Search (1787 results, page 1 of 90)

  • × year_i:[2000 TO 2010}
  1. Ackermann, E.: Piaget's constructivism, Papert's constructionism : what's the difference? (2001) 0.13
    0.13145599 = sum of:
      0.06810251 = product of:
        0.20430753 = sum of:
          0.20430753 = weight(_text_:3a in 692) [ClassicSimilarity], result of:
            0.20430753 = score(doc=692,freq=2.0), product of:
              0.4362298 = queryWeight, product of:
                8.478011 = idf(docFreq=24, maxDocs=44218)
                0.05145426 = queryNorm
              0.46834838 = fieldWeight in 692, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                8.478011 = idf(docFreq=24, maxDocs=44218)
                0.0390625 = fieldNorm(doc=692)
        0.33333334 = coord(1/3)
      0.06335347 = product of:
        0.12670694 = sum of:
          0.12670694 = weight(_text_:learning in 692) [ClassicSimilarity], result of:
            0.12670694 = score(doc=692,freq=10.0), product of:
              0.22973695 = queryWeight, product of:
                4.464877 = idf(docFreq=1382, maxDocs=44218)
                0.05145426 = queryNorm
              0.55153054 = fieldWeight in 692, product of:
                3.1622777 = tf(freq=10.0), with freq of:
                  10.0 = termFreq=10.0
                4.464877 = idf(docFreq=1382, maxDocs=44218)
                0.0390625 = fieldNorm(doc=692)
        0.5 = coord(1/2)
    
    Abstract
    What is the difference between Piaget's constructivism and Papert's "constructionism"? Beyond the mere play on the words, I think the distinction holds, and that integrating both views can enrich our understanding of how people learn and grow. Piaget's constructivism offers a window into what children are interested in, and able to achieve, at different stages of their development. The theory describes how children's ways of doing and thinking evolve over time, and under which circumstance children are more likely to let go of-or hold onto- their currently held views. Piaget suggests that children have very good reasons not to abandon their worldviews just because someone else, be it an expert, tells them they're wrong. Papert's constructionism, in contrast, focuses more on the art of learning, or 'learning to learn', and on the significance of making things in learning. Papert is interested in how learners engage in a conversation with [their own or other people's] artifacts, and how these conversations boost self-directed learning, and ultimately facilitate the construction of new knowledge. He stresses the importance of tools, media, and context in human development. Integrating both perspectives illuminates the processes by which individuals come to make sense of their experience, gradually optimizing their interactions with the world.
    Content
    Vgl.: https://www.semanticscholar.org/paper/Piaget-%E2%80%99-s-Constructivism-%2C-Papert-%E2%80%99-s-%3A-What-%E2%80%99-s-Ackermann/89cbcc1e740a4591443ff4765a6ae8df0fdf5554. Darunter weitere Hinweise auf verwandte Beiträge. Auch unter: Learning Group Publication 5(2001) no.3, S.438.
  2. Limberg, L.; Alexandersson, M.: Learning and information seeking (2009) 0.12
    0.1186158 = product of:
      0.2372316 = sum of:
        0.2372316 = sum of:
          0.18793677 = weight(_text_:learning in 3838) [ClassicSimilarity], result of:
            0.18793677 = score(doc=3838,freq=22.0), product of:
              0.22973695 = queryWeight, product of:
                4.464877 = idf(docFreq=1382, maxDocs=44218)
                0.05145426 = queryNorm
              0.818052 = fieldWeight in 3838, product of:
                4.690416 = tf(freq=22.0), with freq of:
                  22.0 = termFreq=22.0
                4.464877 = idf(docFreq=1382, maxDocs=44218)
                0.0390625 = fieldNorm(doc=3838)
          0.04929483 = weight(_text_:22 in 3838) [ClassicSimilarity], result of:
            0.04929483 = score(doc=3838,freq=4.0), product of:
              0.18018405 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.05145426 = queryNorm
              0.27358043 = fieldWeight in 3838, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=3838)
      0.5 = coord(1/2)
    
    Abstract
    The purpose of this entry is to present and analyze the relationship between learning and information seeking. The analysis draws on research studies on information seeking set in educational contexts and is framed in theories of learning, mainly constructivism. Themes of the entry are based on five dimensions of the relationship between learning and information seeking: 1) seeking information for learning purposes; 2) learning information seeking; 3) teaching information seeking; 4) learning from information; and 5) reshaping conditions for information seeking and learning through information and communications technologies (ICTs). Conclusions are that the fields of learning and information seeking draw nearer to one another partly due to educational ideas based in constructivism and partly due to the development of digital tools that reshape conditions for learning in postmodern society. This development contributes to the transformation of the professional role of librarians, implying an emphasis on the pedagogical aspects of the profession. Future prospects for information seeking research and practice linked to learning may involve strengthened interests in the cognitive authority and expertise of information as well as information sharing through communicative interaction.
    Date
    27. 8.2011 14:22:22
  3. Zhang, L.; Pan, Y.; Zhang, T.: Focused named entity recognition using machine learning (2004) 0.11
    0.10982613 = product of:
      0.21965227 = sum of:
        0.21965227 = sum of:
          0.13599616 = weight(_text_:learning in 4086) [ClassicSimilarity], result of:
            0.13599616 = score(doc=4086,freq=2.0), product of:
              0.22973695 = queryWeight, product of:
                4.464877 = idf(docFreq=1382, maxDocs=44218)
                0.05145426 = queryNorm
              0.59196466 = fieldWeight in 4086, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                4.464877 = idf(docFreq=1382, maxDocs=44218)
                0.09375 = fieldNorm(doc=4086)
          0.0836561 = weight(_text_:22 in 4086) [ClassicSimilarity], result of:
            0.0836561 = score(doc=4086,freq=2.0), product of:
              0.18018405 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.05145426 = queryNorm
              0.46428138 = fieldWeight in 4086, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.09375 = fieldNorm(doc=4086)
      0.5 = coord(1/2)
    
