Search (16 results, page 1 of 1)

  • × author_ss:"Gnoli, C."
  1. Gnoli, C.; Poli, R.: Levels of reality and levels of representation (2004) 0.02
    0.015213685 = product of:
      0.10649579 = sum of:
        0.07118073 = weight(_text_:mental in 3533) [ClassicSimilarity], result of:
          0.07118073 = score(doc=3533,freq=2.0), product of:
            0.16438161 = queryWeight, product of:
              6.532101 = idf(docFreq=174, maxDocs=44218)
              0.025165197 = queryNorm
            0.43302125 = fieldWeight in 3533, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              6.532101 = idf(docFreq=174, maxDocs=44218)
              0.046875 = fieldNorm(doc=3533)
        0.03531506 = weight(_text_:representation in 3533) [ClassicSimilarity], result of:
          0.03531506 = score(doc=3533,freq=2.0), product of:
            0.11578492 = queryWeight, product of:
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.025165197 = queryNorm
            0.3050057 = fieldWeight in 3533, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.046875 = fieldNorm(doc=3533)
      0.14285715 = coord(2/14)
    
    Abstract
    Ontology, in its philosophical meaning, is the discipline investigating the structure of reality. Its findings can be relevant to knowledge organization, and models of knowledge can, in turn, offer relevant ontological suggestions. Several philosophers in time have pointed out that reality is structured into a series of integrative levels, like the physical, the biological, the mental, and the cultural, and that each level plays as a base for the emergence of more complex levels. More detailed theories of levels have been developed by Nicolai Hartmann and James K. Feibleman, and these have been considered as a source for structuring principles in bibliographic classification by both the Classification Research Group (CRG) and Ingetraut Dahlberg. CRG's analysis of levels and of their possible application to a new general classification scheme based an phenomena instead of disciplines, as it was formulated by Derek Austin in 1969, is examined in detail. Both benefits and open problems in applying integrative levels to bibliographic classification are pointed out.
  2. Gnoli, C.; Santis, R. de; Pusterla, L.: Commerce, see also Rhetoric : cross-discipline relationships as authority data for enhanced retrieval (2015) 0.01
    0.005023338 = product of:
      0.035163365 = sum of:
        0.02942922 = weight(_text_:representation in 2299) [ClassicSimilarity], result of:
          0.02942922 = score(doc=2299,freq=2.0), product of:
            0.11578492 = queryWeight, product of:
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.025165197 = queryNorm
            0.25417143 = fieldWeight in 2299, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2299)
        0.005734144 = product of:
          0.017202431 = sum of:
            0.017202431 = weight(_text_:29 in 2299) [ClassicSimilarity], result of:
              0.017202431 = score(doc=2299,freq=2.0), product of:
                0.08852329 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.025165197 = queryNorm
                0.19432661 = fieldWeight in 2299, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2299)
          0.33333334 = coord(1/3)
      0.14285715 = coord(2/14)
    
