Search (159 results, page 1 of 8)

  • × theme_ss:"Klassifikationstheorie: Elemente / Struktur"
  1. Connaway, L.S.; Sievert, M.C.: Comparison of three classification systems for information on health insurance (1996) 0.09
    0.087886594 = product of:
      0.13182989 = sum of:
        0.01415497 = weight(_text_:information in 7242) [ClassicSimilarity], result of:
          0.01415497 = score(doc=7242,freq=2.0), product of:
            0.09122598 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.051966466 = queryNorm
            0.1551638 = fieldWeight in 7242, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0625 = fieldNorm(doc=7242)
        0.11767492 = sum of:
          0.061349012 = weight(_text_:systems in 7242) [ClassicSimilarity], result of:
            0.061349012 = score(doc=7242,freq=4.0), product of:
              0.159702 = queryWeight, product of:
                3.0731742 = idf(docFreq=5561, maxDocs=44218)
                0.051966466 = queryNorm
              0.38414678 = fieldWeight in 7242, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                3.0731742 = idf(docFreq=5561, maxDocs=44218)
                0.0625 = fieldNorm(doc=7242)
          0.05632591 = weight(_text_:22 in 7242) [ClassicSimilarity], result of:
            0.05632591 = score(doc=7242,freq=2.0), product of:
              0.1819777 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.051966466 = queryNorm
              0.30952093 = fieldWeight in 7242, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0625 = fieldNorm(doc=7242)
      0.6666667 = coord(2/3)
    
    Abstract
    Reports results of a comparative study of 3 classification schemes: LCC, DDC and NLM Classification to determine their effectiveness in classifying materials on health insurance. Examined 2 hypotheses: that there would be no differences in the scatter of the 3 classification schemes; and that there would be overlap between all 3 schemes but no difference in the classes into which the subject was placed. There was subject scatter in all 3 classification schemes and litlle overlap between the 3 systems
    Date
    22. 4.1997 21:10:19
  2. Jacob, E.K.: Proposal for a classification of classifications built on Beghtol's distinction between "Naïve Classification" and "Professional Classification" (2010) 0.08
    0.077989966 = product of:
      0.11698494 = sum of:
        0.018387845 = weight(_text_:information in 2945) [ClassicSimilarity], result of:
          0.018387845 = score(doc=2945,freq=6.0), product of:
            0.09122598 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.051966466 = queryNorm
            0.20156369 = fieldWeight in 2945, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=2945)
        0.098597094 = sum of:
          0.056352664 = weight(_text_:systems in 2945) [ClassicSimilarity], result of:
            0.056352664 = score(doc=2945,freq=6.0), product of:
              0.159702 = queryWeight, product of:
                3.0731742 = idf(docFreq=5561, maxDocs=44218)
                0.051966466 = queryNorm
              0.35286134 = fieldWeight in 2945, product of:
                2.4494898 = tf(freq=6.0), with freq of:
                  6.0 = termFreq=6.0
                3.0731742 = idf(docFreq=5561, maxDocs=44218)
                0.046875 = fieldNorm(doc=2945)
          0.04224443 = weight(_text_:22 in 2945) [ClassicSimilarity], result of:
            0.04224443 = score(doc=2945,freq=2.0), product of:
              0.1819777 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.051966466 = queryNorm
              0.23214069 = fieldWeight in 2945, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=2945)
      0.6666667 = coord(2/3)
    
    Abstract
    Argues that Beghtol's (2003) use of the terms "naive classification" and "professional classification" is valid because they are nominal definitions and that the distinction between these two types of classification points up the need for researchers in knowledge organization to broaden their scope beyond traditional classification systems intended for information retrieval. Argues that work by Beghtol (2003), Kwasnik (1999) and Bailey (1994) offer direction for the development of a classification of classifications based on the pragmatic dimensions of extant classification systems. Bezugnahme auf: Beghtol, C.: Naïve classification systems and the global information society. In: Knowledge organization and the global information society: Proceedings of the 8th International ISKO Conference 13-16 July 2004, London, UK. Ed.: I.C. McIlwaine. Würzburg: Ergon Verlag 2004. S.19-22. (Advances in knowledge organization; vol.9)
  3. Hjoerland, B.: Theories of knowledge organization - theories of knowledge (2017) 0.07
    0.07246362 = product of:
      0.10869542 = sum of:
        0.021452487 = weight(_text_:information in 3494) [ClassicSimilarity], result of:
          0.021452487 = score(doc=3494,freq=6.0), product of:
            0.09122598 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.051966466 = queryNorm
            0.23515764 = fieldWeight in 3494, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3494)
        0.08724293 = sum of:
          0.03795776 = weight(_text_:systems in 3494) [ClassicSimilarity], result of:
            0.03795776 = score(doc=3494,freq=2.0), product of:
              0.159702 = queryWeight, product of:
                3.0731742 = idf(docFreq=5561, maxDocs=44218)
                0.051966466 = queryNorm
              0.23767869 = fieldWeight in 3494, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.0731742 = idf(docFreq=5561, maxDocs=44218)
                0.0546875 = fieldNorm(doc=3494)
          0.04928517 = weight(_text_:22 in 3494) [ClassicSimilarity], result of:
            0.04928517 = score(doc=3494,freq=2.0), product of:
              0.1819777 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.051966466 = queryNorm
              0.2708308 = fieldWeight in 3494, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0546875 = fieldNorm(doc=3494)
      0.6666667 = coord(2/3)
    
