrust+Bookworm, which allows multifaceted exploration of the multimillion work HathiTrust Digital Library, and center it in the broader space of scholarly tools for exploratory data analysis.
    Series
    JASIST special issue on digital humanities (DH): C. Methodological innovations, challenges, and new interest in DH
    Source
    Journal of the Association for Information Science and Technology. 73(2022) no.2, S.317-332
  5. Liu, X.; Yu, S.; Janssens, F.; Glänzel, W.; Moreau, Y.; Moor, B.de: Weighted hybrid clustering by combining text mining and bibliometrics on a large-scale journal database (2010) 0.03
    0.02552494 = product of:
      0.093591444 = sum of:
        0.064219736 = weight(_text_:effect in 3464) [ClassicSimilarity], result of:
          0.064219736 = score(doc=3464,freq=2.0), product of:
            0.18289955 = queryWeight, product of:
              5.29663 = idf(docFreq=601, maxDocs=44218)
              0.034531306 = queryNorm
            0.35112026 = fieldWeight in 3464, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.29663 = idf(docFreq=601, maxDocs=44218)
              0.046875 = fieldNorm(doc=3464)
        0.013711456 = weight(_text_:of in 3464) [ClassicSimilarity], result of:
          0.013711456 = score(doc=3464,freq=12.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.25392252 = fieldWeight in 3464, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=3464)
        0.015660247 = weight(_text_:on in 3464) [ClassicSimilarity], result of:
          0.015660247 = score(doc=3464,freq=4.0), product of:
            0.07594867 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.034531306 = queryNorm
            0.20619515 = fieldWeight in 3464, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.046875 = fieldNorm(doc=3464)
      0.27272728 = coord(3/11)
    
    Abstract
    We propose a new hybrid clustering framework to incorporate text mining with bibliometrics in journal set analysis. The framework integrates two different approaches: clustering ensemble and kernel-fusion clustering. To improve the flexibility and the efficiency of processing large-scale data, we propose an information-based weighting scheme to leverage the effect of multiple data sources in hybrid clustering. Three different algorithms are extended by the proposed weighting scheme and they are employed on a large journal set retrieved from the Web of Science (WoS) database. The clustering performance of the proposed algorithms is systematically evaluated using multiple evaluation methods, and they were cross-compared with alternative methods. Experimental results demonstrate that the proposed weighted hybrid clustering strategy is superior to other methods in clustering performance and efficiency. The proposed approach also provides a more refined structural mapping of journal sets, which is useful for monitoring and detecting new trends in different scientific fields.
    Source
    Journal of the American Society for Information Science and Technology. 61(2010) no.6, S.1105-1119
  6. Schwartz, F.; Fang, Y.C.: Citation data analysis on hydrogeology (2007) 0.02
    0.020614633 = product of:
      0.07558699 = sum of:
        0.04281316 = weight(_text_:effect in 433) [ClassicSimilarity], result of:
          0.04281316 = score(doc=433,freq=2.0), product of:
            0.18289955 = queryWeight, product of:
              5.29663 = idf(docFreq=601, maxDocs=44218)
              0.034531306 = queryNorm
            0.23408018 = fieldWeight in 433, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.29663 = idf(docFreq=601, maxDocs=44218)
              0.03125 = fieldNorm(doc=433)
        0.016266478 = weight(_text_:of in 433) [ClassicSimilarity], result of:
          0.016266478 = score(doc=433,freq=38.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.30123898 = fieldWeight in 433, product of:
              6.164414 = tf(freq=38.0), with freq of:
                38.0 = termFreq=38.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.03125 = fieldNorm(doc=433)
        0.016507352 = weight(_text_:on in 433) [ClassicSimilarity], result of:
          0.016507352 = score(doc=433,freq=10.0), product of:
            0.07594867 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.034531306 = queryNorm
            0.21734878 = fieldWeight in 433, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.03125 = fieldNorm(doc=433)
      0.27272728 = coord(3/11)
    
