Search (19 results, page 1 of 1)

  • × theme_ss:"Semantic Web"
  • × theme_ss:"Semantische Interoperabilität"
  1. Vocht, L. De: Exploring semantic relationships in the Web of Data : Semantische relaties verkennen in data op het web (2017) 0.02
    0.021731397 = product of:
      0.06519419 = sum of:
        0.06519419 = weight(_text_:resources in 4232) [ClassicSimilarity], result of:
          0.06519419 = score(doc=4232,freq=24.0), product of:
            0.18665522 = queryWeight, product of:
              3.650338 = idf(docFreq=3122, maxDocs=44218)
              0.051133685 = queryNorm
            0.349276 = fieldWeight in 4232, product of:
              4.8989797 = tf(freq=24.0), with freq of:
                24.0 = termFreq=24.0
              3.650338 = idf(docFreq=3122, maxDocs=44218)
              0.01953125 = fieldNorm(doc=4232)
      0.33333334 = coord(1/3)
    
    Abstract
    This PhD-thesis describes how to effectively explore linked data on the Web. The main focus is on scenarios where users want to discover relationships between resources rather than finding out more about something specific. Searching for a specific document or piece of information fits in the theoretical framework of information retrieval and is associated with exploratory search. Exploratory search goes beyond 'looking up something' when users are seeking more detailed understanding, further investigation or navigation of the initial search results. The ideas behind exploratory search and querying linked data merge when it comes to the way knowledge is represented and indexed by machines - how data is structured and stored for optimal searchability. Queries and information should be aligned to facilitate that searches also reveal connections between results. This implies that they take into account the same semantic entities, relevant at that moment. To realize this, we research three techniques that are evaluated one by one in an experimental set-up to assess how well they succeed in their goals. In the end, the techniques are applied to a practical use case that focuses on forming a bridge between the Web and the use of digital libraries in scientific research. Our first technique focuses on the interactive visualization of search results. Linked data resources can be brought in relation with each other at will. This leads to complex and diverse graphs structures. Our technique facilitates navigation and supports a workflow starting from a broad overview on the data and allows narrowing down until the desired level of detail to then broaden again. To validate the flow, two visualizations where implemented and presented to test-users. The users judged the usability of the visualizations, how the visualizations fit in the workflow and to which degree their features seemed useful for the exploration of linked data.
    Our first technique focuses on the interactive visualization of search results. Linked data resources can be brought in relation with each other at will. This leads to complex and diverse graphs structures. Our technique facilitates navigation and supports a workflow starting from a broad overview on the data and allows narrowing down until the desired level of detail to then broaden again. To validate the flow, two visualizations where implemented and presented to test-users. The users judged the usability of the visualizations, how the visualizations fit in the workflow and to which degree their features seemed useful for the exploration of linked data. There is a difference in the way users interact with resources, visually or textually, and how resources are represented for machines to be processed by algorithms. This difference complicates bridging the users' intents and machine executable queries. It is important to implement this 'translation' mechanism to impact the search as favorable as possible in terms of performance, complexity and accuracy. To do this, we explain a second technique, that supports such a bridging component. Our second technique is developed around three features that support the search process: looking up, relating and ranking resources. The main goal is to ensure that resources in the results are as precise and relevant as possible. During the evaluation of this technique, we did not only look at the precision of the search results but also investigated how the effectiveness of the search evolved while the user executed certain actions sequentially.
    When we speak about finding relationships between resources, it is necessary to dive deeper in the structure. The graph structure of linked data where the semantics give meaning to the relationships between resources enable the execution of pathfinding algorithms. The assigned weights and heuristics are base components of such algorithms and ultimately define (the order) which resources are included in a path. These paths explain indirect connections between resources. Our third technique proposes an algorithm that optimizes the choice of resources in terms of serendipity. Some optimizations guard the consistence of candidate-paths where the coherence of consecutive connections is maximized to avoid trivial and too arbitrary paths. The implementation uses the A* algorithm, the de-facto reference when it comes to heuristically optimized minimal cost paths. The effectiveness of paths was measured based on common automatic metrics and surveys where the users could indicate their preference for paths, generated each time in a different way. Finally, all our techniques are applied to a use case about publications in digital libraries where they are aligned with information about scientific conferences and researchers. The application to this use case is a practical example because the different aspects of exploratory search come together. In fact, the techniques also evolved from the experiences when implementing the use case. Practical details about the semantic model are explained and the implementation of the search system is clarified module by module. The evaluation positions the result, a prototype of a tool to explore scientific publications, researchers and conferences next to some important alternatives.