    Pages
    S.22-36
    Source
    Theorie, Semantik und Organisation von Wissen: Proceedings der 13. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) und dem 13. Internationalen Symposium der Informationswissenschaft der Higher Education Association for Information Science (HI) Potsdam (19.-20.03.2013): 'Theory, Information and Organization of Knowledge' / Proceedings der 14. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) und Natural Language & Information Systems (NLDB) Passau (16.06.2015): 'Lexical Resources for Knowledge Organization' / Proceedings des Workshops der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) auf der SEMANTICS Leipzig (1.09.2014): 'Knowledge Organization and Semantic Web' / Proceedings des Workshops der Polnischen und Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation (ISKO) Cottbus (29.-30.09.2011): 'Economics of Knowledge Production and Organization'. Hrsg. von W. Babik, H.P. Ohly u. K. Weber
  4. Beghtol, C.: Naïve classification systems and the global information society (2004) 0.07
    0.06657197 = product of:
      0.099857956 = sum of:
        0.017693711 = weight(_text_:information in 3483) [ClassicSimilarity], result of:
          0.017693711 = score(doc=3483,freq=8.0), product of:
            0.09122598 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.051966466 = queryNorm
            0.19395474 = fieldWeight in 3483, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3483)
        0.08216424 = sum of:
          0.046960555 = weight(_text_:systems in 3483) [ClassicSimilarity], result of:
            0.046960555 = score(doc=3483,freq=6.0), product of:
              0.159702 = queryWeight, product of:
                3.0731742 = idf(docFreq=5561, maxDocs=44218)
                0.051966466 = queryNorm
              0.29405114 = fieldWeight in 3483, product of:
                2.4494898 = tf(freq=6.0), with freq of:
                  6.0 = termFreq=6.0
                3.0731742 = idf(docFreq=5561, maxDocs=44218)
                0.0390625 = fieldNorm(doc=3483)
          0.03520369 = weight(_text_:22 in 3483) [ClassicSimilarity], result of:
            0.03520369 = score(doc=3483,freq=2.0), product of:
              0.1819777 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.051966466 = queryNorm
              0.19345059 = fieldWeight in 3483, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=3483)
      0.6666667 = coord(2/3)
    
    Abstract
    Classification is an activity that transcends time and space and that bridges the divisions between different languages and cultures, including the divisions between academic disciplines. Classificatory activity, however, serves different purposes in different situations. Classifications for infonnation retrieval can be called "professional" classifications and classifications in other fields can be called "naïve" classifications because they are developed by people who have no particular interest in classificatory issues. The general purpose of naïve classification systems is to discover new knowledge. In contrast, the general purpose of information retrieval classifications is to classify pre-existing knowledge. Different classificatory purposes may thus inform systems that are intended to span the cultural specifics of the globalized information society. This paper builds an previous research into the purposes and characteristics of naïve classifications. It describes some of the relationships between the purpose and context of a naive classification, the units of analysis used in it, and the theory that the context and the units of analysis imply.
    Pages
    S.19-22
    Source
    Knowledge organization and the global information society: Proceedings of the 8th International ISKO Conference 13-16 July 2004, London, UK. Ed.: I.C. McIlwaine
  5. Slavic, A.: On the nature and typology of documentary classifications and their use in a networked environment (2007) 0.07
    0.065914944 = product of:
      0.098872416 = sum of:
        0.010616227 = weight(_text_:information in 780) [ClassicSimilarity], result of:
          0.010616227 = score(doc=780,freq=2.0), product of:
            0.09122598 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.051966466 = queryNorm
            0.116372846 = fieldWeight in 780, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=780)
        0.08825619 = sum of:
          0.046011757 = weight(_text_:systems in 780) [ClassicSimilarity], result of:
            0.046011757 = score(doc=780,freq=4.0), product of:
              0.159702 = queryWeight, product of:
                3.0731742 = idf(docFreq=5561, maxDocs=44218)
                0.051966466 = queryNorm
              0.28811008 = fieldWeight in 780, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                3.0731742 = idf(docFreq=5561, maxDocs=44218)
                0.046875 = fieldNorm(doc=780)
          0.04224443 = weight(_text_:22 in 780) [ClassicSimilarity], result of:
            0.04224443 = score(doc=780,freq=2.0), product of:
              0.1819777 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.051966466 = queryNorm
              0.23214069 = fieldWeight in 780, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=780)
      0.6666667 = coord(2/3)
    