    Date
    15.10.2005 19:57:22
  4. Buchel, O.; Coleman, A.: How can classificatory structures be used to improve science education? (2003) 0.11
    0.10640279 = product of:
      0.21280558 = sum of:
        0.21280558 = sum of:
          0.15703484 = weight(_text_:learning in 155) [ClassicSimilarity], result of:
            0.15703484 = score(doc=155,freq=6.0), product of:
              0.22973695 = queryWeight, product of:
                4.464877 = idf(docFreq=1382, maxDocs=44218)
                0.05145426 = queryNorm
              0.68354195 = fieldWeight in 155, product of:
                2.4494898 = tf(freq=6.0), with freq of:
                  6.0 = termFreq=6.0
                4.464877 = idf(docFreq=1382, maxDocs=44218)
                0.0625 = fieldNorm(doc=155)
          0.055770736 = weight(_text_:22 in 155) [ClassicSimilarity], result of:
            0.055770736 = score(doc=155,freq=2.0), product of:
              0.18018405 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.05145426 = queryNorm
              0.30952093 = fieldWeight in 155, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0625 = fieldNorm(doc=155)
      0.5 = coord(1/2)
    
    Abstract
    There is increasing evidence that libraries, traditional and digital, must support learning, especially the acquisition and enhancement of scientific reasoning skills. This paper discusses how classificatory structures, such as a faceted thesaurus, can be enhanced for novice science learning. Physical geography is used as the domain discipline, and the Alexandria Digital Earth Prototype project provides the test bed for instructional materials and user analyses. The use of concept maps and topic maps for developing digital learning spaces is briefly discussed.
    Date
    10. 9.2000 17:38:22
  5. Hotho, A.; Bloehdorn, S.: Data Mining 2004 : Text classification by boosting weak learners based on terms and concepts (2004) 0.10
    0.10263703 = sum of:
      0.081723005 = product of:
        0.24516901 = sum of:
          0.24516901 = weight(_text_:3a in 562) [ClassicSimilarity], result of:
            0.24516901 = score(doc=562,freq=2.0), product of:
              0.4362298 = queryWeight, product of:
                8.478011 = idf(docFreq=24, maxDocs=44218)
                0.05145426 = queryNorm
              0.56201804 = fieldWeight in 562, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                8.478011 = idf(docFreq=24, maxDocs=44218)
                0.046875 = fieldNorm(doc=562)
        0.33333334 = coord(1/3)
      0.020914026 = product of:
        0.04182805 = sum of:
          0.04182805 = weight(_text_:22 in 562) [ClassicSimilarity], result of:
            0.04182805 = score(doc=562,freq=2.0), product of:
              0.18018405 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.05145426 = queryNorm
              0.23214069 = fieldWeight in 562, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=562)
        0.5 = coord(1/2)
    
    Content
    Vgl.: http://www.google.de/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&ved=0CEAQFjAA&url=http%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fdownload%3Fdoi%3D10.1.1.91.4940%26rep%3Drep1%26type%3Dpdf&ei=dOXrUMeIDYHDtQahsIGACg&usg=AFQjCNHFWVh6gNPvnOrOS9R3rkrXCNVD-A&sig2=5I2F5evRfMnsttSgFF9g7Q&bvm=bv.1357316858,d.Yms.
    Date
    8. 1.2013 10:22:32
  6. Nyseter, T.: Learning centres and knowledge management : based on common ideas? (2005) 0.09
    0.09310245 = product of:
      0.1862049 = sum of:
        0.1862049 = sum of:
          0.1374055 = weight(_text_:learning in 3014) [ClassicSimilarity], result of:
            0.1374055 = score(doc=3014,freq=6.0), product of:
              0.22973695 = queryWeight, product of:
                4.464877 = idf(docFreq=1382, maxDocs=44218)
                0.05145426 = queryNorm
              0.59809923 = fieldWeight in 3014, product of:
                2.4494898 = tf(freq=6.0), with freq of:
                  6.0 = termFreq=6.0
                4.464877 = idf(docFreq=1382, maxDocs=44218)
                0.0546875 = fieldNorm(doc=3014)
          0.04879939 = weight(_text_:22 in 3014) [ClassicSimilarity], result of:
            0.04879939 = score(doc=3014,freq=2.0), product of:
              0.18018405 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.05145426 = queryNorm
              0.2708308 = fieldWeight in 3014, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0546875 = fieldNorm(doc=3014)
      0.5 = coord(1/2)
    
    Abstract
    New roles for libraries and librarians in the information and knowledge society are discussed worldwide. The purpose of this paper is to present the ideas behind the philosophy of Learning Centres (LC) and Knowledge Management (KM) respectively, and make a comparative study between the two approaches. The paper is based on KM theory and a case-study of the Learning Centres at Oslo University College (OUC), and was originally written as a theme paper in connection to the course "Information in Organizations and Knowledge Management" which is part of the Masters' programme in Library and Information science at OUC.
    Date
    22. 7.2009 11:55:29
  7. Harrer, A.; Lohmann, S.: Potenziale von Tagging als partizipative Methode für Lehrportale und E-Learning-Kurse (2008) 0.08
    0.080495246 = product of:
      0.16099049 = sum of:
        0.16099049 = sum of:
          0.1121911 = weight(_text_:learning in 2889) [ClassicSimilarity], result of:
            0.1121911 = score(doc=2889,freq=4.0), product of:
              0.22973695 = queryWeight, product of:
                4.464877 = idf(docFreq=1382, maxDocs=44218)
                0.05145426 = queryNorm
              0.48834592 = fieldWeight in 2889, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                4.464877 = idf(docFreq=1382, maxDocs=44218)
                0.0546875 = fieldNorm(doc=2889)
          0.04879939 = weight(_text_:22 in 2889) [ClassicSimilarity], result of:
            0.04879939 = score(doc=2889,freq=2.0), product of:
              0.18018405 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.05145426 = queryNorm
              0.2708308 = fieldWeight in 2889, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0546875 = fieldNorm(doc=2889)
      0.5 = coord(1/2)
    