  2. Miller, E.; Schloss. B.; Lassila, O.; Swick, R.R.: Resource Description Framework (RDF) : model and syntax (1997) 0.02
    0.021512985 = product of:
      0.064538956 = sum of:
        0.064538956 = weight(_text_:resources in 5903) [ClassicSimilarity], result of:
          0.064538956 = score(doc=5903,freq=12.0), product of:
            0.18665522 = queryWeight, product of:
              3.650338 = idf(docFreq=3122, maxDocs=44218)
              0.051133685 = queryNorm
            0.3457656 = fieldWeight in 5903, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              3.650338 = idf(docFreq=3122, maxDocs=44218)
              0.02734375 = fieldNorm(doc=5903)
      0.33333334 = coord(1/3)
    
    Abstract
    RDF - the Resource Description Framework - is a foundation for processing metadata; it provides interoperability between applications that exchange machine-understandable information on the Web. RDF emphasizes facilities to enable automated processing of Web resources. RDF metadata can be used in a variety of application areas; for example: in resource discovery to provide better search engine capabilities; in cataloging for describing the content and content relationships available at a particular Web site, page, or digital library; by intelligent software agents to facilitate knowledge sharing and exchange; in content rating; in describing collections of pages that represent a single logical "document"; for describing intellectual property rights of Web pages, and in many others. RDF with digital signatures will be key to building the "Web of Trust" for electronic commerce, collaboration, and other applications. Metadata is "data about data" or specifically in the context of RDF "data describing web resources." The distinction between "data" and "metadata" is not an absolute one; it is a distinction created primarily by a particular application. Many times the same resource will be interpreted in both ways simultaneously. RDF encourages this view by using XML as the encoding syntax for the metadata. The resources being described by RDF are, in general, anything that can be named via a URI. The broad goal of RDF is to define a mechanism for describing resources that makes no assumptions about a particular application domain, nor defines the semantics of any application domain. The definition of the mechanism should be domain neutral, yet the mechanism should be suitable for describing information about any domain. This document introduces a model for representing RDF metadata and one syntax for expressing and transporting this metadata in a manner that maximizes the interoperability of independently developed web servers and clients. The syntax described in this document is best considered as a "serialization syntax" for the underlying RDF representation model. The serialization syntax is XML, XML being the W3C's work-in-progress to define a richer Web syntax for a variety of applications. RDF and XML are complementary; there will be alternate ways to represent the same RDF data model, some more suitable for direct human authoring. Future work may lead to including such alternatives in this document.