    Abstract
    Networked orientated standards for vocabulary publishing and exchange and proposals for terminological services and terminology registries will improve sharing and use of all knowledge organization systems in the networked information environment. This means that documentary classifications may also become more applicable for use outside their original domain of application. The paper summarises some characteristics common to documentary classifications and explains some terminological, functional and implementation aspects. The original purpose behind each classification scheme determines the functions that the vocabulary is designed to facilitate. These functions influence the structure, semantics and syntax, scheme coverage and format in which classification data are published and made available. The author suggests that attention should be paid to the differences between documentary classifications as these may determine their suitability for a certain purpose and may impose different requirements with respect to their use online. As we speak, many classifications are being created for knowledge organization and it may be important to promote expertise from the bibliographic domain with respect to building and using classification systems.
    Date
    22.12.2007 17:22:31
  6. Zhang, J.; Zeng, M.L.: ¬A new similarity measure for subject hierarchical structures (2014) 0.05
    0.053340062 = product of:
      0.080010094 = sum of:
        0.017693711 = weight(_text_:information in 1778) [ClassicSimilarity], result of:
          0.017693711 = score(doc=1778,freq=8.0), product of:
            0.09122598 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.051966466 = queryNorm
            0.19395474 = fieldWeight in 1778, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1778)
        0.06231638 = sum of:
          0.027112689 = weight(_text_:systems in 1778) [ClassicSimilarity], result of:
            0.027112689 = score(doc=1778,freq=2.0), product of:
              0.159702 = queryWeight, product of:
                3.0731742 = idf(docFreq=5561, maxDocs=44218)
                0.051966466 = queryNorm
              0.1697705 = fieldWeight in 1778, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.0731742 = idf(docFreq=5561, maxDocs=44218)
                0.0390625 = fieldNorm(doc=1778)
          0.03520369 = weight(_text_:22 in 1778) [ClassicSimilarity], result of:
            0.03520369 = score(doc=1778,freq=2.0), product of:
              0.1819777 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.051966466 = queryNorm
              0.19345059 = fieldWeight in 1778, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=1778)
      0.6666667 = coord(2/3)
    
    Abstract
    Purpose - The purpose of this paper is to introduce a new similarity method to gauge the differences between two subject hierarchical structures. Design/methodology/approach - In the proposed similarity measure, nodes on two hierarchical structures are projected onto a two-dimensional space, respectively, and both structural similarity and subject similarity of nodes are considered in the similarity between the two hierarchical structures. The extent to which the structural similarity impacts on the similarity can be controlled by adjusting a parameter. An experiment was conducted to evaluate soundness of the measure. Eight experts whose research interests were information retrieval and information organization participated in the study. Results from the new measure were compared with results from the experts. Findings - The evaluation shows strong correlations between the results from the new method and the results from the experts. It suggests that the similarity method achieved satisfactory results. Practical implications - Hierarchical structures that are found in subject directories, taxonomies, classification systems, and other classificatory structures play an extremely important role in information organization and information representation. Measuring the similarity between two subject hierarchical structures allows an accurate overarching understanding of the degree to which the two hierarchical structures are similar. Originality/value - Both structural similarity and subject similarity of nodes were considered in the proposed similarity method, and the extent to which the structural similarity impacts on the similarity can be adjusted. In addition, a new evaluation method for a hierarchical structure similarity was presented.
    Date
    8. 4.2015 16:22:13
  7. Molholt, P.: Qualities of classification schemes for the Information Superhighway (1995) 0.05
    0.04988515 = product of:
      0.07482772 = sum of:
        0.012511344 = weight(_text_:information in 5562) [ClassicSimilarity], result of:
          0.012511344 = score(doc=5562,freq=4.0), product of:
            0.09122598 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.051966466 = queryNorm
            0.13714671 = fieldWeight in 5562, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5562)
        0.06231638 = sum of:
          0.027112689 = weight(_text_:systems in 5562) [ClassicSimilarity], result of:
            0.027112689 = score(doc=5562,freq=2.0), product of:
              0.159702 = queryWeight, product of:
                3.0731742 = idf(docFreq=5561, maxDocs=44218)
                0.051966466 = queryNorm
              0.1697705 = fieldWeight in 5562, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.0731742 = idf(docFreq=5561, maxDocs=44218)
                0.0390625 = fieldNorm(doc=5562)
          0.03520369 = weight(_text_:22 in 5562) [ClassicSimilarity], result of:
            0.03520369 = score(doc=5562,freq=2.0), product of:
              0.1819777 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.051966466 = queryNorm
              0.19345059 = fieldWeight in 5562, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=5562)
      0.6666667 = coord(2/3)
    