    Abstract
    This article explores the status of research in hydrogeology using data mining techniques. First we try to explain what citation analysis is and review some of the previous work on citation analysis. The main idea in this article is to address some common issues about citation numbers and the use of these data. To validate the use of citation numbers, we compare the citation patterns for Water Resources Research papers in the 1980s with those in the 1990s. The citation growths for highly cited authors from the 1980s are used to examine whether it is possible to predict the citation patterns for highly-cited authors in the 1990s. If the citation data prove to be steady and stable, these numbers then can be used to explore the evolution of science in hydrogeology. The famous quotation, "If you are not the lead dog, the scenery never changes," attributed to Lee Iacocca, points to the importance of an entrepreneurial spirit in all forms of endeavor. In the case of hydrogeological research, impact analysis makes it clear how important it is to be a pioneer. Statistical correlation coefficients are used to retrieve papers among a collection of 2,847 papers before and after 1991 sharing the same topics with 273 papers in 1991 in Water Resources Research. The numbers of papers before and after 1991 are then plotted against various levels of citations for papers in 1991 to compare the distributions of paper population before and after that year. The similarity metrics based on word counts can ensure that the "before" papers are like ancestors and "after" papers are descendants in the same type of research. This exercise gives us an idea of how many papers are populated before and after 1991 (1991 is chosen based on balanced numbers of papers before and after that year). In addition, the impact of papers is measured in terms of citation presented as "percentile," a relative measure based on rankings in one year, in order to minimize the effect of time.
    Source
    Journal of the American Society for Information Science and Technology. 58(2007) no.4, S.518-525
  7. KDD : techniques and applications (1998) 0.02
    0.016749106 = product of:
      0.061413385 = sum of:
        0.011195358 = weight(_text_:of in 6783) [ClassicSimilarity], result of:
          0.011195358 = score(doc=6783,freq=2.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.20732689 = fieldWeight in 6783, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.09375 = fieldNorm(doc=6783)
        0.022146935 = weight(_text_:on in 6783) [ClassicSimilarity], result of:
          0.022146935 = score(doc=6783,freq=2.0), product of:
            0.07594867 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.034531306 = queryNorm
            0.29160398 = fieldWeight in 6783, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.09375 = fieldNorm(doc=6783)
        0.02807109 = product of:
          0.05614218 = sum of:
            0.05614218 = weight(_text_:22 in 6783) [ClassicSimilarity], result of:
              0.05614218 = score(doc=6783,freq=2.0), product of:
                0.12092275 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.034531306 = queryNorm
                0.46428138 = fieldWeight in 6783, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=6783)
          0.5 = coord(1/2)
      0.27272728 = coord(3/11)
    
    Footnote
    A special issue of selected papers from the Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD'97), held Singapore, 22-23 Feb 1997
  8. Matson, L.D.; Bonski, D.J.: Do digital libraries need librarians? (1997) 0.02
    0.016149351 = product of:
      0.059214287 = sum of:
        0.014927144 = weight(_text_:of in 1737) [ClassicSimilarity], result of:
          0.014927144 = score(doc=1737,freq=8.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.27643585 = fieldWeight in 1737, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0625 = fieldNorm(doc=1737)
        0.025573079 = weight(_text_:on in 1737) [ClassicSimilarity], result of:
          0.025573079 = score(doc=1737,freq=6.0), product of:
            0.07594867 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.034531306 = queryNorm
            0.33671528 = fieldWeight in 1737, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0625 = fieldNorm(doc=1737)
        0.018714061 = product of:
          0.037428122 = sum of:
            0.037428122 = weight(_text_:22 in 1737) [ClassicSimilarity], result of:
              0.037428122 = score(doc=1737,freq=2.0), product of:
                0.12092275 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.034531306 = queryNorm
                0.30952093 = fieldWeight in 1737, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1737)
          0.5 = coord(1/2)
      0.27272728 = coord(3/11)
    
    Abstract
    Defines digital libraries and discusses the effects of new technology on librarians. Examines the different viewpoints of librarians and information technologists on digital libraries. Describes the development of a digital library at the National Drug Intelligence Center, USA, which was carried out in collaboration with information technology experts. The system is based on Web enabled search technology to find information, data visualization and data mining to visualize it and use of SGML as an information standard to store it
    Date
    22.11.1998 18:57:22
  9. Raan, A.F.J. van; Noyons, E.C.M.: Discovery of patterns of scientific and technological development and knowledge transfer (2002) 0.01
    0.0136785405 = product of:
      0.07523197 = sum of:
        0.021376489 = weight(_text_:of in 3603) [ClassicSimilarity], result of:
          0.021376489 = score(doc=3603,freq=42.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.39587128 = fieldWeight in 3603, product of:
              6.4807405 = tf(freq=42.0), with freq of:
                42.0 = termFreq=42.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3603)
        0.053855482 = weight(_text_:technological in 3603) [ClassicSimilarity], result of:
          0.053855482 = score(doc=3603,freq=2.0), product of:
            0.18347798 = queryWeight, product of:
              5.3133807 = idf(docFreq=591, maxDocs=44218)
              0.034531306 = queryNorm
            0.29352558 = fieldWeight in 3603, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.3133807 = idf(docFreq=591, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3603)
      0.18181819 = coord(2/11)
    