    Abstract
    Als dynamische und einfache Form der Auszeichnung von Ressourcen kann sich Tagging im E-Learning positiv auf Partizipation, soziale Navigation und das Verständnis der Lernenden auswirken. Dieser Beitrag beleuchtet verschiedene Möglichkeiten des Einsatzes von Social Tagging in Lehrportalen und E-LearningKursen. Hierzu werden zunächst drei konkrete Anwendungsfälle dargestellt. Anschließend werden aus den Anwendungsfällen gewonnene Erkenntnisse für Lehr-/Lernszenarien zusammengefasst.
    Date
    21. 6.2009 12:22:44
  8. Fan, W.; Fox, E.A.; Pathak, P.; Wu, H.: ¬The effects of fitness functions an genetic programming-based ranking discovery for Web search (2004) 0.08
    0.079802096 = product of:
      0.15960419 = sum of:
        0.15960419 = sum of:
          0.11777613 = weight(_text_:learning in 2239) [ClassicSimilarity], result of:
            0.11777613 = score(doc=2239,freq=6.0), product of:
              0.22973695 = queryWeight, product of:
                4.464877 = idf(docFreq=1382, maxDocs=44218)
                0.05145426 = queryNorm
              0.51265645 = fieldWeight in 2239, product of:
                2.4494898 = tf(freq=6.0), with freq of:
                  6.0 = termFreq=6.0
                4.464877 = idf(docFreq=1382, maxDocs=44218)
                0.046875 = fieldNorm(doc=2239)
          0.04182805 = weight(_text_:22 in 2239) [ClassicSimilarity], result of:
            0.04182805 = score(doc=2239,freq=2.0), product of:
              0.18018405 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.05145426 = queryNorm
              0.23214069 = fieldWeight in 2239, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=2239)
      0.5 = coord(1/2)
    
    Abstract
    Genetic-based evolutionary learning algorithms, such as genetic algorithms (GAs) and genetic programming (GP), have been applied to information retrieval (IR) since the 1980s. Recently, GP has been applied to a new IR taskdiscovery of ranking functions for Web search-and has achieved very promising results. However, in our prior research, only one fitness function has been used for GP-based learning. It is unclear how other fitness functions may affect ranking function discovery for Web search, especially since it is weIl known that choosing a proper fitness function is very important for the effectiveness and efficiency of evolutionary algorithms. In this article, we report our experience in contrasting different fitness function designs an GP-based learning using a very large Web corpus. Our results indicate that the design of fitness functions is instrumental in performance improvement. We also give recommendations an the design of fitness functions for genetic-based information retrieval experiments.
    Date
    31. 5.2004 19:22:06
  9. Shoffner, M.; Greenberg, J.; Kramer-Duffield, J.; Woodbury, D.: Web 2.0 semantic systems : collaborative learning in science (2008) 0.08
    0.07805189 = product of:
      0.15610377 = sum of:
        0.15610377 = sum of:
          0.12821841 = weight(_text_:learning in 2661) [ClassicSimilarity], result of:
            0.12821841 = score(doc=2661,freq=16.0), product of:
              0.22973695 = queryWeight, product of:
                4.464877 = idf(docFreq=1382, maxDocs=44218)
                0.05145426 = queryNorm
              0.55810964 = fieldWeight in 2661, product of:
                4.0 = tf(freq=16.0), with freq of:
                  16.0 = termFreq=16.0
                4.464877 = idf(docFreq=1382, maxDocs=44218)
                0.03125 = fieldNorm(doc=2661)
          0.027885368 = weight(_text_:22 in 2661) [ClassicSimilarity], result of:
            0.027885368 = score(doc=2661,freq=2.0), product of:
              0.18018405 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.05145426 = queryNorm
              0.15476047 = fieldWeight in 2661, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.03125 = fieldNorm(doc=2661)
      0.5 = coord(1/2)
    