    Abstract
    For my segment of this program I'd like to focus on some basic qualities of classification schemes. These qualities are critical to our ability to truly organize knowledge for access. As I see it, there are at least five qualities of note. The first one of these properties that I want to talk about is "authoritative." By this I mean standardized, but I mean more than standardized with a built in consensus-building process. A classification scheme constructed by a collaborative, consensus-building process carries the approval, and the authority, of the discipline groups that contribute to it and that it affects... The next property of classification systems is "expandable," living, responsive, with a clear locus of responsibility for its continuous upkeep. The worst thing you can do with a thesaurus, or a classification scheme, is to finish it. You can't ever finish it because it reflects ongoing intellectual activity... The third property is "intuitive." That is, the system has to be approachable, it has to be transparent, or at least capable of being transparent. It has to have an underlying logic that supports the classification scheme but doesn't dominate it... The fourth property is "organized and logical." I advocate very strongly, and agree with Lois Chan, that classification must be based on a rule-based structure, on somebody's world-view of the syndetic structure... The fifth property is "universal" by which I mean the classification scheme needs be useable by any specific system or application, and be available as a language for multiple purposes.
    Footnote
    Paper presented at the 36th Allerton Institute, 23-25 Oct 94, Allerton Park, Monticello, IL: "New Roles for Classification in Libraries and Information Networks: Presentation and Reports"
    Source
    Cataloging and classification quarterly. 21(1995) no.2, S.19-22
  8. Foskett, D.J.: Systems theory and its relevance to documentary classification (2017) 0.05
    0.04985311 = product of:
      0.14955932 = sum of:
        0.14955932 = sum of:
          0.06507045 = weight(_text_:systems in 3176) [ClassicSimilarity], result of:
            0.06507045 = score(doc=3176,freq=2.0), product of:
              0.159702 = queryWeight, product of:
                3.0731742 = idf(docFreq=5561, maxDocs=44218)
                0.051966466 = queryNorm
              0.4074492 = fieldWeight in 3176, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.0731742 = idf(docFreq=5561, maxDocs=44218)
                0.09375 = fieldNorm(doc=3176)
          0.08448886 = weight(_text_:22 in 3176) [ClassicSimilarity], result of:
            0.08448886 = score(doc=3176,freq=2.0), product of:
              0.1819777 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.051966466 = queryNorm
              0.46428138 = fieldWeight in 3176, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.09375 = fieldNorm(doc=3176)
      0.33333334 = coord(1/3)
    
    Date
    6. 5.2017 18:46:22
  9. Dousa, T.M.: Categories and the architectonics of system in Julius Otto Kaiser's method of systematic indexing (2014) 0.05
    0.04744216 = product of:
      0.07116324 = sum of:
        0.008846856 = weight(_text_:information in 1418) [ClassicSimilarity], result of:
          0.008846856 = score(doc=1418,freq=2.0), product of:
            0.09122598 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.051966466 = queryNorm
            0.09697737 = fieldWeight in 1418, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1418)
        0.06231638 = sum of:
          0.027112689 = weight(_text_:systems in 1418) [ClassicSimilarity], result of:
            0.027112689 = score(doc=1418,freq=2.0), product of:
              0.159702 = queryWeight, product of:
                3.0731742 = idf(docFreq=5561, maxDocs=44218)
                0.051966466 = queryNorm
              0.1697705 = fieldWeight in 1418, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.0731742 = idf(docFreq=5561, maxDocs=44218)
                0.0390625 = fieldNorm(doc=1418)
          0.03520369 = weight(_text_:22 in 1418) [ClassicSimilarity], result of:
            0.03520369 = score(doc=1418,freq=2.0), product of:
              0.1819777 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.051966466 = queryNorm
              0.19345059 = fieldWeight in 1418, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=1418)
      0.6666667 = coord(2/3)
    