    Abstract
    Subjects in a classification scheme are often related to other subjects belonging to different hierarchies. This problem was identified already by Hugh of Saint Victor (1096?-1141). Still with present-time bibliographic classifications, a user browsing the class of architecture under the hierarchy of arts may miss relevant items classified in building or in civil engineering under the hierarchy of applied sciences. To face these limitations we have developed SciGator, a browsable interface to explore the collections of all scientific libraries at the University of Pavia. Besides showing subclasses of a given class, the interface points users to related classes in the Dewey Decimal Classification, or in other local schemes, and allows for expanded queries that include them. This is made possible by using a special field for related classes in the database structure which models classification authority data. Ontologically, many relationships between classes in different hierarchies are cases of existential dependence. Dependence can occur between disciplines in such disciplinary classifications as Dewey (e.g. architecture existentially depends on building), or between phenomena in such phenomenon-based classifications as the Integrative Levels Classification (e.g. fishing as a human activity existentially depends on fish as a class of organisms). We provide an example of its representation in OWL and discuss some details of it.
    Source
    Classification and authority control: expanding resource discovery: proceedings of the International UDC Seminar 2015, 29-30 October 2015, Lisbon, Portugal. Eds.: Slavic, A. u. M.I. Cordeiro
  3. Gnoli, C.: Fundamentos ontológicos de la organización del conocimiento : la teoría de los niveles integrativos aplicada al orden de cita (2011) 0.00
    0.00401867 = product of:
      0.02813069 = sum of:
        0.023543375 = weight(_text_:representation in 2659) [ClassicSimilarity], result of:
          0.023543375 = score(doc=2659,freq=2.0), product of:
            0.11578492 = queryWeight, product of:
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.025165197 = queryNorm
            0.20333713 = fieldWeight in 2659, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.03125 = fieldNorm(doc=2659)
        0.004587315 = product of:
          0.013761944 = sum of:
            0.013761944 = weight(_text_:29 in 2659) [ClassicSimilarity], result of:
              0.013761944 = score(doc=2659,freq=2.0), product of:
                0.08852329 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.025165197 = queryNorm
                0.15546128 = fieldWeight in 2659, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2659)
          0.33333334 = coord(1/3)
      0.14285715 = coord(2/14)
    
    Abstract
    The field of knowledge organization (KO) can be described as composed of the four distinct but connected layers of theory, systems, representation, and application. This paper focuses on the relations between KO theory and KO systems. It is acknowledged how the structure of KO systems is the product of a mixture of ontological, epistemological, and pragmatical factors. However, different systems give different priorities to each factor. A more ontologically-oriented approach, though not offering quick solutions for any particular group of users, will produce systems of wide and long-lasting application as they are based on general, shareable principles. I take the case of the ontological theory of integrative levels, which has been considered as a useful source for general classifications for several decades, and is currently implemented in the Integrative Levels Classification system. The theory produces a sequence of main classes modelling a natural order between phenomena. This order has interesting effects also on other features of the system, like the citation order of concepts within compounds. As it has been shown by facet analytical theory, it is useful that citation order follow a principle of inversion, as compared to the order of the same concepts in the schedules. In the light of integrative levels theory, this principle also acquires an ontological meaning: phenomena of lower level should be cited first, as most often they act as specifications of higher-level ones. This ontological principle should be complemented by consideration of the epistemological treatment of phenomena: in case a lower-level phenomenon is the main theme, it can be promoted to the leading position in the compound subject heading. The integration of these principles is believed to produce optimal results in the ordering of knowledge contents.
    Source
    Scire. 17(2011) no.1, S.29-34
  4. Binding, C.; Gnoli, C.; Tudhope, D.: Migrating a complex classification scheme to the semantic web : expressing the Integrative Levels Classification using SKOS RDF (2021) 0.00
    0.0036409218 = product of:
      0.0509729 = sum of:
        0.0509729 = weight(_text_:representation in 600) [ClassicSimilarity], result of:
          0.0509729 = score(doc=600,freq=6.0), product of:
            0.11578492 = queryWeight, product of:
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.025165197 = queryNorm
            0.44023782 = fieldWeight in 600, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.0390625 = fieldNorm(doc=600)
      0.071428575 = coord(1/14)
    