    Abstract
    The basic goal of education within a discipline is to transform a novice into an expert. This entails moving the novice toward the "semantic space" that the expert inhabits-the space of concepts, meanings, vocabularies, and other intellectual constructs that comprise the discipline. Metadata is significant to this goal in digitally mediated education environments. Encoding the experts' semantic space not only enables the sharing of semantics among discipline scientists, but also creates an environment that bridges the semantic gap between the common vocabulary of the novice and the granular descriptive language of the seasoned scientist (Greenberg, et al, 2005). Developments underlying the Semantic Web, where vocabularies are formalized in the Web Ontology Language (OWL), and Web 2.0 approaches of user-generated folksonomies provide an infrastructure for linking vocabulary systems and promoting group learning via metadata literacy. Group learning is a pedagogical approach to teaching that harnesses the phenomenon of "collective intelligence" to increase learning by means of collaboration. Learning a new semantic system can be daunting for a novice, and yet it is integral to advance one's knowledge in a discipline and retain interest. These ideas are key to the "BOT 2.0: Botany through Web 2.0, the Memex and Social Learning" project (Bot 2.0).72 Bot 2.0 is a collaboration involving the North Carolina Botanical Garden, the UNC SILS Metadata Research center, and the Renaissance Computing Institute (RENCI). Bot 2.0 presents a curriculum utilizing a memex as a way for students to link and share digital information, working asynchronously in an environment beyond the traditional classroom. Our conception of a memex is not a centralized black box but rather a flexible, distributed framework that uses the most salient and easiest-to-use collaborative platforms (e.g., Facebook, Flickr, wiki and blog technology) for personal information management. By meeting students "where they live" digitally, we hope to attract students to the study of botanical science. A key aspect is to teach students scientific terminology and about the value of metadata, an inherent function in several of the technologies and in the instructional approach we are utilizing. This poster will report on a study examining the value of both folksonomies and taxonomies for post-secondary college students learning plant identification. Our data is drawn from a curriculum involving a virtual independent learning portion and a "BotCamp" weekend at UNC, where students work with digital plan specimens that they have captured. Results provide some insight into the importance of collaboration and shared vocabulary for gaining confidence and for student progression from novice to expert in botany.
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas
  10. E-Learning weltweit : Lernen und Lehren (2005) 0.08
    0.075159855 = product of:
      0.15031971 = sum of:
        0.15031971 = sum of:
          0.13289136 = weight(_text_:learning in 3224) [ClassicSimilarity], result of:
            0.13289136 = score(doc=3224,freq=44.0), product of:
              0.22973695 = queryWeight, product of:
                4.464877 = idf(docFreq=1382, maxDocs=44218)
                0.05145426 = queryNorm
              0.5784501 = fieldWeight in 3224, product of:
                6.6332498 = tf(freq=44.0), with freq of:
                  44.0 = termFreq=44.0
                4.464877 = idf(docFreq=1382, maxDocs=44218)
                0.01953125 = fieldNorm(doc=3224)
          0.017428355 = weight(_text_:22 in 3224) [ClassicSimilarity], result of:
            0.017428355 = score(doc=3224,freq=2.0), product of:
              0.18018405 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.05145426 = queryNorm
              0.09672529 = fieldWeight in 3224, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.01953125 = fieldNorm(doc=3224)
      0.5 = coord(1/2)
    
