Search (106 results, page 1 of 6)

  • × theme_ss:"Social tagging"
  1. Kruk, S.R.; Kruk, E.; Stankiewicz, K.: Evaluation of semantic and social technologies for digital libraries (2009) 0.06
    0.05986218 = product of:
      0.08979327 = sum of:
        0.015013612 = weight(_text_:information in 3387) [ClassicSimilarity], result of:
          0.015013612 = score(doc=3387,freq=4.0), product of:
            0.09122598 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.051966466 = queryNorm
            0.16457605 = fieldWeight in 3387, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=3387)
        0.07477966 = sum of:
          0.032535225 = weight(_text_:systems in 3387) [ClassicSimilarity], result of:
            0.032535225 = score(doc=3387,freq=2.0), product of:
              0.159702 = queryWeight, product of:
                3.0731742 = idf(docFreq=5561, maxDocs=44218)
                0.051966466 = queryNorm
              0.2037246 = fieldWeight in 3387, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.0731742 = idf(docFreq=5561, maxDocs=44218)
                0.046875 = fieldNorm(doc=3387)
          0.04224443 = weight(_text_:22 in 3387) [ClassicSimilarity], result of:
            0.04224443 = score(doc=3387,freq=2.0), product of:
              0.1819777 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.051966466 = queryNorm
              0.23214069 = fieldWeight in 3387, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=3387)
      0.6666667 = coord(2/3)
    
    Abstract
    Libraries are the tools we use to learn and to answer our questions. The quality of our work depends, among others, on the quality of the tools we use. Recent research in digital libraries is focused, on one hand on improving the infrastructure of the digital library management systems (DLMS), and on the other on improving the metadata models used to annotate collections of objects maintained by DLMS. The latter includes, among others, the semantic web and social networking technologies. Recently, the semantic web and social networking technologies are being introduced to the digital libraries domain. The expected outcome is that the overall quality of information discovery in digital libraries can be improved by employing social and semantic technologies. In this chapter we present the results of an evaluation of social and semantic end-user information discovery services for the digital libraries.
    Date
    1. 8.2010 12:35:22
  2. Bentley, C.M.; Labelle, P.R.: ¬A comparison of social tagging designs and user participation (2008) 0.05
    0.05049365 = product of:
      0.07574047 = sum of:
        0.010009075 = weight(_text_:information in 2657) [ClassicSimilarity], result of:
          0.010009075 = score(doc=2657,freq=4.0), product of:
            0.09122598 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.051966466 = queryNorm
            0.10971737 = fieldWeight in 2657, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=2657)
        0.0657314 = sum of:
          0.037568443 = weight(_text_:systems in 2657) [ClassicSimilarity], result of:
            0.037568443 = score(doc=2657,freq=6.0), product of:
              0.159702 = queryWeight, product of:
                3.0731742 = idf(docFreq=5561, maxDocs=44218)
                0.051966466 = queryNorm
              0.2352409 = fieldWeight in 2657, product of:
                2.4494898 = tf(freq=6.0), with freq of:
                  6.0 = termFreq=6.0
                3.0731742 = idf(docFreq=5561, maxDocs=44218)
                0.03125 = fieldNorm(doc=2657)
          0.028162954 = weight(_text_:22 in 2657) [ClassicSimilarity], result of:
            0.028162954 = score(doc=2657,freq=2.0), product of:
              0.1819777 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.051966466 = queryNorm
              0.15476047 = fieldWeight in 2657, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.03125 = fieldNorm(doc=2657)
      0.6666667 = coord(2/3)
    
    Abstract
    Social tagging empowers users to categorize content in a personally meaningful way while harnessing their potential to contribute to a collaborative construction of knowledge (Vander Wal, 2007). In addition, social tagging systems offer innovative filtering mechanisms that facilitate resource discovery and browsing (Mathes, 2004). As a result, social tags may support online communication, informal or intended learning as well as the development of online communities. The purpose of this mixed methods study is to examine how undergraduate students participate in social tagging activities in order to learn about their motivations, behaviours and practices. A better understanding of their knowledge, habits and interactions with such systems will help practitioners and developers identify important factors when designing enhancements. In the first phase of the study, students enrolled at a Canadian university completed 103 questionnaires. Quantitative results focusing on general familiarity with social tagging, frequently used Web 2.0 sites, and the purpose for engaging in social tagging activities were compiled. Eight questionnaire respondents participated in follow-up semi-structured interviews that further explored tagging practices by situating questionnaire responses within concrete experiences using popular websites such as YouTube, Facebook, Del.icio.us, and Flickr. Preliminary results of this study echo findings found in the growing literature concerning social tagging from the fields of computer science (Sen et al., 2006) and information science (Golder & Huberman, 2006; Macgregor & McCulloch, 2006). Generally, two classes of social taggers emerge: those who focus on tagging for individual purposes, and those who view tagging as a way to share or communicate meaning to others. Heavy del.icio.us users, for example, were often focused on simply organizing their own content, and seemed to be conscientiously maintaining their own personally relevant categorizations while, in many cases, placing little importance on the tags of others. Conversely, users tagging items primarily to share content preferred to use specific terms to optimize retrieval and discovery by others. Our findings should inform practitioners of how interaction design can be tailored for different tagging systems applications, and how these findings are positioned within the current debate surrounding social tagging among the resource discovery community. We also hope to direct future research in the field to place a greater importance on exploring the benefits of tagging as a socially-driven endeavour rather than uniquely as a means of managing information.