    Abstract
    This paper addresses a bibliometric methodology to discover the structure of the scientific 'landscape' in order to gain detailed insight into the development of MD fields, their interaction, and the transfer of knowledge between them. This methodology is appropriate to visualize the position of MD activities in relation to interdisciplinary MD developments, and particularly in relation to socio-economic problems. Furthermore, it allows the identification of the major actors. It even provides the possibility of foresight. We describe a first approach to apply bibliometric mapping as an instrument to investigate characteristics of knowledge transfer. In this paper we discuss the creation of 'maps of science' with help of advanced bibliometric methods. This 'bibliometric cartography' can be seen as a specific type of data-mining, applied to large amounts of scientific publications. As an example we describe the mapping of the field neuroscience, one of the largest and fast growing fields in the life sciences. The number of publications covered by this database is about 80,000 per year, the period covered is 1995-1998. Current research is going an to update the mapping for the years 1999-2002. This paper addresses the main lines of the methodology and its application in the study of knowledge transfer.
    Source
    Gaining insight from research information (CRIS2002): Proceedings of the 6th International Conference an Current Research Information Systems, University of Kassel, August 29 - 31, 2002. Eds: W. Adamczak u. A. Nase
  10. Hofstede, A.H.M. ter; Proper, H.A.; Van der Weide, T.P.: Exploiting fact verbalisation in conceptual information modelling (1997) 0.01
    0.012701526 = product of:
      0.04657226 = sum of:
        0.01727841 = weight(_text_:of in 2908) [ClassicSimilarity], result of:
          0.01727841 = score(doc=2908,freq=14.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.31997898 = fieldWeight in 2908, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2908)
        0.012919044 = weight(_text_:on in 2908) [ClassicSimilarity], result of:
          0.012919044 = score(doc=2908,freq=2.0), product of:
            0.07594867 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.034531306 = queryNorm
            0.17010231 = fieldWeight in 2908, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2908)
        0.016374804 = product of:
          0.03274961 = sum of:
            0.03274961 = weight(_text_:22 in 2908) [ClassicSimilarity], result of:
              0.03274961 = score(doc=2908,freq=2.0), product of:
                0.12092275 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.034531306 = queryNorm
                0.2708308 = fieldWeight in 2908, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2908)
          0.5 = coord(1/2)
      0.27272728 = coord(3/11)
    
    Abstract
    Focuses on the information modelling side of conceptual modelling. Deals with the exploitation of fact verbalisations after finishing the actual information system. Verbalisations are used as input for the design of the so-called information model. Exploits these verbalisation in 4 directions: considers their use for a conceptual query language, the verbalisation of instances, the description of the contents of a database and for the verbalisation of queries in a computer supported query environment. Provides an example session with an envisioned tool for end user query formulations that exploits the verbalisation
    Source
    Information systems. 22(1997) nos.5/6, S.349-385
  11. Gill, A.J.; Hinrichs-Krapels, S.; Blanke, T.; Grant, J.; Hedges, M.; Tanner, S.: Insight workflow : systematically combining human and computational methods to explore textual data (2017) 0.01
    0.012507753 = product of:
      0.06879264 = sum of:
        0.05263353 = weight(_text_:higher in 3682) [ClassicSimilarity], result of:
          0.05263353 = score(doc=3682,freq=2.0), product of:
            0.18138453 = queryWeight, product of:
              5.252756 = idf(docFreq=628, maxDocs=44218)
              0.034531306 = queryNorm
            0.2901765 = fieldWeight in 3682, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.252756 = idf(docFreq=628, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3682)
        0.016159108 = weight(_text_:of in 3682) [ClassicSimilarity], result of:
          0.016159108 = score(doc=3682,freq=24.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.2992506 = fieldWeight in 3682, product of:
              4.8989797 = tf(freq=24.0), with freq of:
                24.0 = termFreq=24.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3682)
      0.18181819 = coord(2/11)
    