    Abstract
    Categories, or concepts of high generality representing the most basic kinds of entities in the world, have long been understood to be a fundamental element in the construction of knowledge organization systems (KOSs), particularly faceted ones. Commentators on facet analysis have tended to foreground the role of categories in the structuring of controlled vocabularies and the construction of compound index terms, and the implications of this for subject representation and information retrieval. Less attention has been paid to the variety of ways in which categories can shape the overall architectonic framework of a KOS. This case study explores the range of functions that categories took in structuring various aspects of an early analytico-synthetic KOS, Julius Otto Kaiser's method of Systematic Indexing (SI). Within SI, categories not only functioned as mechanisms to partition an index vocabulary into smaller groupings of terms and as elements in the construction of compound index terms but also served as means of defining the units of indexing, or index items, incorporated into an index; determining the organization of card index files and the articulation of the guide card system serving as a navigational aids thereto; and setting structural constraints to the establishment of cross-references between terms. In all these ways, Kaiser's system of categories contributed to the general systematicity of SI.
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  10. Wang, Z.; Chaudhry, A.S.; Khoo, C.S.G.: Using classification schemes and thesauri to build an organizational taxonomy for organizing content and aiding navigation (2008) 0.05
    0.045718916 = product of:
      0.06857837 = sum of:
        0.018725265 = weight(_text_:information in 2346) [ClassicSimilarity], result of:
          0.018725265 = score(doc=2346,freq=14.0), product of:
            0.09122598 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.051966466 = queryNorm
            0.20526241 = fieldWeight in 2346, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=2346)
        0.049853105 = sum of:
          0.02169015 = weight(_text_:systems in 2346) [ClassicSimilarity], result of:
            0.02169015 = score(doc=2346,freq=2.0), product of:
              0.159702 = queryWeight, product of:
                3.0731742 = idf(docFreq=5561, maxDocs=44218)
                0.051966466 = queryNorm
              0.1358164 = fieldWeight in 2346, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.0731742 = idf(docFreq=5561, maxDocs=44218)
                0.03125 = fieldNorm(doc=2346)
          0.028162954 = weight(_text_:22 in 2346) [ClassicSimilarity], result of:
            0.028162954 = score(doc=2346,freq=2.0), product of:
              0.1819777 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.051966466 = queryNorm
              0.15476047 = fieldWeight in 2346, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.03125 = fieldNorm(doc=2346)
      0.6666667 = coord(2/3)
    