    Abstract
    E-Learning gilt als Wundermittel in der mobilen Informationssgesellschaft: Wissenszuwachs wann, wo und so oft man will - egal ob Uni-Vorlesung via Handy oder Urlaub mit dem virtuellen Reiseführer. Soweit die Theorie. In der Praxis mangelt es jedoch an Didaktik. Beim Lernen im Netz geht es oft ums Geld, weniger um Bildungserfolge
    Content
    "Im vergangenen Jahr veröffentlichten die Economist Intelligence Unit - der Wirtschaftsinformationsdienst von der Economist Group - und IBM eine weltweite Vergleichsstudie unter, dem Titel "The -2003 e-learning readiness rankings": In dieser bewerteten sie, in welchem Umfang die 60 grössten Volkswirtschaften E-Learning-Strategien und -Lösungen verfolgen und einsetzen. Die Studie basiert auf Daten der Economist Intelligence Unit, der UNESCO, der Weltbank sowie anderer öffentlicher und privater Organisationen. Beurteilt wurden die Länder dabei nach vier verschiedenen Kategorien. Ermittelt wurde zum einen der Grad der Konnektivität, also in welcher Weise die einzelnen Länder technologische Voraussetzungen wie Breitbandvernetzung und Nutzungsmöglichkeiten zur mobilen Kommunikation beim 'E-Learning zur Verfügung stellen. Zum anderen evaluierten die Verfasser die Leistungsfähigkeit der verschiedenen Länder und warfen dabei etwa einen Blick auf deren Ausbildungssysteme und Angebote des betrieblichen Lernens. In einer dritten Kategorie erfassten die Autoren ferner die Bereitstellung und den Zugang zu Online-Inhalten etwa in Form öffentlicher Datenbanken und Bibliotheken. Schließlich wurde die kulturelle Einstellung zum Thema E-Learning in der Studie erfasst. Die Autoren gingen dabei folgenden Fragen nach: In welcher Weise unterstützen und fördern nationale Einrichtungen E-Learning? In welchen Ländern besitzen Lernprozesse insgesamt einen hohen Stellenwert für die Allgemeinheit? Und wo finden progressive Ideen besonderen Zuspruch? Ausgewertet wurden die Ergebnisse für die vier Einzelbereiche Ausbildung, Unternehmen, staatliche Einrichtungen und Gesellschaft. Deutschland konnte sich innerhalb der Studie mit seinem 17. Rang insgesamt im oberen Mittelfeld platzieren. In den Bereichen Staat und Gesellschaft landete es an 11. Stelle, im Ausbildungsbereich auf dem 16. und in der betrieblichen Ausbildung auf dem 24. Platz. An der Spitze der Studie finden sich neben Schweden Kanada und die USA. Gerade hier sind die technologischen Voraussetzungen für den Einsatz von E-Learning gegeben. Zudem schnitten alle drei' Länder aufgrund ihres allgemein starken Ausbildungssystems, in dem, sie etwa lebenslanges Lernen unterstützen und sich durch ein hohes Ausbildungsniveau auszeichnen, beim Ranking besonders gut ab. Die Studie -legt den Schluss nahe, dass Europa und hier insbesondere die skandinavischen Länder sich im E-Learning-Bereich positiv entwickeln. Die südeuröpäischen Länder widmen sich dem Thema dagegen nur zögerlich und rangieren im europäischen Vergleich eher auf hinteren Plätzen. Aus dem asiatischen Raum haben sich vor allem Süd-Korea (Rang 5) und Singapur (Rang 6) gut aufgestellt.
    Bundesweite Förderprogramme und Landesinitiativen zur Verbreitung des computergestützten Lernens in der Aus- und Weiterbildung gaben den Ausschlag für eine Untersuchung des Einsatzes von E-Learning an deutschen Hochschulen. Durchgeführt wurde sie vom Institut für Medien- und Kompetenzforschung und dem Multimedia Kontor Hamburg. Gegründet wurde das Kontor von den staatlichen Hochschulen in Hamburg, die sich in einem gemeinsamen E-Learning-Consortium . zusammengeschlossen hallen. Das Kernergebnis der Studie, an der sich vor allem Hochschulen beteiligt haben, die diese neue Lernform tatsächlich einsetzen, lautet: E-LearnIng ist Bestandteil, aber nicht Alltag in der Hochschule. Danach setzt die Mehrheit von 86 der 95 befragten Hochschulen Computer in Lehrveranstal- tungen ein. Vor allem an großen und staatlichen Einrichtungen werden computergestützte Lernformen angeboten. Bei den Lernangeboten handelt es sich an 63 Hochschulen um Präsenzveranstaltungen mit Online-Unterstützung. Blended-Learning-Arrangements, also allgemein netzgestützte Angebote, und reine Online-Studiengänge werden nur an 40 beziehungsweise 22 Lehrstätten angeboten. Durchschnittlich setzen neun von zehn befragten Hochschulen aktuell E-Learning in ihren Lehrveranstaltungen ein. Ziel der Untersuchung war es auch, zu ermitteln, wie E-Learning-Angebote innerhalb verschiedener Studiengänge genutzt werden. Die Verfasser kommen zu dem Schluss, dass die Differenzierung der E-Learning-Angebote nach Fächergruppen deutliche Schwerpunkte erkennen lässt. So sind Disziplinen mit ausgeprägter Computeraffinität wie Informatik und Ingenieurwissenschaften neben Fächern mit hohen Studierendenzahlen wie etwa Wirtschafts- und Sozialwissenschaften klare Vorreiter in der neuen computergestützten Hochschullehre. Im Mittelfeld finden sich dagegen kreativ-gestalterische Studiengänge wie Kunst, Design und Mediengestaltung sowie Sprach- und Kulturwissenschaften, aber auch Natur- und Umweltwissenschaften. Für diese lässt sich vermuten, dass aufgrund ihres hohen Praxisanteils der Computer hier nur bedingt zum Einsatz kommen kann. Dass Rechtswissenschaften und Technikstudiengänge auf den hinteren Plätzen rangieren, kann kaum überraschen. Denn hier wird der Computer nur selten als LehrLern-Medium eingesetzt. Anders sieht es aus in den medizinisch-pharmazeutischen Disziplinen. Denn in der Medizinerausbildung und -praxis kommen Computer häufig zum Einsatz. Die niedrigen Einsatzzahlen müssen daher erstaunen. Neben der Ermittlung des Umfangs und der Verteilung auf unterschiedliche Studiengänge analysierten die Autoren die Akzeptanzwerte von E-Learning-Angeboten. Befragt wurden, Hochschulvertreter. Die waren selbst weniger im Hochschulbetrieb eingebunden, sondern bekleideten Leitungspositionen. Rund die Hälfte von ihnen denkt, dass Lehrende gegenüber dem Einsatz von E-Learning-Angeboten positiv eingestellt sind. Jeder Neunte glaubt hingegen an eine Befürwortung klassischer Präsenzveranstaltungen. Eine höhere Akzeptanz vermuten die Befragten dabei bei den Lehrenden von Fachhochschulen. Auch den Studierenden insgesamt werden höhere Akzeptanzwerte bescheinigt. Die Befragten schätzen dabei aber, dass nur bis zu fünf Prozent aller Studierenden gegenwärtig mit E-Learning arbeiten. Die Befragten geben ferner Auskunft darüber, wie sie die Lernergebnisse unter Einsatz neuer Techniken einschätzen. Nur ein Viertel schätzt dabei die Qualität von Prüfungsergebnissen beim E-Learning im Vergleich zu Präsenzveranstaltungen als besser ein. Jeder Zweite kann keinen Qualitätsunterschied ausmachen. Allerdings geht die Hälfte der befragten Hochschulmitarbeiter davon aus, dass die Nutzer den neuen Technologie bis 2007 bessere Eregbnisse in Tests erzielen werden. Entsprechend prognostizieren die Befragten einen Anstieg der studentischen E-Learning-Nutzer innerhalb der nächsten Jahre: Drei von vier Hochschulvertretern kommen zu dem Schluss, dass künftig mehr Studierende mit Hilfe des Computers lernen werden."
    Series
    Thema E-Learning
  11. Heidorn, P.B.; Wei, Q.: Automatic metadata extraction from museum specimen labels (2008) 0.07
    0.07409342 = product of:
      0.14818683 = sum of:
        0.14818683 = sum of:
          0.113330126 = weight(_text_:learning in 2624) [ClassicSimilarity], result of:
            0.113330126 = score(doc=2624,freq=8.0), product of:
              0.22973695 = queryWeight, product of:
                4.464877 = idf(docFreq=1382, maxDocs=44218)
                0.05145426 = queryNorm
              0.49330387 = fieldWeight in 2624, product of:
                2.828427 = tf(freq=8.0), with freq of:
                  8.0 = termFreq=8.0
                4.464877 = idf(docFreq=1382, maxDocs=44218)
                0.0390625 = fieldNorm(doc=2624)
          0.03485671 = weight(_text_:22 in 2624) [ClassicSimilarity], result of:
            0.03485671 = score(doc=2624,freq=2.0), product of:
              0.18018405 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.05145426 = queryNorm
              0.19345059 = fieldWeight in 2624, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=2624)
      0.5 = coord(1/2)
    