    Abstract
    Analyzing large quantities of real-world textual data has the potential to provide new insights for researchers. However, such data present challenges for both human and computational methods, requiring a diverse range of specialist skills, often shared across a number of individuals. In this paper we use the analysis of a real-world data set as our case study, and use this exploration as a demonstration of our "insight workflow," which we present for use and adaptation by other researchers. The data we use are impact case study documents collected as part of the UK Research Excellence Framework (REF), consisting of 6,679 documents and 6.25 million words; the analysis was commissioned by the Higher Education Funding Council for England (published as report HEFCE 2015). In our exploration and analysis we used a variety of techniques, ranging from keyword in context and frequency information to more sophisticated methods (topic modeling), with these automated techniques providing an empirical point of entry for in-depth and intensive human analysis. We present the 60 topics to demonstrate the output of our methods, and illustrate how the variety of analysis techniques can be combined to provide insights. We note potential limitations and propose future work.
    Source
    Journal of the Association for Information Science and Technology. 68(2017) no.7, S.1671-1686
  12. Fonseca, F.; Marcinkowski, M.; Davis, C.: Cyber-human systems of thought and understanding (2019) 0.01
    0.01214653 = product of:
      0.044537276 = sum of:
        0.019790784 = weight(_text_:of in 5011) [ClassicSimilarity], result of:
          0.019790784 = score(doc=5011,freq=36.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.36650562 = fieldWeight in 5011, product of:
              6.0 = tf(freq=36.0), with freq of:
                36.0 = termFreq=36.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5011)
        0.013050207 = weight(_text_:on in 5011) [ClassicSimilarity], result of:
          0.013050207 = score(doc=5011,freq=4.0), product of:
            0.07594867 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.034531306 = queryNorm
            0.1718293 = fieldWeight in 5011, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5011)
        0.011696288 = product of:
          0.023392577 = sum of:
            0.023392577 = weight(_text_:22 in 5011) [ClassicSimilarity], result of:
              0.023392577 = score(doc=5011,freq=2.0), product of:
                0.12092275 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.034531306 = queryNorm
                0.19345059 = fieldWeight in 5011, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5011)
          0.5 = coord(1/2)
      0.27272728 = coord(3/11)
    
    Abstract
    The present challenge faced by scientists working with Big Data comes in the overwhelming volume and level of detail provided by current data sets. Exceeding traditional empirical approaches, Big Data opens a new perspective on scientific work in which data comes to play a role in the development of the scientific problematic to be developed. Addressing this reconfiguration of our relationship with data through readings of Wittgenstein, Macherey, and Popper, we propose a picture of science that encourages scientists to engage with the data in a direct way, using the data itself as an instrument for scientific investigation. Using GIS as a theme, we develop the concept of cyber-human systems of thought and understanding to bridge the divide between representative (theoretical) thinking and (non-theoretical) data-driven science. At the foundation of these systems, we invoke the concept of the "semantic pixel" to establish a logical and virtual space linking data and the work of scientists. It is with this discussion of the relationship between analysts in their pursuit of knowledge and the rise of Big Data that this present discussion of the philosophical foundations of Big Data addresses the central questions raised by social informatics research.
    Date
    7. 3.2019 16:32:22
    Footnote
    Beitrag eines Special issue on social informatics of knowledge
    Source
    Journal of the Association for Information Science and Technology. 70(2019) no.4, S.402-411
  13. Amir, A.; Feldman, R.; Kashi, R.: ¬A new and versatile method for association generation (1997) 0.01
    0.01116607 = product of:
      0.040942255 = sum of:
        0.007463572 = weight(_text_:of in 1270) [ClassicSimilarity], result of:
          0.007463572 = score(doc=1270,freq=2.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.13821793 = fieldWeight in 1270, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0625 = fieldNorm(doc=1270)
        0.014764623 = weight(_text_:on in 1270) [ClassicSimilarity], result of:
          0.014764623 = score(doc=1270,freq=2.0), product of:
            0.07594867 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.034531306 = queryNorm
            0.19440265 = fieldWeight in 1270, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0625 = fieldNorm(doc=1270)
        0.018714061 = product of:
          0.037428122 = sum of:
            0.037428122 = weight(_text_:22 in 1270) [ClassicSimilarity], result of:
              0.037428122 = score(doc=1270,freq=2.0), product of:
                0.12092275 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.034531306 = queryNorm
                0.30952093 = fieldWeight in 1270, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1270)
          0.5 = coord(1/2)
      0.27272728 = coord(3/11)
    