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas
  3. Hunter, J.: Collaborative semantic tagging and annotation systems (2009) 0.05
    0.047793493 = product of:
      0.07169024 = sum of:
        0.02830994 = weight(_text_:information in 7382) [ClassicSimilarity], result of:
          0.02830994 = score(doc=7382,freq=2.0), product of:
            0.09122598 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.051966466 = queryNorm
            0.3103276 = fieldWeight in 7382, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.125 = fieldNorm(doc=7382)
        0.0433803 = product of:
          0.0867606 = sum of:
            0.0867606 = weight(_text_:systems in 7382) [ClassicSimilarity], result of:
              0.0867606 = score(doc=7382,freq=2.0), product of:
                0.159702 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.051966466 = queryNorm
                0.5432656 = fieldWeight in 7382, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.125 = fieldNorm(doc=7382)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Source
    Annual review of information science and technology. 43(2009), S.xxx-xxx
  4. Tennis, J.T.; Jacob, E.K.: Toward a theory of structure in information organization frameworks (2008) 0.03
    0.034407593 = product of:
      0.05161139 = sum of:
        0.024771197 = weight(_text_:information in 2251) [ClassicSimilarity], result of:
          0.024771197 = score(doc=2251,freq=8.0), product of:
            0.09122598 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.051966466 = queryNorm
            0.27153665 = fieldWeight in 2251, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2251)
        0.026840193 = product of:
          0.053680386 = sum of:
            0.053680386 = weight(_text_:systems in 2251) [ClassicSimilarity], result of:
              0.053680386 = score(doc=2251,freq=4.0), product of:
                0.159702 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.051966466 = queryNorm
                0.33612844 = fieldWeight in 2251, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2251)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Content
    This paper outlines a formal and systematic approach to explication of the role of structure in information organization. It presents a preliminary set of constructs that are useful for understanding the similarities and differences that obtain across information organization systems. This work seeks to provide necessary groundwork for development of a theory of structure that can serve as a lens through which to observe patterns across systems of information organization.
  5. Shiri, A.: Trend analysis in social tagging : an LIS perspective (2007) 0.03
    0.029886318 = product of:
      0.044829477 = sum of:
        0.01415497 = weight(_text_:information in 529) [ClassicSimilarity], result of:
          0.01415497 = score(doc=529,freq=2.0), product of:
            0.09122598 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.051966466 = queryNorm
            0.1551638 = fieldWeight in 529, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0625 = fieldNorm(doc=529)
        0.030674506 = product of:
          0.061349012 = sum of:
            0.061349012 = weight(_text_:systems in 529) [ClassicSimilarity], result of:
              0.061349012 = score(doc=529,freq=4.0), product of:
                0.159702 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.051966466 = queryNorm
                0.38414678 = fieldWeight in 529, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0625 = fieldNorm(doc=529)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    The aim of the present study was to identify and categorize social tagging trends and developments as revealed by the analysis of library and information science scholarly and professional literature.
    Content
    Präsentation während der Veranstaltung "Networked Knowledge Organization Systems and Services: The 6th European Networked Knowledge Organization Systems (NKOS) Workshop, Workshop at the 11th ECDL Conference, Budapest, Hungary, September 21st 2007".