    Abstract
    Purpose The Integrative Levels Classification (ILC) is a comprehensive "freely faceted" knowledge organization system not previously expressed as SKOS (Simple Knowledge Organization System). This paper reports and reflects on work converting the ILC to SKOS representation. Design/methodology/approach The design of the ILC representation and the various steps in the conversion to SKOS are described and located within the context of previous work considering the representation of complex classification schemes in SKOS. Various issues and trade-offs emerging from the conversion are discussed. The conversion implementation employed the STELETO transformation tool. Findings The ILC conversion captures some of the ILC facet structure by a limited extension beyond the SKOS standard. SPARQL examples illustrate how this extension could be used to create faceted, compound descriptors when indexing or cataloguing. Basic query patterns are provided that might underpin search systems. Possible routes for reducing complexity are discussed. Originality/value Complex classification schemes, such as the ILC, have features which are not straight forward to represent in SKOS and which extend beyond the functionality of the SKOS standard. The ILC's facet indicators are modelled as rdf:Property sub-hierarchies that accompany the SKOS RDF statements. The ILC's top-level fundamental facet relationships are modelled by extensions of the associative relationship - specialised sub-properties of skos:related. An approach for representing faceted compound descriptions in ILC and other faceted classification schemes is proposed.
  5. Simoes, G.; Machado, L.; Gnoli, C.; Souza, R.: Can an ontologically-oriented KO do without concepts? (2020) 0.00
    0.0025225044 = product of:
      0.03531506 = sum of:
        0.03531506 = weight(_text_:representation in 4964) [ClassicSimilarity], result of:
          0.03531506 = score(doc=4964,freq=2.0), product of:
            0.11578492 = queryWeight, product of:
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.025165197 = queryNorm
            0.3050057 = fieldWeight in 4964, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.046875 = fieldNorm(doc=4964)
      0.071428575 = coord(1/14)
    
    Abstract
    The ontological approach in the development of KOS is an attempt to overcome the limitations of the traditional epistemological approach. Questions raise about the representation and organization of ontologically-oriented KO units, such as BFO universals or ILC phenomena. The study aims to compare the ontological approaches of BFO and ILC using a hermeneutic approach. We found that the differences between the units of the two systems are primarily due to the formal level of abstraction of BFO and the different organizations, namely the grouping of phenomena into ILC classes that represent complex compounds of entities in the BFO approach. In both systems the use of concepts is considered instrumental, although in the ILC they constitute the intersubjective component of the phenomena whereas in BFO they serve to access the entities of reality but are not part of them.
  6. Gnoli, C.: Faceted classifications as linked data : a logical analysis (2021) 0.00
    0.0025225044 = product of:
      0.03531506 = sum of:
        0.03531506 = weight(_text_:representation in 452) [ClassicSimilarity], result of:
          0.03531506 = score(doc=452,freq=2.0), product of:
            0.11578492 = queryWeight, product of:
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.025165197 = queryNorm
            0.3050057 = fieldWeight in 452, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.046875 = fieldNorm(doc=452)
      0.071428575 = coord(1/14)
    
    Abstract
    Faceted knowledge organization systems have sophisticated logical structures, making their representation as linked data a demanding task. The term facet is often used in ambiguous ways: while in thesauri facets only work as semantic categories, in classification schemes they also have syntactic functions. The need to convert the Integrative Levels Classification (ILC) into SKOS stimulated a more general analysis of the different kinds of syntactic facets, as can be represented in terms of RDF properties and their respective domain and range. A nomenclature is proposed, distinguishing between common facets, which can be appended to any class, that is, have an unrestricted domain; and special facets, which are exclusive to some class, that is, have a restricted domain. In both cases, foci can be taken from any other class (unrestricted range: free facets), or only from subclasses of an existing class (parallel facets), or be defined specifically for the present class (bound facets). Examples are given of such cases in ILC and in the Dewey Decimal Classification (DDC).
  7. Gnoli, C.; Bosch, M.; Mazzocchi, F.: ¬A new relationship for multidisciplinary knowledge organization systems : dependence (2007) 0.00
    0.0021020873 = product of:
      0.02942922 = sum of:
        0.02942922 = weight(_text_:representation in 1095) [ClassicSimilarity], result of:
          0.02942922 = score(doc=1095,freq=2.0), product of:
            0.11578492 = queryWeight, product of:
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.025165197 = queryNorm
            0.25417143 = fieldWeight in 1095, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.600994 = idf(docFreq=1206, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1095)
      0.071428575 = coord(1/14)
    