    Abstract
    Current algorithms for finding associations among the attributes describing data in a database have a number of shortcomings. Presents a novel method for association generation, that answers all desiderata. The method is different from all existing algorithms and especially suitable to textual databases with binary attributes. Uses subword trees for quick indexing into the required database statistics. Tests the algorithm on the Reuters-22173 database with satisfactory results
    Source
    Information systems. 22(1997) nos.5/6, S.333-347
  14. Vaughan, L.; Chen, Y.: Data mining from web search queries : a comparison of Google trends and Baidu index (2015) 0.01
    0.011156074 = product of:
      0.040905602 = sum of:
        0.016159108 = weight(_text_:of in 1605) [ClassicSimilarity], result of:
          0.016159108 = score(doc=1605,freq=24.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.2992506 = fieldWeight in 1605, product of:
              4.8989797 = tf(freq=24.0), with freq of:
                24.0 = termFreq=24.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1605)
        0.013050207 = weight(_text_:on in 1605) [ClassicSimilarity], result of:
          0.013050207 = score(doc=1605,freq=4.0), product of:
            0.07594867 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.034531306 = queryNorm
            0.1718293 = fieldWeight in 1605, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1605)
        0.011696288 = product of:
          0.023392577 = sum of:
            0.023392577 = weight(_text_:22 in 1605) [ClassicSimilarity], result of:
              0.023392577 = score(doc=1605,freq=2.0), product of:
                0.12092275 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.034531306 = queryNorm
                0.19345059 = fieldWeight in 1605, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1605)
          0.5 = coord(1/2)
      0.27272728 = coord(3/11)
    
    Abstract
    Numerous studies have explored the possibility of uncovering information from web search queries but few have examined the factors that affect web query data sources. We conducted a study that investigated this issue by comparing Google Trends and Baidu Index. Data from these two services are based on queries entered by users into Google and Baidu, two of the largest search engines in the world. We first compared the features and functions of the two services based on documents and extensive testing. We then carried out an empirical study that collected query volume data from the two sources. We found that data from both sources could be used to predict the quality of Chinese universities and companies. Despite the differences between the two services in terms of technology, such as differing methods of language processing, the search volume data from the two were highly correlated and combining the two data sources did not improve the predictive power of the data. However, there was a major difference between the two in terms of data availability. Baidu Index was able to provide more search volume data than Google Trends did. Our analysis showed that the disadvantage of Google Trends in this regard was due to Google's smaller user base in China. The implication of this finding goes beyond China. Google's user bases in many countries are smaller than that in China, so the search volume data related to those countries could result in the same issue as that related to China.
    Source
    Journal of the Association for Information Science and Technology. 66(2015) no.1, S.13-22
  15. Kong, S.; Ye, F.; Feng, L.; Zhao, Z.: Towards the prediction problems of bursting hashtags on Twitter (2015) 0.01
    0.008181673 = product of:
      0.044999197 = sum of:
        0.022622751 = weight(_text_:of in 2338) [ClassicSimilarity], result of:
          0.022622751 = score(doc=2338,freq=24.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.41895083 = fieldWeight in 2338, product of:
              4.8989797 = tf(freq=24.0), with freq of:
                24.0 = termFreq=24.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2338)
        0.022376444 = weight(_text_:on in 2338) [ClassicSimilarity], result of:
          0.022376444 = score(doc=2338,freq=6.0), product of:
            0.07594867 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.034531306 = queryNorm
            0.29462588 = fieldWeight in 2338, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2338)
      0.18181819 = coord(2/11)
    
    Abstract
    Hundreds of thousands of hashtags are generated every day on Twitter. Only a few will burst and become trending topics. In this article, we provide the definition of a bursting hashtag and conduct a systematic study of a series of challenging prediction problems that span the entire life cycles of bursting hashtags. Around the problem of "how to build a system to predict bursting hashtags," we explore different types of features and present machine learning solutions. On real data sets from Twitter, experiments are conducted to evaluate the effectiveness of the proposed solutions and the contributions of features.
    Source
    Journal of the Association for Information Science and Technology. 66(2015) no.12, S.2566-2579
  16. Leydesdorff, L.; Persson, O.: Mapping the geography of science : distribution patterns and networks of relations among cities and institutes (2010) 0.01
    0.0074022426 = product of:
      0.040712334 = sum of:
        0.018565401 = weight(_text_:of in 3704) [ClassicSimilarity], result of:
          0.018565401 = score(doc=3704,freq=22.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.34381276 = fieldWeight in 3704, product of:
              4.690416 = tf(freq=22.0), with freq of:
                22.0 = termFreq=22.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.046875 = fieldNorm(doc=3704)
        0.022146935 = weight(_text_:on in 3704) [ClassicSimilarity], result of:
          0.022146935 = score(doc=3704,freq=8.0), product of:
            0.07594867 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.034531306 = queryNorm
            0.29160398 = fieldWeight in 3704, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.046875 = fieldNorm(doc=3704)
      0.18181819 = coord(2/11)
    