    Content
    RDF Data Model At the core of RDF is a model for representing named properties and their values. These properties serve both to represent attributes of resources (and in this sense correspond to usual attribute-value-pairs) and to represent relationships between resources. The RDF data model is a syntax-independent way of representing RDF statements. RDF statements that are syntactically very different could mean the same thing. This concept of equivalence in meaning is very important when performing queries, aggregation and a number of other tasks at which RDF is aimed. The equivalence is defined in a clean machine understandable way. Two pieces of RDF are equivalent if and only if their corresponding data model representations are the same. Table of contents 1. Introduction 2. RDF Data Model 3. RDF Grammar 4. Signed RDF 5. Examples 6. Appendix A: Brief Explanation of XML Namespaces
  3. Liang, A.; Salokhe, G.; Sini, M.; Keizer, J.: Towards an infrastructure for semantic applications : methodologies for semantic integration of heterogeneous resources (2006) 0.02
    0.021292333 = product of:
      0.063876994 = sum of:
        0.063876994 = weight(_text_:resources in 241) [ClassicSimilarity], result of:
          0.063876994 = score(doc=241,freq=4.0), product of:
            0.18665522 = queryWeight, product of:
              3.650338 = idf(docFreq=3122, maxDocs=44218)
              0.051133685 = queryNorm
            0.34221917 = fieldWeight in 241, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.650338 = idf(docFreq=3122, maxDocs=44218)
              0.046875 = fieldNorm(doc=241)
      0.33333334 = coord(1/3)
    
    Abstract
    The semantic heterogeneity presented by Web information in the Agricultural domain presents tremendous information retrieval challenges. This article presents work taking place at the Food and Agriculture Organizations (FAO) which addresses this challenge. Based on the analysis of resources in the domain of agriculture, this paper proposes (a) an application profile (AP) for dealing with the problem of heterogeneity originating from differences in terminologies, domain coverage, and domain modelling, and (b) a root application ontology (AAO) based on the application profile which can serve as a basis for extending knowledge of the domain. The paper explains how even a small investment in the enhancement of relations between vocabularies, both metadata and domain-specific, yields a relatively large return on investment.
  4. Svensson, L.G.: Unified access : a semantic Web based model for multilingual navigation in heterogeneous data sources (2008) 0.02
    0.015055953 = product of:
      0.045167856 = sum of:
        0.045167856 = weight(_text_:resources in 2191) [ClassicSimilarity], result of:
          0.045167856 = score(doc=2191,freq=2.0), product of:
            0.18665522 = queryWeight, product of:
              3.650338 = idf(docFreq=3122, maxDocs=44218)
              0.051133685 = queryNorm
            0.2419855 = fieldWeight in 2191, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.650338 = idf(docFreq=3122, maxDocs=44218)
              0.046875 = fieldNorm(doc=2191)
      0.33333334 = coord(1/3)
    
    Abstract
    Most online library catalogues are not well equipped for subject search. On the one hand it is difficult to navigate the structures of the thesauri and classification systems used for indexing. Further, there is little or no support for the integration of crosswalks between different controlled vocabularies, so that a subject search query formulated using one controlled vocabulary will not find resources indexed with another knowledge organisation system even if there exists a crosswalk between them. In this paper we will look at SemanticWeb technologies and a prototype system leveraging those technologies in order to enhance the subject search possibilities in heterogeneously indexed repositories. Finally, we will have a brief look at different initiatives aimed at integrating library data into the SemanticWeb.
  5. Koutsomitropoulos, D.A.; Solomou, G.D.; Alexopoulos, A.D.; Papatheodorou, T.S.: Semantic metadata interoperability and inference-based querying in digital repositories (2009) 0.02
    0.015055953 = product of:
      0.045167856 = sum of:
        0.045167856 = weight(_text_:resources in 3731) [ClassicSimilarity], result of:
          0.045167856 = score(doc=3731,freq=2.0), product of:
            0.18665522 = queryWeight, product of:
              3.650338 = idf(docFreq=3122, maxDocs=44218)
              0.051133685 = queryNorm
            0.2419855 = fieldWeight in 3731, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.650338 = idf(docFreq=3122, maxDocs=44218)
              0.046875 = fieldNorm(doc=3731)
      0.33333334 = coord(1/3)
    
    Abstract
    Metadata applications have evolved in time into highly structured "islands of information" about digital resources, often bearing a strong semantic interpretation. Scarcely however are these semantics being communicated in machine readable and understandable ways. At the same time, the process for transforming the implied metadata knowledge into explicit Semantic Web descriptions can be problematic and is not always evident. In this article we take upon the well-established Dublin Core metadata standard as well as other metadata schemata, which often appear in digital repositories set-ups, and suggest a proper Semantic Web OWL ontology. In this process the authors cope with discrepancies and incompatibilities, indicative of such attempts, in novel ways. Moreover, we show the potential and necessity of this approach by demonstrating inferences on the resulting ontology, instantiated with actual metadata records. The authors conclude by presenting a working prototype that provides for inference-based querying on top of digital repositories.