    Abstract
    Purpose - Potential and benefits of classification schemes and thesauri in building organizational taxonomies cannot be fully utilized by organizations. Empirical data of building an organizational taxonomy by the top-down approach of using classification schemes and thesauri appear to be lacking. The paper seeks to make a contribution in this regard. Design/methodology/approach - A case study of building an organizational taxonomy was conducted in the information studies domain for the Division of Information Studies at Nanyang Technology University, Singapore. The taxonomy was built by using the Dewey Decimal Classification, the Information Science Taxonomy, two information systems taxonomies, and three thesauri (ASIS&T, LISA, and ERIC). Findings - Classification schemes and thesauri were found to be helpful in creating the structure and categories related to the subject facet of the taxonomy, but organizational community sources had to be consulted and several methods had to be employed. The organizational activities and stakeholders' needs had to be identified to determine the objectives, facets, and the subject coverage of the taxonomy. Main categories were determined by identifying the stakeholders' interests and consulting organizational community sources and domain taxonomies. Category terms were selected from terminologies of classification schemes, domain taxonomies, and thesauri against the stakeholders' interests. Hierarchical structures of the main categories were constructed in line with the stakeholders' perspectives and the navigational role taking advantage of structures/term relationships from classification schemes and thesauri. Categories were determined in line with the concepts and the hierarchical levels. Format of categories were uniformed according to a commonly used standard. The consistency principle was employed to make the taxonomy structure and categories neater. Validation of the draft taxonomy through consultations with the stakeholders further refined the taxonomy. Originality/value - No similar study could be traced in the literature. The steps and methods used in the taxonomy development, and the information studies taxonomy itself, will be helpful for library and information schools and other similar organizations in their effort to develop taxonomies for organizing content and aiding navigation on organizational sites.
    Date
    7.11.2008 15:22:04
    Theme
    Information Resources Management
  11. Jacob, E.K.: Classification and categorization : a difference that makes a difference (2004) 0.04
    0.03811906 = product of:
      0.057178587 = sum of:
        0.030338395 = weight(_text_:information in 834) [ClassicSimilarity], result of:
          0.030338395 = score(doc=834,freq=12.0), product of:
            0.09122598 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.051966466 = queryNorm
            0.3325631 = fieldWeight in 834, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=834)
        0.026840193 = product of:
          0.053680386 = sum of:
            0.053680386 = weight(_text_:systems in 834) [ClassicSimilarity], result of:
              0.053680386 = score(doc=834,freq=4.0), product of:
                0.159702 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.051966466 = queryNorm
                0.33612844 = fieldWeight in 834, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=834)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Examination of the systemic properties and forms of interaction that characterize classification and categorization reveals fundamental syntactic differences between the structure of classification systems and the structure of categorization systems. These distinctions lead to meaningful differences in the contexts within which information can be apprehended and influence the semantic information available to the individual. Structural and semantic differences between classification and categorization are differences that make a difference in the information environment by influencing the functional activities of an information system and by contributing to its constitution as an information environment.
    Footnote
    Artikel in einem Themenheft: The philosophy of information
  12. Bergman, M.K..: Hierarchy in knowledge systems (2022) 0.04
    0.035453584 = product of:
      0.053180374 = sum of:
        0.012511344 = weight(_text_:information in 1099) [ClassicSimilarity], result of:
          0.012511344 = score(doc=1099,freq=4.0), product of:
            0.09122598 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.051966466 = queryNorm
            0.13714671 = fieldWeight in 1099, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1099)
        0.04066903 = product of:
          0.08133806 = sum of:
            0.08133806 = weight(_text_:systems in 1099) [ClassicSimilarity], result of:
              0.08133806 = score(doc=1099,freq=18.0), product of:
                0.159702 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.051966466 = queryNorm
                0.5093115 = fieldWeight in 1099, product of:
                  4.2426405 = tf(freq=18.0), with freq of:
                    18.0 = termFreq=18.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1099)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Hierarchies abound to help us organize our world. A hierarchy places items into a general order, where more 'general' is also more 'abstract'. The etymology of hierarchy is grounded in notions of religious and social rank. This article, after a historical review, focuses on knowledge systems, an interloper of the term hierarchy since at least the 1800s. Hierarchies in knowledge systems include taxonomies, classification systems, or thesauri in information science, and systems for representing information and knowledge to computers, notably ontologies and knowledge representation languages. Hierarchies are the logical underpinning of inference and reasoning in these systems, as well as the scaffolding for classification and inheritance. Hierarchies in knowledge systems express subsumption relations that have flexible variants, which we can represent algorithmically, and thus computationally. This article dissects that variability, leading to a proposed typology of hierarchies useful to knowledge systems. The article argues through a perspective informed by Charles Peirce that natural hierarchies are real, can be logically determined, and are the appropriate basis for knowledge systems. Description logics and semantic language standards reflect this perspective, importantly through their open-world logic and vocabularies for generalized subsumption hierarchies. Recent research suggests possible mechanisms for the emergence of natural hierarchies.
  13. Curras, E.: Ranganathan's classification theories under the systems science postulates (1992) 0.03
    0.034482278 = product of:
      0.051723413 = sum of:
        0.01415497 = weight(_text_:information in 6993) [ClassicSimilarity], result of:
          0.01415497 = score(doc=6993,freq=2.0), product of:
            0.09122598 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.051966466 = queryNorm
            0.1551638 = fieldWeight in 6993, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0625 = fieldNorm(doc=6993)
        0.037568443 = product of:
          0.075136885 = sum of:
            0.075136885 = weight(_text_:systems in 6993) [ClassicSimilarity], result of:
              0.075136885 = score(doc=6993,freq=6.0), product of:
                0.159702 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.051966466 = queryNorm
                0.4704818 = fieldWeight in 6993, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0625 = fieldNorm(doc=6993)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Describes the basic ideas concerning system science and discusses S.R. Ranganathan's ideas about concepts of 'universe of ideas', 'universe of science', 'universe of knowledge' and 'universe of classification'. Examines the principles, canons and postulates underlying Colon Classification. Discusses the structure of Colon Classification. Points out that the ideas of Ranganathan conform to the concept 'unity of science' and concludes that the principles of systems science or systems thinking are helpful in understanding the theory of classification formulated by Ranganathan