    Abstract
    Using Google Earth, Google Maps, and/or network visualization programs such as Pajek, one can overlay the network of relations among addresses in scientific publications onto the geographic map. The authors discuss the pros and cons of various options, and provide software (freeware) for bridging existing gaps between the Science Citation Indices (Thomson Reuters) and Scopus (Elsevier), on the one hand, and these various visualization tools on the other. At the level of city names, the global map can be drawn reliably on the basis of the available address information. At the level of the names of organizations and institutes, there are problems of unification both in the ISI databases and with Scopus. Pajek enables a combination of visualization and statistical analysis, whereas the Google Maps and its derivatives provide superior tools on the Internet.
    Source
    Journal of the American Society for Information Science and Technology. 61(2010) no.8, S.1622-1634
  17. Lingras, P.J.; Yao, Y.Y.: Data mining using extensions of the rough set model (1998) 0.01
    0.006976935 = product of:
      0.038373142 = sum of:
        0.0159967 = weight(_text_:of in 2910) [ClassicSimilarity], result of:
          0.0159967 = score(doc=2910,freq=12.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.29624295 = fieldWeight in 2910, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2910)
        0.022376444 = weight(_text_:on in 2910) [ClassicSimilarity], result of:
          0.022376444 = score(doc=2910,freq=6.0), product of:
            0.07594867 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.034531306 = queryNorm
            0.29462588 = fieldWeight in 2910, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2910)
      0.18181819 = coord(2/11)
    
    Abstract
    Examines basic issues of data mining using the theory of rough sets, which is a recent proposal for generalizing classical set theory. The Pawlak rough set model is based on the concept of an equivalence relation. A generalized rough set model need not be based on equivalence relation axioms. The Pawlak rough set model has been used for deriving deterministic as well as probabilistic rules froma complete database. Demonstrates that a generalised rough set model can be used for generating rules from incomplete databases. These rules are based on plausability functions proposed by Shafer. Discusses the importance of rule extraction from incomplete databases in data mining
    Source
    Journal of the American Society for Information Science. 49(1998) no.5, S.415-422
  18. Information visualization in data mining and knowledge discovery (2002) 0.01
    0.0066896672 = product of:
      0.02452878 = sum of:
        0.016159108 = weight(_text_:of in 1789) [ClassicSimilarity], result of:
          0.016159108 = score(doc=1789,freq=150.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.2992506 = fieldWeight in 1789, product of:
              12.247449 = tf(freq=150.0), with freq of:
                150.0 = termFreq=150.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.015625 = fieldNorm(doc=1789)
        0.0036911557 = weight(_text_:on in 1789) [ClassicSimilarity], result of:
          0.0036911557 = score(doc=1789,freq=2.0), product of:
            0.07594867 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.034531306 = queryNorm
            0.048600662 = fieldWeight in 1789, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.015625 = fieldNorm(doc=1789)
        0.0046785153 = product of:
          0.0093570305 = sum of:
            0.0093570305 = weight(_text_:22 in 1789) [ClassicSimilarity], result of:
              0.0093570305 = score(doc=1789,freq=2.0), product of:
                0.12092275 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.034531306 = queryNorm
                0.07738023 = fieldWeight in 1789, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.015625 = fieldNorm(doc=1789)
          0.5 = coord(1/2)
      0.27272728 = coord(3/11)
    