    Abstract
    Most existing knowledge organization systems (KOS) are based on disciplines. However, as research is increasingly multidisciplinary, scholars need tools allowing them to explore relations between phenomena throughout the whole spectrum of knowledge. We focus on the dependence relationship, holding between one phenomenon and those at lower integrative levels on which it depends for its existence, like alpinism on mountains, and mountains on rocks. This relationship was first described by D.J. Foskett in the context of CRG's work towards a non-disciplinary scheme. We discuss its possible status and representation in three kinds of KOS: thesauri, classification schemes, and ontologies. In thesaural structures, dependence could be one of the subtypes of associative relationships (RT) which have been wished to enrich their semantic functions. In classification, it could act together with hierarchy as a structuring principle, providing a way of connecting and sorting main classes based on integrative levels. In ontologies, it could be defined as a dependsOn direct slot, expressing the fact that through it a class does not inherit all properties of the other class on which it depends. We argue that providing search interfaces with cross-disciplinary links of this kind can give users more adequate tools to examine the recorded knowledge through creative paths overcoming some limitations of its canonical segmentation into disciplines.
  8. Santis, R. de; Gnoli, C.: Expressing dependence relationships in the Integrative Levels Classification using OWL (2016) 0.00
    6.553308E-4 = product of:
      0.00917463 = sum of:
        0.00917463 = product of:
          0.027523888 = sum of:
            0.027523888 = weight(_text_:29 in 4931) [ClassicSimilarity], result of:
              0.027523888 = score(doc=4931,freq=2.0), product of:
                0.08852329 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.025165197 = queryNorm
                0.31092256 = fieldWeight in 4931, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4931)
          0.33333334 = coord(1/3)
      0.071428575 = coord(1/14)
    
    Source
    Knowledge organization for a sustainable world: challenges and perspectives for cultural, scientific, and technological sharing in a connected society : proceedings of the Fourteenth International ISKO Conference 27-29 September 2016, Rio de Janeiro, Brazil / organized by International Society for Knowledge Organization (ISKO), ISKO-Brazil, São Paulo State University ; edited by José Augusto Chaves Guimarães, Suellen Oliveira Milani, Vera Dodebei
  9. Gnoli, C.: Naturalism vs pragmatism in knowledge organization (2004) 0.00
    4.9149804E-4 = product of:
      0.006880972 = sum of:
        0.006880972 = product of:
          0.020642916 = sum of:
            0.020642916 = weight(_text_:29 in 2663) [ClassicSimilarity], result of:
              0.020642916 = score(doc=2663,freq=2.0), product of:
                0.08852329 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.025165197 = queryNorm
                0.23319192 = fieldWeight in 2663, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2663)
          0.33333334 = coord(1/3)
      0.071428575 = coord(1/14)
    
    Date
    29. 8.2004 17:33:13
  10. Gnoli, C.: Phylogenetic classification (2006) 0.00
    4.9149804E-4 = product of:
      0.006880972 = sum of:
        0.006880972 = product of:
          0.020642916 = sum of:
            0.020642916 = weight(_text_:29 in 164) [ClassicSimilarity], result of:
              0.020642916 = score(doc=164,freq=2.0), product of:
                0.08852329 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.025165197 = queryNorm
                0.23319192 = fieldWeight in 164, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.046875 = fieldNorm(doc=164)
          0.33333334 = coord(1/3)
      0.071428575 = coord(1/14)
    
    Date
    11. 3.2007 14:19:29
  11. Gnoli, C.: Boundaries and overlaps of disciplines in Bloch's methodology of historical knowledge (2014) 0.00
    4.8707667E-4 = product of:
      0.006819073 = sum of:
        0.006819073 = product of:
          0.02045722 = sum of:
            0.02045722 = weight(_text_:22 in 1414) [ClassicSimilarity], result of:
              0.02045722 = score(doc=1414,freq=2.0), product of:
                0.08812423 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.025165197 = queryNorm
                0.23214069 = fieldWeight in 1414, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1414)
          0.33333334 = coord(1/3)
      0.071428575 = coord(1/14)
    