  6. Heckner, M.: Tagging, rating, posting : studying forms of user contribution for web-based information management and information retrieval (2009) 0.03
    0.029462835 = product of:
      0.04419425 = sum of:
        0.025022687 = weight(_text_:information in 2931) [ClassicSimilarity], result of:
          0.025022687 = score(doc=2931,freq=16.0), product of:
            0.09122598 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.051966466 = queryNorm
            0.27429342 = fieldWeight in 2931, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2931)
        0.019171566 = product of:
          0.03834313 = sum of:
            0.03834313 = weight(_text_:systems in 2931) [ClassicSimilarity], result of:
              0.03834313 = score(doc=2931,freq=4.0), product of:
                0.159702 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.051966466 = queryNorm
                0.24009174 = fieldWeight in 2931, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2931)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Die Entstehung von Social Software ermöglicht es Nutzern, in großem Umfang im Netz zu publizieren. Bisher liegen aber nur wenige empirische Befunde zu funktionalen Eigenschaften sowie Qualitätsaspekten von Nutzerbeiträgen im Kontext von Informationsmanagement und Information Retrieval vor. Diese Arbeit diskutiert grundlegende Partizipationsformen, präsentiert empirische Studien über Social Tagging, Blogbeiträge sowie Relevanzbeurteilungen und entwickelt Design und Implementierung einer "sozialen" Informationsarchitektur für ein partizipatives Onlinehilfesystem.
    Content
    The Web of User Contribution - Foundations and Principles of the Social Web - Social Tagging - Rating and Filtering of Digital Resources Empirical Analysisof User Contributions - The Functional and Linguistic Structure of Tags - A Comparative Analysis of Tags for Different Digital Resource Types - Exploring Relevance Assessments in Social IR Systems - Exploring User Contribution Within a Higher Education Scenario - Summary of Empirical Results and Implications for Designing Social Information Systems User Contribution for a Participative Information System - Social Information Architecture for an Online Help System
    RSWK
    World Wide Web 2.0 / Benutzer / Online-Publizieren / Information Retrieval / Soziale Software / Hilfesystem
    Subject
    World Wide Web 2.0 / Benutzer / Online-Publizieren / Information Retrieval / Soziale Software / Hilfesystem
  7. Wang, J.; Clements, M.; Yang, J.; Vries, A.P. de; Reinders, M.J.T.: Personalization of tagging systems (2010) 0.03
    0.028767636 = product of:
      0.043151453 = sum of:
        0.010616227 = weight(_text_:information in 4229) [ClassicSimilarity], result of:
          0.010616227 = score(doc=4229,freq=2.0), product of:
            0.09122598 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.051966466 = queryNorm
            0.116372846 = fieldWeight in 4229, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=4229)
        0.032535225 = product of:
          0.06507045 = sum of:
            0.06507045 = weight(_text_:systems in 4229) [ClassicSimilarity], result of:
              0.06507045 = score(doc=4229,freq=8.0), product of:
                0.159702 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.051966466 = queryNorm
                0.4074492 = fieldWeight in 4229, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4229)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Social media systems have encouraged end user participation in the Internet, for the purpose of storing and distributing Internet content, sharing opinions and maintaining relationships. Collaborative tagging allows users to annotate the resulting user-generated content, and enables effective retrieval of otherwise uncategorised data. However, compared to professional web content production, collaborative tagging systems face the challenge that end-users assign tags in an uncontrolled manner, resulting in unsystematic and inconsistent metadata. This paper introduces a framework for the personalization of social media systems. We pinpoint three tasks that would benefit from personalization: collaborative tagging, collaborative browsing and collaborative search. We propose a ranking model for each task that integrates the individual user's tagging history in the recommendation of tags and content, to align its suggestions to the individual user preferences. We demonstrate on two real data sets that for all three tasks, the personalized ranking should take into account both the user's own preference and the opinion of others.
    Source
    Information processing and management. 46(2010) no.1, S.58-70
  8. Rorissa, A.: ¬A comparative study of Flickr tags and index terms in a general image collection (2010) 0.03
    0.028290596 = product of:
      0.042435892 = sum of:
        0.015323205 = weight(_text_:information in 4100) [ClassicSimilarity], result of:
          0.015323205 = score(doc=4100,freq=6.0), product of:
            0.09122598 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.051966466 = queryNorm
            0.16796975 = fieldWeight in 4100, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4100)
        0.027112689 = product of:
          0.054225378 = sum of:
            0.054225378 = weight(_text_:systems in 4100) [ClassicSimilarity], result of:
              0.054225378 = score(doc=4100,freq=8.0), product of:
                0.159702 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.051966466 = queryNorm
                0.339541 = fieldWeight in 4100, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4100)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Web 2.0 and social/collaborative tagging have altered the traditional roles of indexer and user. Traditional indexing tools and systems assume the top-down approach to indexing in which a trained professional is responsible for assigning index terms to information sources with a potential user in mind. However, in today's Web, end users create, organize, index, and search for images and other information sources through social tagging and other collaborative activities. One of the impediments to user-centered indexing had been the cost of soliciting user-generated index terms or tags. Social tagging of images such as those on Flickr, an online photo management and sharing application, presents an opportunity that can be seized by designers of indexing tools and systems to bridge the semantic gap between indexer terms and user vocabularies. Empirical research on the differences and similarities between user-generated tags and index terms based on controlled vocabularies has the potential to inform future design of image indexing tools and systems. Toward this end, a random sample of Flickr images and the tags assigned to them were content analyzed and compared with another sample of index terms from a general image collection using established frameworks for image attributes and contents. The results show that there is a fundamental difference between the types of tags and types of index terms used. In light of this, implications for research into and design of user-centered image indexing tools and systems are discussed.