    Date
    23. 3.2008 19:10:22
    Footnote
    Rez. in: JASIST 54(2003) no.9, S.905-906 (C.A. Badurek): "Visual approaches for knowledge discovery in very large databases are a prime research need for information scientists focused an extracting meaningful information from the ever growing stores of data from a variety of domains, including business, the geosciences, and satellite and medical imagery. This work presents a summary of research efforts in the fields of data mining, knowledge discovery, and data visualization with the goal of aiding the integration of research approaches and techniques from these major fields. The editors, leading computer scientists from academia and industry, present a collection of 32 papers from contributors who are incorporating visualization and data mining techniques through academic research as well application development in industry and government agencies. Information Visualization focuses upon techniques to enhance the natural abilities of humans to visually understand data, in particular, large-scale data sets. It is primarily concerned with developing interactive graphical representations to enable users to more intuitively make sense of multidimensional data as part of the data exploration process. It includes research from computer science, psychology, human-computer interaction, statistics, and information science. Knowledge Discovery in Databases (KDD) most often refers to the process of mining databases for previously unknown patterns and trends in data. Data mining refers to the particular computational methods or algorithms used in this process. The data mining research field is most related to computational advances in database theory, artificial intelligence and machine learning. This work compiles research summaries from these main research areas in order to provide "a reference work containing the collection of thoughts and ideas of noted researchers from the fields of data mining and data visualization" (p. 8). It addresses these areas in three main sections: the first an data visualization, the second an KDD and model visualization, and the last an using visualization in the knowledge discovery process. The seven chapters of Part One focus upon methodologies and successful techniques from the field of Data Visualization. Hoffman and Grinstein (Chapter 2) give a particularly good overview of the field of data visualization and its potential application to data mining. An introduction to the terminology of data visualization, relation to perceptual and cognitive science, and discussion of the major visualization display techniques are presented. Discussion and illustration explain the usefulness and proper context of such data visualization techniques as scatter plots, 2D and 3D isosurfaces, glyphs, parallel coordinates, and radial coordinate visualizations. Remaining chapters present the need for standardization of visualization methods, discussion of user requirements in the development of tools, and examples of using information visualization in addressing research problems.
    In 13 chapters, Part Two provides an introduction to KDD, an overview of data mining techniques, and examples of the usefulness of data model visualizations. The importance of visualization throughout the KDD process is stressed in many of the chapters. In particular, the need for measures of visualization effectiveness, benchmarking for identifying best practices, and the use of standardized sample data sets is convincingly presented. Many of the important data mining approaches are discussed in this complementary context. Cluster and outlier detection, classification techniques, and rule discovery algorithms are presented as the basic techniques common to the KDD process. The potential effectiveness of using visualization in the data modeling process are illustrated in chapters focused an using visualization for helping users understand the KDD process, ask questions and form hypotheses about their data, and evaluate the accuracy and veracity of their results. The 11 chapters of Part Three provide an overview of the KDD process and successful approaches to integrating KDD, data mining, and visualization in complementary domains. Rhodes (Chapter 21) begins this section with an excellent overview of the relation between the KDD process and data mining techniques. He states that the "primary goals of data mining are to describe the existing data and to predict the behavior or characteristics of future data of the same type" (p. 281). These goals are met by data mining tasks such as classification, regression, clustering, summarization, dependency modeling, and change or deviation detection. Subsequent chapters demonstrate how visualization can aid users in the interactive process of knowledge discovery by graphically representing the results from these iterative tasks. Finally, examples of the usefulness of integrating visualization and data mining tools in the domain of business, imagery and text mining, and massive data sets are provided. This text concludes with a thorough and useful 17-page index and lengthy yet integrating 17-page summary of the academic and industrial backgrounds of the contributing authors. A 16-page set of color inserts provide a better representation of the visualizations discussed, and a URL provided suggests that readers may view all the book's figures in color on-line, although as of this submission date it only provides access to a summary of the book and its contents. The overall contribution of this work is its focus an bridging two distinct areas of research, making it a valuable addition to the Morgan Kaufmann Series in Database Management Systems. The editors of this text have met their main goal of providing the first textbook integrating knowledge discovery, data mining, and visualization. Although it contributes greatly to our under- standing of the development and current state of the field, a major weakness of this text is that there is no concluding chapter to discuss the contributions of the sum of these contributed papers or give direction to possible future areas of research. "Integration of expertise between two different disciplines is a difficult process of communication and reeducation. Integrating data mining and visualization is particularly complex because each of these fields in itself must draw an a wide range of research experience" (p. 300). Although this work contributes to the crossdisciplinary communication needed to advance visualization in KDD, a more formal call for an interdisciplinary research agenda in a concluding chapter would have provided a more satisfying conclusion to a very good introductory text.
    With contributors almost exclusively from the computer science field, the intended audience of this work is heavily slanted towards a computer science perspective. However, it is highly readable and provides introductory material that would be useful to information scientists from a variety of domains. Yet, much interesting work in information visualization from other fields could have been included giving the work more of an interdisciplinary perspective to complement their goals of integrating work in this area. Unfortunately, many of the application chapters are these, shallow, and lack complementary illustrations of visualization techniques or user interfaces used. However, they do provide insight into the many applications being developed in this rapidly expanding field. The authors have successfully put together a highly useful reference text for the data mining and information visualization communities. Those interested in a good introduction and overview of complementary research areas in these fields will be satisfied with this collection of papers. The focus upon integrating data visualization with data mining complements texts in each of these fields, such as Advances in Knowledge Discovery and Data Mining (Fayyad et al., MIT Press) and Readings in Information Visualization: Using Vision to Think (Card et. al., Morgan Kauffman). This unique work is a good starting point for future interaction between researchers in the fields of data visualization and data mining and makes a good accompaniment for a course focused an integrating these areas or to the main reference texts in these fields."
  19. Shi, X.; Yang, C.C.: Mining related queries from Web search engine query logs using an improved association rule mining model (2007) 0.01
    0.0065086326 = product of:
      0.035797477 = sum of:
        0.013193856 = weight(_text_:of in 597) [ClassicSimilarity], result of:
          0.013193856 = score(doc=597,freq=16.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.24433708 = fieldWeight in 597, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0390625 = fieldNorm(doc=597)
        0.02260362 = weight(_text_:on in 597) [ClassicSimilarity], result of:
          0.02260362 = score(doc=597,freq=12.0), product of:
            0.07594867 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.034531306 = queryNorm
            0.29761705 = fieldWeight in 597, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0390625 = fieldNorm(doc=597)
      0.18181819 = coord(2/11)
    