    Source
    Journal of library and information science. 17(1992) no.1, S.45-65
  14. Beghtol, C.: Relationships in classificatory structure and meaning (2001) 0.03
    0.0342594 = product of:
      0.0513891 = sum of:
        0.015013612 = weight(_text_:information in 1138) [ClassicSimilarity], result of:
          0.015013612 = score(doc=1138,freq=4.0), product of:
            0.09122598 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.051966466 = queryNorm
            0.16457605 = fieldWeight in 1138, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=1138)
        0.036375485 = product of:
          0.07275097 = sum of:
            0.07275097 = weight(_text_:systems in 1138) [ClassicSimilarity], result of:
              0.07275097 = score(doc=1138,freq=10.0), product of:
                0.159702 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.051966466 = queryNorm
                0.45554203 = fieldWeight in 1138, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1138)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    In a changing information environment, we need to reassess each element of bibliographic control, including classification theories and systems. Every classification system is a theoretical construct imposed an "reality." The classificatory relationships that are assumed to be valuable have generally received less attention than the topics included in the systems. Relationships are functions of both the syntactic and semantic axes of classification systems, and both explicit and implicit relationships are discussed. Examples are drawn from a number of different systems, both bibliographic and non-bibliographic, and the cultural warrant (i. e., the sociocultural context) of classification systems is examined. The part-whole relationship is discussed as an example of a universally valid concept that is treated as a component of the cultural warrant of a classification system.
    Series
    Information science and knowledge management; vol.2
  15. Kochar, R.S.: Library classification systems (1998) 0.03
    0.033562243 = product of:
      0.05034336 = sum of:
        0.012385598 = weight(_text_:information in 931) [ClassicSimilarity], result of:
          0.012385598 = score(doc=931,freq=2.0), product of:
            0.09122598 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.051966466 = queryNorm
            0.13576832 = fieldWeight in 931, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=931)
        0.03795776 = product of:
          0.07591552 = sum of:
            0.07591552 = weight(_text_:systems in 931) [ClassicSimilarity], result of:
              0.07591552 = score(doc=931,freq=8.0), product of:
                0.159702 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.051966466 = queryNorm
                0.47535738 = fieldWeight in 931, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=931)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Library classification traces the origins of the subject and leads an to the latest developments in it. This user-friendly text explains concepts through analogies, diagrams, and tables. The fundamental but important topics an terminology of classification has been uniquely explained. The book deals with the recent trends in the use of computers in cataloguing including on-line systems, artificial intelligence systems etc. With its up-to-date and comprehensive coverage the book will serve as a degree students of Library and Information Science and also prove to be invaluable reference material to professionals and researchers.
    Content
    Contents: Preface. 1. Classification systems. 2. Automatic classification. 3. Knowledge classification. 4. Reflections on library classification. 5. General classification schemes. 6. Hierarchical classification. 7. Faceted classification. B. Present methods and future directions. Index.
  16. Frické, M.: Logic and the organization of information (2012) 0.03
    0.033492047 = product of:
      0.05023807 = sum of:
        0.026993783 = weight(_text_:information in 1782) [ClassicSimilarity], result of:
          0.026993783 = score(doc=1782,freq=38.0), product of:
            0.09122598 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.051966466 = queryNorm
            0.29590017 = fieldWeight in 1782, product of:
              6.164414 = tf(freq=38.0), with freq of:
                38.0 = termFreq=38.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.02734375 = fieldNorm(doc=1782)
        0.023244286 = product of:
          0.046488572 = sum of:
            0.046488572 = weight(_text_:systems in 1782) [ClassicSimilarity], result of:
              0.046488572 = score(doc=1782,freq=12.0), product of:
                0.159702 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.051966466 = queryNorm
                0.29109573 = fieldWeight in 1782, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=1782)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Logic and the Organization of Information closely examines the historical and contemporary methodologies used to catalogue information objects-books, ebooks, journals, articles, web pages, images, emails, podcasts and more-in the digital era. This book provides an in-depth technical background for digital librarianship, and covers a broad range of theoretical and practical topics including: classification theory, topic annotation, automatic clustering, generalized synonymy and concept indexing, distributed libraries, semantic web ontologies and Simple Knowledge Organization System (SKOS). It also analyzes the challenges facing today's information architects, and outlines a series of techniques for overcoming them. Logic and the Organization of Information is intended for practitioners and professionals working at a design level as a reference book for digital librarianship. Advanced-level students, researchers and academics studying information science, library science, digital libraries and computer science will also find this book invaluable.
    Footnote
    Rez. in: J. Doc. 70(2014) no.4: "Books on the organization of information and knowledge, aimed at a library/information audience, tend to fall into two clear categories. Most are practical and pragmatic, explaining the "how" as much or more than the "why". Some are theoretical, in part or in whole, showing how the practice of classification, indexing, resource description and the like relates to philosophy, logic, and other foundational bases; the books by Langridge (1992) and by Svenonious (2000) are well-known examples this latter kind. To this category certainly belongs a recent book by Martin Frické (2012). The author takes the reader for an extended tour through a variety of aspects of information organization, including classification and taxonomy, alphabetical vocabularies and indexing, cataloguing and FRBR, and aspects of the semantic web. The emphasis throughout is on showing how practice is, or should be, underpinned by formal structures; there is a particular emphasis on first order predicate calculus. The advantages of a greater, and more explicit, use of symbolic logic is a recurring theme of the book. There is a particularly commendable historical dimension, often omitted in texts on this subject. It cannot be said that this book is entirely an easy read, although it is well written with a helpful index, and its arguments are generally well supported by clear and relevant examples. It is thorough and detailed, but thereby seems better geared to the needs of advanced students and researchers than to the practitioners who are suggested as a main market. For graduate students in library/information science and related disciplines, in particular, this will be a valuable resource. I would place it alongside Svenonious' book as the best insight into the theoretical "why" of information organization. It has evoked a good deal of interest, including a set of essay commentaries in Journal of Information Science (Gilchrist et al., 2013). Introducing these, Alan Gilchrist rightly says that Frické deserves a salute for making explicit the fundamental relationship between the ancient discipline of logic and modern information organization. If information science is to continue to develop, and make a contribution to the organization of the information environments of the future, then this book sets the groundwork for the kind of studies which will be needed." (D. Bawden)