    Source
    Journal of the American Society for Information Science and Technology. 61(2010) no.11, S.2230-2242
  9. Heckner, M.; Mühlbacher, S.; Wolff, C.: Tagging tagging : a classification model for user keywords in scientific bibliography management systems (2007) 0.03
    0.026408475 = product of:
      0.03961271 = sum of:
        0.007077485 = weight(_text_:information in 533) [ClassicSimilarity], result of:
          0.007077485 = score(doc=533,freq=2.0), product of:
            0.09122598 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.051966466 = queryNorm
            0.0775819 = fieldWeight in 533, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=533)
        0.032535225 = product of:
          0.06507045 = sum of:
            0.06507045 = weight(_text_:systems in 533) [ClassicSimilarity], result of:
              0.06507045 = score(doc=533,freq=18.0), product of:
                0.159702 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.051966466 = queryNorm
                0.4074492 = fieldWeight in 533, product of:
                  4.2426405 = tf(freq=18.0), with freq of:
                    18.0 = termFreq=18.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.03125 = fieldNorm(doc=533)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Recently, a growing amount of systems that allow personal content annotation (tagging) are being created, ranging from personal sites for organising bookmarks (del.icio.us), photos (flickr.com) or videos (video.google.com, youtube.com) to systems for managing bibliographies for scientific research projects (citeulike.org, connotea.org). Simultaneously, a debate on the pro and cons of allowing users to add personal keywords to digital content has arisen. One recurrent point-of-discussion is whether tagging can solve the well-known vocabulary problem: In order to support successful retrieval in complex environments, it is necessary to index an object with a variety of aliases (cf. Furnas 1987). In this spirit, social tagging enhances the pool of rigid, traditional keywording by adding user-created retrieval vocabularies. Furthermore, tagging goes beyond simple personal content-based keywords by providing meta-keywords like funny or interesting that "identify qualities or characteristics" (Golder and Huberman 2006, Kipp and Campbell 2006, Kipp 2007, Feinberg 2006, Kroski 2005). Contrarily, tagging systems are claimed to lead to semantic difficulties that may hinder the precision and recall of tagging systems (e.g. the polysemy problem, cf. Marlow 2006, Lakoff 2005, Golder and Huberman 2006). Empirical research on social tagging is still rare and mostly from a computer linguistics or librarian point-of-view (Voß 2007) which focus either on the automatic statistical analyses of large data sets, or intellectually inspect single cases of tag usage: Some scientists studied the evolution of tag vocabularies and tag distribution in specific systems (Golder and Huberman 2006, Hammond 2005). Others concentrate on tagging behaviour and tagger characteristics in collaborative systems. (Hammond 2005, Kipp and Campbell 2007, Feinberg 2006, Sen 2006). However, little research has been conducted on the functional and linguistic characteristics of tags.1 An analysis of these patterns could show differences between user wording and conventional keywording. In order to provide a reasonable basis for comparison, a classification system for existing tags is needed.
    Therefore our main research questions are as follows: - Is it possible to discover regular patterns in tag usage and to establish a stable category model? - Does a specific tagging language comparable to internet slang or chatspeak evolve? - How do social tags differ from traditional (author / expert) keywords? - To what degree are social tags taken from or findable in the full text of the tagged resource? - Do tags in a research literature context go beyond simple content description (e.g. tags indicating time or task-related information, cf. Kipp et al. 2006)?
    Content
    Präsentation während der Veranstaltung "Networked Knowledge Organization Systems and Services: The 6th European Networked Knowledge Organization Systems (NKOS) Workshop, Workshop at the 11th ECDL Conference, Budapest, Hungary, September 21st 2007".