  6. Sartini, B.; Erp, M. van; Gangemi, A.: Marriage is a peach and a chalice : modelling cultural symbolism on the Semantic Web (2021) 0.02
    0.015055953 = product of:
      0.045167856 = sum of:
        0.045167856 = weight(_text_:resources in 557) [ClassicSimilarity], result of:
          0.045167856 = score(doc=557,freq=2.0), product of:
            0.18665522 = queryWeight, product of:
              3.650338 = idf(docFreq=3122, maxDocs=44218)
              0.051133685 = queryNorm
            0.2419855 = fieldWeight in 557, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.650338 = idf(docFreq=3122, maxDocs=44218)
              0.046875 = fieldNorm(doc=557)
      0.33333334 = coord(1/3)
    
    Abstract
    In this work, we fill the gap in the Semantic Web in the context of Cultural Symbolism. Building upon earlier work in \citesartini_towards_2021, we introduce the Simulation Ontology, an ontology that models the background knowledge of symbolic meanings, developed by combining the concepts taken from the authoritative theory of Simulacra and Simulations of Jean Baudrillard with symbolic structures and content taken from "Symbolism: a Comprehensive Dictionary'' by Steven Olderr. We re-engineered the symbolic knowledge already present in heterogeneous resources by converting it into our ontology schema to create HyperReal, the first knowledge graph completely dedicated to cultural symbolism. A first experiment run on the knowledge graph is presented to show the potential of quantitative research on symbolism.
  7. Panzer, M.: Relationships, spaces, and the two faces of Dewey (2008) 0.01
    0.013038838 = product of:
      0.039116513 = sum of:
        0.039116513 = weight(_text_:resources in 2127) [ClassicSimilarity], result of:
          0.039116513 = score(doc=2127,freq=6.0), product of:
            0.18665522 = queryWeight, product of:
              3.650338 = idf(docFreq=3122, maxDocs=44218)
              0.051133685 = queryNorm
            0.2095656 = fieldWeight in 2127, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.650338 = idf(docFreq=3122, maxDocs=44218)
              0.0234375 = fieldNorm(doc=2127)
      0.33333334 = coord(1/3)
    
    Content
    What are those "other" relationships that Dewey possesses and that seem so important to surface? Firstly, there is the relationship of concepts to resources. Dewey has been used for a long time, and over 200,000 numbers are assigned to information resources each year and added to WorldCat by the Library of Congress and the German National Library alone. Secondly, we have relationships between concepts in the scheme itself. Dewey provides a rich set of non-hierarchical relations, indicating other relevant and related subjects across disciplinary boundaries. Thirdly, perhaps most importantly, there is the relationship between the same concepts across different languages. Dewey has been translated extensively, and current versions are available in French, German, Hebrew, Italian, Spanish, and Vietnamese. Briefer representations of the top-three levels (the DDC Summaries) are available in several languages in the DeweyBrowser. This multilingual nature of the scheme allows searchers to access a broader range of resources or to switch the language of--and thus localize--subject metadata seamlessly. MelvilClass, a Dewey front-end developed by the German National Library for the German translation, could be used as a common interface to the DDC in any language, as it is built upon the standard DDC data format. It is not hard to give an example of the basic terminology of a class pulled together in a multilingual way: <class/794.8> a skos:Concept ; skos:notation "794.8"^^ddc:notation ; skos:prefLabel "Computer games"@en ; skos:prefLabel "Computerspiele"@de ; skos:prefLabel "Jeux sur ordinateur"@fr ; skos:prefLabel "Juegos por computador"@es .