    LCSH
    Information Systems
    Information storage and retrieval systems
    Multimedia systems
    Subject
    Information Systems
    Information storage and retrieval systems
    Multimedia systems
  17. McCool, M.; St. Amant, K.: Field dependence and classification : implications for global information systems (2009) 0.03
    0.03219512 = product of:
      0.04829268 = sum of:
        0.021452487 = weight(_text_:information in 2854) [ClassicSimilarity], result of:
          0.021452487 = score(doc=2854,freq=6.0), product of:
            0.09122598 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.051966466 = queryNorm
            0.23515764 = fieldWeight in 2854, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2854)
        0.026840193 = product of:
          0.053680386 = sum of:
            0.053680386 = weight(_text_:systems in 2854) [ClassicSimilarity], result of:
              0.053680386 = score(doc=2854,freq=4.0), product of:
                0.159702 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.051966466 = queryNorm
                0.33612844 = fieldWeight in 2854, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2854)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    This article describes research designed to assess the interaction between culture and classification. Mounting evidence in cross-cultural psychology has indicated that culture may affect classification, which is an important dimension to global information systems. Data were obtained through three classification tasks, two of which were adapted from recent studies in cross-cultural psychology. Data were collected from 36 participants, 19 from China and 17 from the United States. The results of this research indicate that Chinese participants appear to be more field dependent, which may be related to a cultural preference for relationships instead of categories.
    Source
    Journal of the American Society for Information Science and Technology. 60(2009) no.6, S.1258-1266
  18. Slavic, A.; Cordeiro, M.I.: Core requirements for automation of analytico-synthetic classifications (2004) 0.03
    0.031699225 = product of:
      0.047548838 = sum of:
        0.015013612 = weight(_text_:information in 2651) [ClassicSimilarity], result of:
          0.015013612 = score(doc=2651,freq=4.0), product of:
            0.09122598 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.051966466 = queryNorm
            0.16457605 = fieldWeight in 2651, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=2651)
        0.032535225 = product of:
          0.06507045 = sum of:
            0.06507045 = weight(_text_:systems in 2651) [ClassicSimilarity], result of:
              0.06507045 = score(doc=2651,freq=8.0), product of:
                0.159702 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.051966466 = queryNorm
                0.4074492 = fieldWeight in 2651, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2651)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    The paper analyses the importance of data presentation and modelling and its role in improving the management, use and exchange of analytico-synthetic classifications in automated systems. Inefficiencies, in this respect, hinder the automation of classification systems that offer the possibility of building compound index/search terms. The lack of machine readable data expressing the semantics and structure of a classification vocabulary has negative effects on information management and retrieval, thus restricting the potential of both automated systems and classifications themselves. The authors analysed the data representation structure of three general analytico-synthetic classification systems (BC2-Bliss Bibliographic Classification; BSO-Broad System of Ordering; UDC-Universal Decimal Classification) and put forward some core requirements for classification data representation
    Source
    Knowledge organization and the global information society: Proceedings of the 8th International ISKO Conference 13-16 July 2004, London, UK. Ed.: I.C. McIlwaine
  19. Adler, M.; Harper, L.M.: Race and ethnicity in classification systems : teaching knowledge organization from a social justice perspective (2018) 0.03
    0.030804854 = product of:
      0.04620728 = sum of:
        0.024517128 = weight(_text_:information in 5518) [ClassicSimilarity], result of:
          0.024517128 = score(doc=5518,freq=6.0), product of:
            0.09122598 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.051966466 = queryNorm
            0.2687516 = fieldWeight in 5518, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0625 = fieldNorm(doc=5518)
        0.02169015 = product of:
          0.0433803 = sum of:
            0.0433803 = weight(_text_:systems in 5518) [ClassicSimilarity], result of:
              0.0433803 = score(doc=5518,freq=2.0), product of:
                0.159702 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.051966466 = queryNorm
                0.2716328 = fieldWeight in 5518, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0625 = fieldNorm(doc=5518)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Classification and the organization of information are directly connected to issues surrounding social justice, diversity, and inclusion. This paper is written from the standpoint that political and epistemological aspects of knowledge organization are fundamental to research and practice and suggests ways to integrate social justice and diversity issues into courses on the organization of information.
    Content
    Beitrag in einem Themenheft: 'Race and Ethnicity in Library and Information Science: An Update'.
  20. Minnigh, L.D.: Chaos in informatie, onderwerpsontsluiting en kennisoverdracht : de rol van de wetenschappelijke bibliotheek (1993) 0.03
    0.029886318 = product of:
      0.044829477 = sum of:
        0.01415497 = weight(_text_:information in 6606) [ClassicSimilarity], result of:
          0.01415497 = score(doc=6606,freq=2.0), product of:
            0.09122598 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.051966466 = queryNorm
            0.1551638 = fieldWeight in 6606, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0625 = fieldNorm(doc=6606)
        0.030674506 = product of:
          0.061349012 = sum of:
            0.061349012 = weight(_text_:systems in 6606) [ClassicSimilarity], result of:
              0.061349012 = score(doc=6606,freq=4.0), product of:
                0.159702 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.051966466 = queryNorm
                0.38414678 = fieldWeight in 6606, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0625 = fieldNorm(doc=6606)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Existing classification systems require constant expansion to accomodate new subject fields, while subject indexing techniques fail to display the relationship of subjects. Relational databases are currently being developed which will guide users through the differing levels of subjects, using the 'cartography of science'. Such developments will enable librarians to play a more interactive role in information retrieval and will have far-reaching consequences on the design of subject-indexing systems

Authors

Languages

Types

  • a 145
  • m 11
  • el 6
  • s 4
  • More… Less…