  10. Rafferty, P.: Tagging (2018) 0.03
    0.026150528 = product of:
      0.03922579 = sum of:
        0.012385598 = weight(_text_:information in 4647) [ClassicSimilarity], result of:
          0.012385598 = score(doc=4647,freq=2.0), product of:
            0.09122598 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.051966466 = queryNorm
            0.13576832 = fieldWeight in 4647, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4647)
        0.026840193 = product of:
          0.053680386 = sum of:
            0.053680386 = weight(_text_:systems in 4647) [ClassicSimilarity], result of:
              0.053680386 = score(doc=4647,freq=4.0), product of:
                0.159702 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.051966466 = queryNorm
                0.33612844 = fieldWeight in 4647, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4647)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    This article examines tagging as knowledge organization. Tagging is a kind of indexing, a process of labelling and categorizing information made to support resource discovery for users. Social tagging generally means the practice whereby internet users generate keywords to describe, categorise or comment on digital content. The value of tagging comes when social tags within a collection are aggregated and shared through a folksonomy. This article examines definitions of tagging and folksonomy, and discusses the functions, advantages and disadvantages of tagging systems in relation to knowledge organization before discussing studies that have compared tagging and conventional library-based knowledge organization systems. Approaches to disciplining tagging practice are examined and tagger motivation discussed. Finally, the article outlines current research fronts.
  11. Wang, Y.; Tai, Y.; Yang, Y.: Determination of semantic types of tags in social tagging systems (2018) 0.03
    0.025861707 = product of:
      0.038792558 = sum of:
        0.010616227 = weight(_text_:information in 4648) [ClassicSimilarity], result of:
          0.010616227 = score(doc=4648,freq=2.0), product of:
            0.09122598 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.051966466 = queryNorm
            0.116372846 = fieldWeight in 4648, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=4648)
        0.028176332 = product of:
          0.056352664 = sum of:
            0.056352664 = weight(_text_:systems in 4648) [ClassicSimilarity], result of:
              0.056352664 = score(doc=4648,freq=6.0), product of:
                0.159702 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.051966466 = queryNorm
                0.35286134 = fieldWeight in 4648, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4648)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    The purpose of this paper is to determine semantic types for tags in social tagging systems. In social tagging systems, the determination of the semantic type of tags plays an important role in tag classification, increasing the semantic information of tags and establishing mapping relations between tagged resources and a normed ontology. The research reported in this paper constructs the semantic type library that is needed based on the Unified Medical Language System (UMLS) and FrameNet and determines the semantic type of selected tags that have been pretreated via direct matching using the Semantic Navigator tool, the Semantic Type Word Sense Disambiguation (STWSD) tools in UMLS, and artificial matching. And finally, we verify the feasibility of the determination of semantic type for tags by empirical analysis.
  12. Aparecida Moura, M.; Assis, J.: Social networks, indexing languages and organization of knowledge : a semiotic approach 0.03
    0.025346328 = product of:
      0.03801949 = sum of:
        0.015013612 = weight(_text_:information in 3544) [ClassicSimilarity], result of:
          0.015013612 = score(doc=3544,freq=4.0), product of:
            0.09122598 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.051966466 = queryNorm
            0.16457605 = fieldWeight in 3544, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=3544)
        0.023005879 = product of:
          0.046011757 = sum of:
            0.046011757 = weight(_text_:systems in 3544) [ClassicSimilarity], result of:
              0.046011757 = score(doc=3544,freq=4.0), product of:
                0.159702 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.051966466 = queryNorm
                0.28811008 = fieldWeight in 3544, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3544)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    This study will present a theoretical discussion about the semiotics categories and its application in the information organization. An experiment about the performance of the Gemet and Eurovoc thesauri with the subject "sustainable development" comparing with the folksonomies and distributed classification systems available on the online repositories of individual or collective information is presented. The new configuration of warrant (literary, structural and of usage) in the process of constructing indexing languages in digital environments will also be discussed. It suggested in the methodological terms that the new theoretical and informational mediations have to be incorporated in the construction process of indexing languages.