  8. Proceedings of the 2nd International Workshop on Evaluation of Ontology-based Tools (2004) 0.01
    0.012546628 = product of:
      0.037639882 = sum of:
        0.037639882 = weight(_text_:resources in 3152) [ClassicSimilarity], result of:
          0.037639882 = score(doc=3152,freq=2.0), product of:
            0.18665522 = queryWeight, product of:
              3.650338 = idf(docFreq=3122, maxDocs=44218)
              0.051133685 = queryNorm
            0.20165458 = fieldWeight in 3152, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.650338 = idf(docFreq=3122, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3152)
      0.33333334 = coord(1/3)
    
    Content
    Table of Contents Part I: Accepted Papers Christoph Tempich and Raphael Volz: Towards a benchmark for Semantic Web reasoners - an analysis of the DAML ontology library M. Carmen Suarez-Figueroa and Asuncion Gomez-Perez: Results of Taxonomic Evaluation of RDF(S) and DAML+OIL ontologies using RDF(S) and DAML+OIL Validation Tools and Ontology Platforms import services Volker Haarslev and Ralf Möller: Racer: A Core Inference Engine for the Semantic Web Mikhail Kazakov and Habib Abdulrab: DL-workbench: a metamodeling approach to ontology manipulation Thorsten Liebig and Olaf Noppens: OntoTrack: Fast Browsing and Easy Editing of Large Ontologie Frederic Fürst, Michel Leclere, and Francky Trichet: TooCoM : a Tool to Operationalize an Ontology with the Conceptual Graph Model Naoki Sugiura, Masaki Kurematsu, Naoki Fukuta, Noriaki Izumi, and Takahira Yamaguchi: A domain ontology engineering tool with general ontologies and text corpus Howard Goldberg, Alfredo Morales, David MacMillan, and Matthew Quinlan: An Ontology-Driven Application to Improve the Prescription of Educational Resources to Parents of Premature Infants Part II: Experiment Contributions Domain natural language description for the experiment Raphael Troncy, Antoine Isaac, and Veronique Malaise: Using XSLT for Interoperability: DOE and The Travelling Domain Experiment Christian Fillies: SemTalk EON2003 Semantic Web Export / Import Interface Test Óscar Corcho, Asunción Gómez-Pérez, Danilo José Guerrero-Rodríguez, David Pérez-Rey, Alberto Ruiz-Cristina, Teresa Sastre-Toral, M. Carmen Suárez-Figueroa: Evaluation experiment of ontology tools' interoperability with the WebODE ontology engineering workbench Holger Knublauch: Case Study: Using Protege to Convert the Travel Ontology to UML and OWL Franz Calvo and John Gennari: Interoperability of Protege 2.0 beta and OilEd 3.5 in the Domain Knowledge of Osteoporosis
  9. Baker, T.; Sutton, S.A.: Linked data and the charm of weak semantics : Introduction: the strengths of weak semantics (2015) 0.01
    0.012546628 = product of:
      0.037639882 = sum of:
        0.037639882 = weight(_text_:resources in 2022) [ClassicSimilarity], result of:
          0.037639882 = score(doc=2022,freq=2.0), product of:
            0.18665522 = queryWeight, product of:
              3.650338 = idf(docFreq=3122, maxDocs=44218)
              0.051133685 = queryNorm
            0.20165458 = fieldWeight in 2022, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.650338 = idf(docFreq=3122, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2022)
      0.33333334 = coord(1/3)
    
    Abstract
    Logic and precision are fundamental to ontologies underlying the semantic web and, by extension, to linked data. This special section focuses on the interaction of semantics, ontologies and linked data. The discussion presents the Simple Knowledge Organization Scheme (SKOS) as a less formal strategy for expressing concept hierarchies and associations and questions the value of deep domain ontologies in favor of simpler vocabularies that are more open to reuse, albeit risking illogical outcomes. RDF ontologies harbor another unexpected drawback. While structurally sound, they leave validation gaps permitting illogical uses, a problem being addressed by a W3C Working Group. Data models based on RDF graphs and properties may replace traditional library catalog models geared to predefined entities, with relationships between RDF classes providing the semantic connections. The BIBFRAME Initiative takes a different and streamlined approach to linking data, building rich networks of information resources rather than relying on a strict underlying structure and vocabulary. Taken together, the articles illustrate the trend toward a pragmatic approach to a Semantic Web, sacrificing some specificity for greater flexibility and partial interoperability.