    Abstract
    With the overwhelming volume of information, the task of finding relevant information on a given topic on the Web is becoming increasingly difficult. Web search engines hence become one of the most popular solutions available on the Web. However, it has never been easy for novice users to organize and represent their information needs using simple queries. Users have to keep modifying their input queries until they get expected results. Therefore, it is often desirable for search engines to give suggestions on related queries to users. Besides, by identifying those related queries, search engines can potentially perform optimizations on their systems, such as query expansion and file indexing. In this work we propose a method that suggests a list of related queries given an initial input query. The related queries are based in the query log of previously submitted queries by human users, which can be identified using an enhanced model of association rules. Users can utilize the suggested related queries to tune or redirect the search process. Our method not only discovers the related queries, but also ranks them according to the degree of their relatedness. Unlike many other rival techniques, it also performs reasonably well on less frequent input queries.
    Source
    Journal of the American Society for Information Science and Technology. 58(2007) no.12, S.1871-1883
  20. Baeza-Yates, R.; Hurtado, C.; Mendoza, M.: Improving search engines by query clustering (2007) 0.01
    0.0064634006 = product of:
      0.035548702 = sum of:
        0.01727841 = weight(_text_:of in 601) [ClassicSimilarity], result of:
          0.01727841 = score(doc=601,freq=14.0), product of:
            0.053998582 = queryWeight, product of:
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.034531306 = queryNorm
            0.31997898 = fieldWeight in 601, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.5637573 = idf(docFreq=25162, maxDocs=44218)
              0.0546875 = fieldNorm(doc=601)
        0.01827029 = weight(_text_:on in 601) [ClassicSimilarity], result of:
          0.01827029 = score(doc=601,freq=4.0), product of:
            0.07594867 = queryWeight, product of:
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.034531306 = queryNorm
            0.24056101 = fieldWeight in 601, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.199415 = idf(docFreq=13325, maxDocs=44218)
              0.0546875 = fieldNorm(doc=601)
      0.18181819 = coord(2/11)
    
    Abstract
    In this paper, we present a framework for clustering Web search engine queries whose aim is to identify groups of queries used to search for similar information on the Web. The framework is based on a novel term vector model of queries that integrates user selections and the content of selected documents extracted from the logs of a search engine. The query representation obtained allows us to treat query clustering similarly to standard document clustering. We study the application of the clustering framework to two problems: relevance ranking boosting and query recommendation. Finally, we evaluate with experiments the effectiveness of our approach.
    Source
    Journal of the American Society for Information Science and Technology. 58(2007) no.12, S.1793-1804

Years

Languages

  • e 127
  • d 11
  • sp 1
  • More… Less…

Types