    Source
    Paradigms and conceptual systems in knowledge organization: Proceedings of the Eleventh International ISKO conference, Rome, 23-26 February 2010, ed. Claudio Gnoli, Indeks, Frankfurt M
  13. Naderi, H.; Rumpler, B.: PERCIRS: a system to combine personalized and collaborative information retrieval (2010) 0.02
    0.024339259 = product of:
      0.036508888 = sum of:
        0.012258564 = weight(_text_:information in 3960) [ClassicSimilarity], result of:
          0.012258564 = score(doc=3960,freq=6.0), product of:
            0.09122598 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.051966466 = queryNorm
            0.1343758 = fieldWeight in 3960, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=3960)
        0.024250325 = product of:
          0.04850065 = sum of:
            0.04850065 = weight(_text_:systems in 3960) [ClassicSimilarity], result of:
              0.04850065 = score(doc=3960,freq=10.0), product of:
                0.159702 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.051966466 = queryNorm
                0.3036947 = fieldWeight in 3960, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.03125 = fieldNorm(doc=3960)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Purpose - This paper aims to discuss and test the claim that utilization of the personalization techniques can be valuable to improve the efficiency of collaborative information retrieval (CIR) systems. Design/methodology/approach - A new personalized CIR system, called PERCIRS, is presented based on the user profile similarity calculation (UPSC) formulas. To this aim, the paper proposes several UPSC formulas as well as two techniques to evaluate them. As the proposed CIR system is personalized, it could not be evaluated by Cranfield, like evaluation techniques (e.g. TREC). Hence, this paper proposes a new user-centric mechanism, which enables PERCIRS to be evaluated. This mechanism is generic and can be used to evaluate any other personalized IR system. Findings - The results show that among the proposed UPSC formulas in this paper, the (query-document)-graph based formula is the most effective. After integrating this formula into PERCIRS and comparing it with nine other IR systems, it is concluded that the results of the system are better than the other IR systems. In addition, the paper shows that the complexity of the system is less that the complexity of the other CIR systems. Research limitations/implications - This system asks the users to explicitly rank the returned documents, while explicit ranking is still not widespread enough. However it believes that the users should actively participate in the IR process in order to aptly satisfy their needs to information. Originality/value - The value of this paper lies in combining collaborative and personalized IR, as well as introducing a mechanism which enables the personalized IR system to be evaluated. The proposed evaluation mechanism is very valuable for developers of personalized IR systems. The paper also introduces some significant user profile similarity calculation formulas, and two techniques to evaluate them. These formulas can also be used to find the user's community in the social networks.
  14. Spiteri, L.F.: Extending the scope of library discovery systems via hashtags (2018) 0.02
    0.023896746 = product of:
      0.03584512 = sum of:
        0.01415497 = weight(_text_:information in 4798) [ClassicSimilarity], result of:
          0.01415497 = score(doc=4798,freq=2.0), product of:
            0.09122598 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.051966466 = queryNorm
            0.1551638 = fieldWeight in 4798, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0625 = fieldNorm(doc=4798)
        0.02169015 = product of:
          0.0433803 = sum of:
            0.0433803 = weight(_text_:systems in 4798) [ClassicSimilarity], result of:
              0.0433803 = score(doc=4798,freq=2.0), product of:
                0.159702 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.051966466 = queryNorm
                0.2716328 = fieldWeight in 4798, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4798)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Source
    Challenges and opportunities for knowledge organization in the digital age: proceedings of the Fifteenth International ISKO Conference, 9-11 July 2018, Porto, Portugal / organized by: International Society for Knowledge Organization (ISKO), ISKO Spain and Portugal Chapter, University of Porto - Faculty of Arts and Humanities, Research Centre in Communication, Information and Digital Culture (CIC.digital) - Porto. Eds.: F. Ribeiro u. M.E. Cerveira
  15. Chen, M.; Liu, X.; Qin, J.: Semantic relation extraction from socially-generated tags : a methodology for metadata generation (2008) 0.02
    0.023530371 = product of:
      0.035295557 = sum of:
        0.017693711 = weight(_text_:information in 2648) [ClassicSimilarity], result of:
          0.017693711 = score(doc=2648,freq=8.0), product of:
            0.09122598 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.051966466 = queryNorm
            0.19395474 = fieldWeight in 2648, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2648)
        0.017601846 = product of:
          0.03520369 = sum of:
            0.03520369 = weight(_text_:22 in 2648) [ClassicSimilarity], result of:
              0.03520369 = score(doc=2648,freq=2.0), product of:
                0.1819777 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051966466 = queryNorm
                0.19345059 = fieldWeight in 2648, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2648)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    The growing predominance of social semantics in the form of tagging presents the metadata community with both opportunities and challenges as for leveraging this new form of information content representation and for retrieval. One key challenge is the absence of contextual information associated with these tags. This paper presents an experiment working with Flickr tags as an example of utilizing social semantics sources for enriching subject metadata. The procedure included four steps: 1) Collecting a sample of Flickr tags, 2) Calculating cooccurrences between tags through mutual information, 3) Tracing contextual information of tag pairs via Google search results, 4) Applying natural language processing and machine learning techniques to extract semantic relations between tags. The experiment helped us to build a context sentence collection from the Google search results, which was then processed by natural language processing and machine learning algorithms. This new approach achieved a reasonably good rate of accuracy in assigning semantic relations to tag pairs. This paper also explores the implications of this approach for using social semantics to enrich subject metadata.