  10. Isaac, A.; Schlobach, S.; Matthezing, H.; Zinn, C.: Integrated access to cultural heritage resources through representation and alignment of controlled vocabularies (2008) 0.01
    0.010037302 = product of:
      0.030111905 = sum of:
        0.030111905 = weight(_text_:resources in 3398) [ClassicSimilarity], result of:
          0.030111905 = score(doc=3398,freq=2.0), product of:
            0.18665522 = queryWeight, product of:
              3.650338 = idf(docFreq=3122, maxDocs=44218)
              0.051133685 = queryNorm
            0.16132367 = fieldWeight in 3398, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.650338 = idf(docFreq=3122, maxDocs=44218)
              0.03125 = fieldNorm(doc=3398)
      0.33333334 = coord(1/3)
    
  11. Reasoning Web : Semantic Interoperability on the Web, 13th International Summer School 2017, London, UK, July 7-11, 2017, Tutorial Lectures (2017) 0.01
    0.009264226 = product of:
      0.027792677 = sum of:
        0.027792677 = product of:
          0.055585355 = sum of:
            0.055585355 = weight(_text_:management in 3934) [ClassicSimilarity], result of:
              0.055585355 = score(doc=3934,freq=6.0), product of:
                0.17235184 = queryWeight, product of:
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.051133685 = queryNorm
                0.32251096 = fieldWeight in 3934, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3934)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    This volume contains the lecture notes of the 13th Reasoning Web Summer School, RW 2017, held in London, UK, in July 2017. In 2017, the theme of the school was "Semantic Interoperability on the Web", which encompasses subjects such as data integration, open data management, reasoning over linked data, database to ontology mapping, query answering over ontologies, hybrid reasoning with rules and ontologies, and ontology-based dynamic systems. The papers of this volume focus on these topics and also address foundational reasoning techniques used in answer set programming and ontologies.
    LCSH
    Database management
    Subject
    Database management
  12. Metadata and semantics research : 9th Research Conference, MTSR 2015, Manchester, UK, September 9-11, 2015, Proceedings (2015) 0.01
    0.009077052 = product of:
      0.027231153 = sum of:
        0.027231153 = product of:
          0.054462306 = sum of:
            0.054462306 = weight(_text_:management in 3274) [ClassicSimilarity], result of:
              0.054462306 = score(doc=3274,freq=4.0), product of:
                0.17235184 = queryWeight, product of:
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.051133685 = queryNorm
                0.31599492 = fieldWeight in 3274, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3274)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    LCSH
    Database management
    Subject
    Database management
  13. Isaac, A.: Aligning thesauri for an integrated access to Cultural Heritage Resources (2007) 0.01
    0.008782639 = product of:
      0.026347917 = sum of:
        0.026347917 = weight(_text_:resources in 553) [ClassicSimilarity], result of:
          0.026347917 = score(doc=553,freq=2.0), product of:
            0.18665522 = queryWeight, product of:
              3.650338 = idf(docFreq=3122, maxDocs=44218)
              0.051133685 = queryNorm
            0.14115821 = fieldWeight in 553, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.650338 = idf(docFreq=3122, maxDocs=44218)
              0.02734375 = fieldNorm(doc=553)
      0.33333334 = coord(1/3)
    
  14. Sakr, S.; Wylot, M.; Mutharaju, R.; Le-Phuoc, D.; Fundulaki, I.: Linked data : storing, querying, and reasoning (2018) 0.01
    0.008557925 = product of:
      0.025673775 = sum of:
        0.025673775 = product of:
          0.05134755 = sum of:
            0.05134755 = weight(_text_:management in 5329) [ClassicSimilarity], result of:
              0.05134755 = score(doc=5329,freq=8.0), product of:
                0.17235184 = queryWeight, product of:
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.051133685 = queryNorm
                0.29792285 = fieldWeight in 5329, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.03125 = fieldNorm(doc=5329)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    This book describes efficient and effective techniques for harnessing the power of Linked Data by tackling the various aspects of managing its growing volume: storing, querying, reasoning, provenance management and benchmarking. To this end, Chapter 1 introduces the main concepts of the Semantic Web and Linked Data and provides a roadmap for the book. Next, Chapter 2 briefly presents the basic concepts underpinning Linked Data technologies that are discussed in the book. Chapter 3 then offers an overview of various techniques and systems for centrally querying RDF datasets, and Chapter 4 outlines various techniques and systems for efficiently querying large RDF datasets in distributed environments. Subsequently, Chapter 5 explores how streaming requirements are addressed in current, state-of-the-art RDF stream data processing. Chapter 6 covers performance and scaling issues of distributed RDF reasoning systems, while Chapter 7 details benchmarks for RDF query engines and instance matching systems. Chapter 8 addresses the provenance management for Linked Data and presents the different provenance models developed. Lastly, Chapter 9 offers a brief summary, highlighting and providing insights into some of the open challenges and research directions. Providing an updated overview of methods, technologies and systems related to Linked Data this book is mainly intended for students and researchers who are interested in the Linked Data domain. It enables students to gain an understanding of the foundations and underpinning technologies and standards for Linked Data, while researchers benefit from the in-depth coverage of the emerging and ongoing advances in Linked Data storing, querying, reasoning, and provenance management systems. Further, it serves as a starting point to tackle the next research challenges in the domain of Linked Data management.