    Abstract
    This paper describes the information properties of museum specimen labels and machine learning tools to automatically extract Darwin Core (DwC) and other metadata from these labels processed through Optical Character Recognition (OCR). The DwC is a metadata profile describing the core set of access points for search and retrieval of natural history collections and observation databases. Using the HERBIS Learning System (HLS) we extract 74 independent elements from these labels. The automated text extraction tools are provided as a web service so that users can reference digital images of specimens and receive back an extended Darwin Core XML representation of the content of the label. This automated extraction task is made more difficult by the high variability of museum label formats, OCR errors and the open class nature of some elements. In this paper we introduce our overall system architecture, and variability robust solutions including, the application of Hidden Markov and Naïve Bayes machine learning models, data cleaning, use of field element identifiers, and specialist learning models. The techniques developed here could be adapted to any metadata extraction situation with noisy text and weakly ordered elements.
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas
  12. Dabbadie, M.; Blancherie, J.M.: Alexandria, a multilingual dictionary for knowledge management purposes (2006) 0.07
    0.06899593 = product of:
      0.13799186 = sum of:
        0.13799186 = sum of:
          0.09616381 = weight(_text_:learning in 2465) [ClassicSimilarity], result of:
            0.09616381 = score(doc=2465,freq=4.0), product of:
              0.22973695 = queryWeight, product of:
                4.464877 = idf(docFreq=1382, maxDocs=44218)
                0.05145426 = queryNorm
              0.41858223 = fieldWeight in 2465, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                4.464877 = idf(docFreq=1382, maxDocs=44218)
                0.046875 = fieldNorm(doc=2465)
          0.04182805 = weight(_text_:22 in 2465) [ClassicSimilarity], result of:
            0.04182805 = score(doc=2465,freq=2.0), product of:
              0.18018405 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.05145426 = queryNorm
              0.23214069 = fieldWeight in 2465, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=2465)
      0.5 = coord(1/2)
    
    Abstract
    Alexandria is an innovation of international impact. It is the only multilingual dictionary for websites and PCs. A double click on a word opens a small window that gives interactive translations between 22 languages and includes meaning, synonyms and associated expressions. It is an ASP application grounded on a semantic network that is portable on any operating system or platform. Behind the application is the Integral Dictionary is the semantic network created by Memodata. Alexandria can be customized with specific vocabulary, descriptive articles, images, sounds, videos, etc. Its domains of application are considerable: e-tourism, online medias, language learning, international websites. Alexandria has also proved to be a basic tool for knowledge management purposes. The application can be customized according to a user or an organization needs. An application dedicated to mobile devices is currently being developed. Future developments are planned in the field of e-tourism in relation with French "pôles de compétitivité".
    Source
    Knowledge organization for a global learning society: Proceedings of the 9th International ISKO Conference, 4-7 July 2006, Vienna, Austria. Hrsg.: G. Budin, C. Swertz u. K. Mitgutsch
  13. Wu, Y.-f.B.; Li, Q.; Bot, R.S.; Chen, X.: Finding nuggets in documents : a machine learning approach (2006) 0.07
    0.066501744 = product of:
      0.13300349 = sum of:
        0.13300349 = sum of:
          0.09814678 = weight(_text_:learning in 5290) [ClassicSimilarity], result of:
            0.09814678 = score(doc=5290,freq=6.0), product of:
              0.22973695 = queryWeight, product of:
                4.464877 = idf(docFreq=1382, maxDocs=44218)
                0.05145426 = queryNorm
              0.42721373 = fieldWeight in 5290, product of:
                2.4494898 = tf(freq=6.0), with freq of:
                  6.0 = termFreq=6.0
                4.464877 = idf(docFreq=1382, maxDocs=44218)
                0.0390625 = fieldNorm(doc=5290)
          0.03485671 = weight(_text_:22 in 5290) [ClassicSimilarity], result of:
            0.03485671 = score(doc=5290,freq=2.0), product of:
              0.18018405 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.05145426 = queryNorm
              0.19345059 = fieldWeight in 5290, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=5290)
      0.5 = coord(1/2)
    
    Abstract
    Document keyphrases provide a concise summary of a document's content, offering semantic metadata summarizing a document. They can be used in many applications related to knowledge management and text mining, such as automatic text summarization, development of search engines, document clustering, document classification, thesaurus construction, and browsing interfaces. Because only a small portion of documents have keyphrases assigned by authors, and it is time-consuming and costly to manually assign keyphrases to documents, it is necessary to develop an algorithm to automatically generate keyphrases for documents. This paper describes a Keyphrase Identification Program (KIP), which extracts document keyphrases by using prior positive samples of human identified phrases to assign weights to the candidate keyphrases. The logic of our algorithm is: The more keywords a candidate keyphrase contains and the more significant these keywords are, the more likely this candidate phrase is a keyphrase. KIP's learning function can enrich the glossary database by automatically adding new identified keyphrases to the database. KIP's personalization feature will let the user build a glossary database specifically suitable for the area of his/her interest. The evaluation results show that KIP's performance is better than the systems we compared to and that the learning function is effective.
    Date
    22. 7.2006 17:25:48
  14. Lubas, R.L.; Wolfe, R.H.W.; Fleischman, M.: Creating metadata practices for MIT's OpenCourseWare Project (2004) 0.06
    0.06406524 = product of:
      0.12813048 = sum of:
        0.12813048 = sum of:
          0.07933109 = weight(_text_:learning in 2843) [ClassicSimilarity], result of:
            0.07933109 = score(doc=2843,freq=2.0), product of:
              0.22973695 = queryWeight, product of:
                4.464877 = idf(docFreq=1382, maxDocs=44218)
                0.05145426 = queryNorm
              0.3453127 = fieldWeight in 2843, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                4.464877 = idf(docFreq=1382, maxDocs=44218)
                0.0546875 = fieldNorm(doc=2843)
          0.04879939 = weight(_text_:22 in 2843) [ClassicSimilarity], result of:
            0.04879939 = score(doc=2843,freq=2.0), product of:
              0.18018405 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.05145426 = queryNorm
              0.2708308 = fieldWeight in 2843, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0546875 = fieldNorm(doc=2843)
      0.5 = coord(1/2)
    