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas
  16. Choi, Y.; Syn, S.Y.: Characteristics of tagging behavior in digitized humanities online collections (2016) 0.02
    0.023530371 = product of:
      0.035295557 = sum of:
        0.017693711 = weight(_text_:information in 2891) [ClassicSimilarity], result of:
          0.017693711 = score(doc=2891,freq=8.0), product of:
            0.09122598 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.051966466 = queryNorm
            0.19395474 = fieldWeight in 2891, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2891)
        0.017601846 = product of:
          0.03520369 = sum of:
            0.03520369 = weight(_text_:22 in 2891) [ClassicSimilarity], result of:
              0.03520369 = score(doc=2891,freq=2.0), product of:
                0.1819777 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051966466 = queryNorm
                0.19345059 = fieldWeight in 2891, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2891)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    The purpose of this study was to examine user tags that describe digitized archival collections in the field of humanities. A collection of 8,310 tags from a digital portal (Nineteenth-Century Electronic Scholarship, NINES) was analyzed to find out what attributes of primary historical resources users described with tags. Tags were categorized to identify which tags describe the content of the resource, the resource itself, and subjective aspects (e.g., usage or emotion). The study's findings revealed that over half were content-related; tags representing opinion, usage context, or self-reference, however, reflected only a small percentage. The study further found that terms related to genre or physical format of a resource were frequently used in describing primary archival resources. It was also learned that nontextual resources had lower numbers of content-related tags and higher numbers of document-related tags than textual resources and bibliographic materials; moreover, textual resources tended to have more user-context-related tags than other resources. These findings help explain users' tagging behavior and resource interpretation in primary resources in the humanities. Such information provided through tags helps information professionals decide to what extent indexing archival and cultural resources should be done for resource description and discovery, and understand users' terminology.
    Date
    21. 4.2016 11:23:22
    Source
    Journal of the Association for Information Science and Technology. 67(2016) no.5, S.1089-1104
    Theme
    Information Gateway
  17. Catarino, M.E.; Baptista, A.A.: Relating folksonomies with Dublin Core (2008) 0.02
    0.022493085 = product of:
      0.033739626 = sum of:
        0.008846856 = weight(_text_:information in 2652) [ClassicSimilarity], result of:
          0.008846856 = score(doc=2652,freq=2.0), product of:
            0.09122598 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.051966466 = queryNorm
            0.09697737 = fieldWeight in 2652, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2652)
        0.02489277 = product of:
          0.04978554 = sum of:
            0.04978554 = weight(_text_:22 in 2652) [ClassicSimilarity], result of:
              0.04978554 = score(doc=2652,freq=4.0), product of:
                0.1819777 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051966466 = queryNorm
                0.27358043 = fieldWeight in 2652, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2652)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Folksonomy is the result of describing Web resources with tags created by Web users. Although it has become a popular application for the description of resources, in general terms Folksonomies are not being conveniently integrated in metadata. However, if the appropriate metadata elements are identified, then further work may be conducted to automatically assign tags to these elements (RDF properties) and use them in Semantic Web applications. This article presents research carried out to continue the project Kinds of Tags, which intends to identify elements required for metadata originating from folksonomies and to propose an application profile for DC Social Tagging. The work provides information that may be used by software applications to assign tags to metadata elements and, therefore, means for tags to be conveniently gathered by metadata interoperability tools. Despite the unquestionably high value of DC and the significance of the already existing properties in DC Terms, the pilot study show revealed a significant number of tags for which no corresponding properties yet existed. A need for new properties, such as Action, Depth, Rate, and Utility was determined. Those potential new properties will have to be validated in a later stage by the DC Social Tagging Community.
    Pages
    S.14-22
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas
  18. Furner, J.: User tagging of library resources : toward a framework for system evaluation (2007) 0.02
    0.022414736 = product of:
      0.033622105 = sum of:
        0.010616227 = weight(_text_:information in 703) [ClassicSimilarity], result of:
          0.010616227 = score(doc=703,freq=2.0), product of:
            0.09122598 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.051966466 = queryNorm
            0.116372846 = fieldWeight in 703, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=703)
        0.023005879 = product of:
          0.046011757 = sum of:
            0.046011757 = weight(_text_:systems in 703) [ClassicSimilarity], result of:
              0.046011757 = score(doc=703,freq=4.0), product of:
                0.159702 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.051966466 = queryNorm
                0.28811008 = fieldWeight in 703, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.046875 = fieldNorm(doc=703)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Although user tagging of library resources shows substantial promise as a means of improving the quality of users' access to those resources, several important questions about the level and nature of the warrant for basing retrieval tools on user tagging are yet to receive full consideration by library practitioners and researchers. Among these is the simple evaluative question: What, specifically, are the factors that determine whether or not user-tagging services will be successful? If success is to be defined in terms of the effectiveness with which systems perform the particular functions expected of them (rather than simply in terms of popularity), an understanding is needed both of the multifunctional nature of tagging tools, and of the complex nature of users' mental models of that multifunctionality. In this paper, a conceptual framework is developed for the evaluation of systems that integrate user tagging with more traditional methods of library resource description.