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  12. Lardera, M.; Gnoli, C.; Rolandi, C.; Trzmielewski, M.: Developing SciGator, a DDC-based library browsing tool (2017) 0.00
    4.8707667E-4 = product of:
      0.006819073 = sum of:
        0.006819073 = product of:
          0.02045722 = sum of:
            0.02045722 = weight(_text_:22 in 4144) [ClassicSimilarity], result of:
              0.02045722 = score(doc=4144,freq=2.0), product of:
                0.08812423 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.025165197 = queryNorm
                0.23214069 = fieldWeight in 4144, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4144)
          0.33333334 = coord(1/3)
      0.071428575 = coord(1/14)
    
    Content
    Beitrag eines Special Issue: ISKO-Italy: 8' Incontro ISKO Italia, Università di Bologna, 22 maggio 2017, Bologna, Italia.
  13. Gnoli, C.: Classifying phenomena : part 4: themes and rhemes (2018) 0.00
    4.8707667E-4 = product of:
      0.006819073 = sum of:
        0.006819073 = product of:
          0.02045722 = sum of:
            0.02045722 = weight(_text_:22 in 4152) [ClassicSimilarity], result of:
              0.02045722 = score(doc=4152,freq=2.0), product of:
                0.08812423 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.025165197 = queryNorm
                0.23214069 = fieldWeight in 4152, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4152)
          0.33333334 = coord(1/3)
      0.071428575 = coord(1/14)
    
    Date
    17. 2.2018 18:22:25
  14. Gnoli, C.: Progress in synthetic classification : towards unique definition of concepts (2007) 0.00
    4.0958173E-4 = product of:
      0.005734144 = sum of:
        0.005734144 = product of:
          0.017202431 = sum of:
            0.017202431 = weight(_text_:29 in 2527) [ClassicSimilarity], result of:
              0.017202431 = score(doc=2527,freq=2.0), product of:
                0.08852329 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.025165197 = queryNorm
                0.19432661 = fieldWeight in 2527, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2527)
          0.33333334 = coord(1/3)
      0.071428575 = coord(1/14)
    
    Source
    Extensions and corrections to the UDC. 29(2007), S.167-182
  15. Gnoli, C.: Classification transcends library business : the case of BiblioPhil (2010) 0.00
    4.0589727E-4 = product of:
      0.0056825615 = sum of:
        0.0056825615 = product of:
          0.017047685 = sum of:
            0.017047685 = weight(_text_:22 in 3698) [ClassicSimilarity], result of:
              0.017047685 = score(doc=3698,freq=2.0), product of:
                0.08812423 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.025165197 = queryNorm
                0.19345059 = fieldWeight in 3698, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3698)
          0.33333334 = coord(1/3)
      0.071428575 = coord(1/14)
    
    Date
    22. 7.2010 20:40:08
  16. Gnoli, C.; Merli, G.; Pavan, G.; Bernuzzi, E.; Priano, M.: Freely faceted classification for a Web-based bibliographic archive : the BioAcoustic Reference Database (2010) 0.00
    4.0589727E-4 = product of:
      0.0056825615 = sum of:
        0.0056825615 = product of:
          0.017047685 = sum of:
            0.017047685 = weight(_text_:22 in 3739) [ClassicSimilarity], result of:
              0.017047685 = score(doc=3739,freq=2.0), product of:
                0.08812423 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.025165197 = queryNorm
                0.19345059 = fieldWeight in 3739, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3739)
          0.33333334 = coord(1/3)
      0.071428575 = coord(1/14)
    
    Source
    Wissensspeicher in digitalen Räumen: Nachhaltigkeit - Verfügbarkeit - semantische Interoperabilität. Proceedings der 11. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation, Konstanz, 20. bis 22. Februar 2008. Hrsg.: J. Sieglerschmidt u. H.P.Ohly