    Abstract
    The MIT libraries were called upon to recommend a metadata scheme for the resources contained in MIT's OpenCourseWare (OCW) project. The resources in OCW needed descriptive, structural, and technical metadata. The SCORM standard, which uses IEEE Learning Object Metadata for its descriptive standard, was selected for its focus on educational objects. However, it was clear that the Libraries would need to recommend how the standard would be applied and adapted to accommodate needs that were not addressed in the standard's specifications. The newly formed MIT Libraries Metadata Unit adapted established practices from AACR2 and MARC traditions when facing situations in which there were no precedents to follow.
    Source
    Library hi tech. 22(2004) no.2, S.138-143
  15. Dorner, D.G.; Curtis, A.M.: ¬A comparative review of common user interface products (2004) 0.06
    0.06406524 = product of:
      0.12813048 = sum of:
        0.12813048 = sum of:
          0.07933109 = weight(_text_:learning in 2851) [ClassicSimilarity], result of:
            0.07933109 = score(doc=2851,freq=2.0), product of:
              0.22973695 = queryWeight, product of:
                4.464877 = idf(docFreq=1382, maxDocs=44218)
                0.05145426 = queryNorm
              0.3453127 = fieldWeight in 2851, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                4.464877 = idf(docFreq=1382, maxDocs=44218)
                0.0546875 = fieldNorm(doc=2851)
          0.04879939 = weight(_text_:22 in 2851) [ClassicSimilarity], result of:
            0.04879939 = score(doc=2851,freq=2.0), product of:
              0.18018405 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.05145426 = queryNorm
              0.2708308 = fieldWeight in 2851, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0546875 = fieldNorm(doc=2851)
      0.5 = coord(1/2)
    
    Abstract
    A common user interface replaces the multiple interfaces found among individual electronic library resources, reducing the time and effort spent by the user in both searching and learning to use a range of databases. Although the primary function of a common user interface is to simplify the search process, such products can be holistic solutions designed to address requirements other than searching, such as user authentication and site branding. This review provides a detailed summary of software currently on the market. The products reviewed were EnCompass, MetaLib, Find-It-All OneSearch, ZPORTAL, CPORTAL, InfoTrac Total Access, MetaFind, MuseSearch, SiteSearch, Single Search, Chameleon Gateway, and WebFeat.
    Source
    Library hi tech. 22(2004) no.2, S.182-197
  16. Williamson, N.J.: Knowledge structures and the Internet : progress and prospects (2006) 0.06
    0.06406524 = product of:
      0.12813048 = sum of:
        0.12813048 = sum of:
          0.07933109 = weight(_text_:learning in 238) [ClassicSimilarity], result of:
            0.07933109 = score(doc=238,freq=2.0), product of:
              0.22973695 = queryWeight, product of:
                4.464877 = idf(docFreq=1382, maxDocs=44218)
                0.05145426 = queryNorm
              0.3453127 = fieldWeight in 238, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                4.464877 = idf(docFreq=1382, maxDocs=44218)
                0.0546875 = fieldNorm(doc=238)
          0.04879939 = weight(_text_:22 in 238) [ClassicSimilarity], result of:
            0.04879939 = score(doc=238,freq=2.0), product of:
              0.18018405 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.05145426 = queryNorm
              0.2708308 = fieldWeight in 238, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0546875 = fieldNorm(doc=238)
      0.5 = coord(1/2)
    
    Date
    27.12.2008 15:56:22
    Source
    Knowledge organization for a global learning society: Proceedings of the 9th International ISKO Conference, 4-7 July 2006, Vienna, Austria. Hrsg.: G. Budin, C. Swertz u. K. Mitgutsch
  17. Chen, M.; Liu, X.; Qin, J.: Semantic relation extraction from socially-generated tags : a methodology for metadata generation (2008) 0.06
    0.057496607 = product of:
      0.114993215 = sum of:
        0.114993215 = sum of:
          0.08013651 = weight(_text_:learning in 2648) [ClassicSimilarity], result of:
            0.08013651 = score(doc=2648,freq=4.0), product of:
              0.22973695 = queryWeight, product of:
                4.464877 = idf(docFreq=1382, maxDocs=44218)
                0.05145426 = queryNorm
              0.34881854 = fieldWeight in 2648, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                4.464877 = idf(docFreq=1382, maxDocs=44218)
                0.0390625 = fieldNorm(doc=2648)
          0.03485671 = weight(_text_:22 in 2648) [ClassicSimilarity], result of:
            0.03485671 = score(doc=2648,freq=2.0), product of:
              0.18018405 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.05145426 = queryNorm
              0.19345059 = fieldWeight in 2648, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=2648)
      0.5 = coord(1/2)
    