    Content
    Vortrag anlässlich: WORLD LIBRARY AND INFORMATION CONGRESS: 73RD IFLA GENERAL CONFERENCE AND COUNCIL 19-23 August 2007, Durban, South Africa. - 157 - Classification and Indexing
  19. Huang, S.-L.; Lin, S.-C.; Chan, Y.-C.: Investigating effectiveness and user acceptance of semantic social tagging for knowledge sharing (2012) 0.02
    0.022414736 = product of:
      0.033622105 = sum of:
        0.010616227 = weight(_text_:information in 2732) [ClassicSimilarity], result of:
          0.010616227 = score(doc=2732,freq=2.0), product of:
            0.09122598 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.051966466 = queryNorm
            0.116372846 = fieldWeight in 2732, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=2732)
        0.023005879 = product of:
          0.046011757 = sum of:
            0.046011757 = weight(_text_:systems in 2732) [ClassicSimilarity], result of:
              0.046011757 = score(doc=2732,freq=4.0), product of:
                0.159702 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.051966466 = queryNorm
                0.28811008 = fieldWeight in 2732, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2732)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Social tagging systems enable users to assign arbitrary tags to various digital resources. However, they face vague-meaning problems when users retrieve or present resources with the keyword-based tags. In order to solve these problems, this study takes advantage of Semantic Web technology and the topological characteristics of knowledge maps to develop a system that comprises a semantic tagging mechanism and triple-pattern and visual searching mechanisms. A field experiment was conducted to evaluate the effectiveness and user acceptance of these mechanisms in a knowledge sharing context. The results show that the semantic social tagging system is more effective than a keyword-based system. The visualized knowledge map helps users capture an overview of the knowledge domain, reduce cognitive effort for the search, and obtain more enjoyment. Traditional keyword tagging with a keyword search still has the advantage of ease of use and the users had higher intention to use it. This study also proposes directions for future development of semantic social tagging systems.
    Source
    Information processing and management. 48(2012) no.4, S.599-617
  20. Lin, N.; Li, D.; Ding, Y.; He, B.; Qin, Z.; Tang, J.; Li, J.; Dong, T.: ¬The dynamic features of Delicious, Flickr, and YouTube (2012) 0.02
    0.021551423 = product of:
      0.032327134 = sum of:
        0.008846856 = weight(_text_:information in 4970) [ClassicSimilarity], result of:
          0.008846856 = score(doc=4970,freq=2.0), product of:
            0.09122598 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.051966466 = queryNorm
            0.09697737 = fieldWeight in 4970, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4970)
        0.023480278 = product of:
          0.046960555 = sum of:
            0.046960555 = weight(_text_:systems in 4970) [ClassicSimilarity], result of:
              0.046960555 = score(doc=4970,freq=6.0), product of:
                0.159702 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.051966466 = queryNorm
                0.29405114 = fieldWeight in 4970, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4970)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    This article investigates the dynamic features of social tagging vocabularies in Delicious, Flickr, and YouTube from 2003 to 2008. Three algorithms are designed to study the macro- and micro-tag growth as well as the dynamics of taggers' activities, respectively. Moreover, we propose a Tagger Tag Resource Latent Dirichlet Allocation (TTR-LDA) model to explore the evolution of topics emerging from those social vocabularies. Our results show that (a) at the macro level, tag growth in all the three tagging systems obeys power law distribution with exponents lower than 1; at the micro level, the tag growth of popular resources in all three tagging systems follows a similar power law distribution; (b) the exponents of tag growth vary in different evolving stages of resources; (c) the growth of number of taggers associated with different popular resources presents a feature of convergence over time; (d) the active level of taggers has a positive correlation with the macro-tag growth of different tagging systems; and (e) some topics evolve into several subtopics over time while others experience relatively stable stages in which their contents do not change much, and certain groups of taggers continue their interests in them.
    Source
    Journal of the American Society for Information Science and Technology. 63(2012) no.1, S.139-162

Languages

  • e 87
  • d 18
  • i 1
  • More… Less…

Types

  • a 92
  • el 9
  • m 7
  • s 3
  • b 2
  • More… Less…