    Abstract
    The growing predominance of social semantics in the form of tagging presents the metadata community with both opportunities and challenges as for leveraging this new form of information content representation and for retrieval. One key challenge is the absence of contextual information associated with these tags. This paper presents an experiment working with Flickr tags as an example of utilizing social semantics sources for enriching subject metadata. The procedure included four steps: 1) Collecting a sample of Flickr tags, 2) Calculating cooccurrences between tags through mutual information, 3) Tracing contextual information of tag pairs via Google search results, 4) Applying natural language processing and machine learning techniques to extract semantic relations between tags. The experiment helped us to build a context sentence collection from the Google search results, which was then processed by natural language processing and machine learning algorithms. This new approach achieved a reasonably good rate of accuracy in assigning semantic relations to tag pairs. This paper also explores the implications of this approach for using social semantics to enrich subject metadata.
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas
  18. Yang, C.C.; Liu, N.: Web site topic-hierarchy generation based on link structure (2009) 0.06
    0.057496607 = product of:
      0.114993215 = sum of:
        0.114993215 = sum of:
          0.08013651 = weight(_text_:learning in 2738) [ClassicSimilarity], result of:
            0.08013651 = score(doc=2738,freq=4.0), product of:
              0.22973695 = queryWeight, product of:
                4.464877 = idf(docFreq=1382, maxDocs=44218)
                0.05145426 = queryNorm
              0.34881854 = fieldWeight in 2738, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                4.464877 = idf(docFreq=1382, maxDocs=44218)
                0.0390625 = fieldNorm(doc=2738)
          0.03485671 = weight(_text_:22 in 2738) [ClassicSimilarity], result of:
            0.03485671 = score(doc=2738,freq=2.0), product of:
              0.18018405 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.05145426 = queryNorm
              0.19345059 = fieldWeight in 2738, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=2738)
      0.5 = coord(1/2)
    
    Abstract
    Navigating through hyperlinks within a Web site to look for information from one of its Web pages without the support of a site map can be inefficient and ineffective. Although the content of a Web site is usually organized with an inherent structure like a topic hierarchy, which is a directed tree rooted at a Web site's homepage whose vertices and edges correspond to Web pages and hyperlinks, such a topic hierarchy is not always available to the user. In this work, we studied the problem of automatic generation of Web sites' topic hierarchies. We modeled a Web site's link structure as a weighted directed graph and proposed methods for estimating edge weights based on eight types of features and three learning algorithms, namely decision trees, naïve Bayes classifiers, and logistic regression. Three graph algorithms, namely breadth-first search, shortest-path search, and directed minimum-spanning tree, were adapted to generate the topic hierarchy based on the graph model. We have tested the model and algorithms on real Web sites. It is found that the directed minimum-spanning tree algorithm with the decision tree as the weight learning algorithm achieves the highest performance with an average accuracy of 91.9%.
    Date
    22. 3.2009 12:51:47
  19. Ford, N.: Web-based learning through educational informatics : information science meets educational computing (2008) 0.06
    0.056665063 = product of:
      0.113330126 = sum of:
        0.113330126 = product of:
          0.22666025 = sum of:
            0.22666025 = weight(_text_:learning in 4006) [ClassicSimilarity], result of:
              0.22666025 = score(doc=4006,freq=32.0), product of:
                0.22973695 = queryWeight, product of:
                  4.464877 = idf(docFreq=1382, maxDocs=44218)
                  0.05145426 = queryNorm
                0.98660773 = fieldWeight in 4006, product of:
                  5.656854 = tf(freq=32.0), with freq of:
                    32.0 = termFreq=32.0
                  4.464877 = idf(docFreq=1382, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4006)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Explores the role of information seeking and retrieval in the development of information systems to support personalized and autonomous learning.
    Content
    Inhalt: Learning: Basic Processes - Introduction - Basic Information Processes - Integrating Themes - Where do Integrating Themes come From? - Theory Generation and Testing - Learning: Individual Differences - Styles of Learning - Levels of Learning - References - Education - Educational Philosophies and Learning Design - Autonomy and Mediation - Library and Information Science - Standards for Supporting Resource Discovery - Information Seeking and Autonomous Learning - Information Seeking as Conversations - ICT Developments: Resource Discovery - Tools and Techniques to Support Information Seeking and Resource Discovery - Metadata - Ontologies and the Semantic Web - Educational Metadata and Ontologies - ICT Developments: Learning Design And Teaching - Intelligent and Adaptive Tutoring Systems - Learning Environments and Interoperability - General ICT-Based Developments - Educational Opportunities Afforded by ICT Developments - Educational Informatics Systems: Individual Approaches - Metadata-Enabled Learning Resource Discovery - Adaptive Systems for Personalised Resource Discovery - Open Corpus Resource Discovery - From Supplantation to Metacognition - Educational Informatics Systems: Social Approaches - Alternative Pedagogies - Educational Informatics Systems that Learn - Community-Based Learning - Real World Learning - Theory and Practice - Educational Informatics Support for Critical Thinking and Creativity - Making Sense of Research: Generating Useful Real World Knowledge - Going Forward: Research Issues and the Future - Different Perspectives on Educational Informatics Developments - Types Of Evidence - Contingent Dependencies, and Object and Meta Languages - Reality Checking For Quality Control - Towards the Learning Web
    RSWK
    E-Learning / Computerunterstütztes Lernen
    Subject
    E-Learning / Computerunterstütztes Lernen
  20. Halttunen, K.; Sormunen, E.: Learning information retrieval through an educational game : is gaming sufficient for learning? (2000) 0.06
    0.05609555 = product of:
      0.1121911 = sum of:
        0.1121911 = product of:
          0.2243822 = sum of:
            0.2243822 = weight(_text_:learning in 3865) [ClassicSimilarity], result of:
              0.2243822 = score(doc=3865,freq=4.0), product of:
                0.22973695 = queryWeight, product of:
                  4.464877 = idf(docFreq=1382, maxDocs=44218)
                  0.05145426 = queryNorm
                0.97669184 = fieldWeight in 3865, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.464877 = idf(docFreq=1382, maxDocs=44218)
                  0.109375 = fieldNorm(doc=3865)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    

Languages

Types

  • a 1449
  • m 251
  • s 102
  • el 88
  • b 29
  • x 22
  • i 9
  • r 3
  • n 2
  • More… Less…

Themes

Subjects

Classifications