  15. Schneider, R.: Web 3.0 ante portas? : Integration von Social Web und Semantic Web (2008) 0.01
    0.00808256 = product of:
      0.02424768 = sum of:
        0.02424768 = product of:
          0.04849536 = sum of:
            0.04849536 = weight(_text_:22 in 4184) [ClassicSimilarity], result of:
              0.04849536 = score(doc=4184,freq=2.0), product of:
                0.17906146 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051133685 = queryNorm
                0.2708308 = fieldWeight in 4184, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4184)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    22. 1.2011 10:38:28
  16. Heflin, J.; Hendler, J.: Semantic interoperability on the Web (2000) 0.01
    0.00808256 = product of:
      0.02424768 = sum of:
        0.02424768 = product of:
          0.04849536 = sum of:
            0.04849536 = weight(_text_:22 in 759) [ClassicSimilarity], result of:
              0.04849536 = score(doc=759,freq=2.0), product of:
                0.17906146 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051133685 = queryNorm
                0.2708308 = fieldWeight in 759, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=759)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    11. 5.2013 19:22:18
  17. Metadata and semantics research : 10th International Conference, MTSR 2016, Göttingen, Germany, November 22-25, 2016, Proceedings (2016) 0.01
    0.00808256 = product of:
      0.02424768 = sum of:
        0.02424768 = product of:
          0.04849536 = sum of:
            0.04849536 = weight(_text_:22 in 3283) [ClassicSimilarity], result of:
              0.04849536 = score(doc=3283,freq=2.0), product of:
                0.17906146 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051133685 = queryNorm
                0.2708308 = fieldWeight in 3283, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3283)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
  18. Metadata and semantics research : 8th Research Conference, MTSR 2014, Karlsruhe, Germany, November 27-29, 2014, Proceedings (2014) 0.01
    0.007564209 = product of:
      0.022692626 = sum of:
        0.022692626 = product of:
          0.045385253 = sum of:
            0.045385253 = weight(_text_:management in 2192) [ClassicSimilarity], result of:
              0.045385253 = score(doc=2192,freq=4.0), product of:
                0.17235184 = queryWeight, product of:
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.051133685 = queryNorm
                0.2633291 = fieldWeight in 2192, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2192)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    LCSH
    Database management
    Subject
    Database management
  19. Semantic search over the Web (2012) 0.00
    0.0042789625 = product of:
      0.0128368875 = sum of:
        0.0128368875 = product of:
          0.025673775 = sum of:
            0.025673775 = weight(_text_:management in 411) [ClassicSimilarity], result of:
              0.025673775 = score(doc=411,freq=2.0), product of:
                0.17235184 = queryWeight, product of:
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.051133685 = queryNorm
                0.14896142 = fieldWeight in 411, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.03125 = fieldNorm(doc=411)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    The Web has become the world's largest database, with search being the main tool that allows organizations and individuals to exploit its huge amount of information. Search on the Web has been traditionally based on textual and structural similarities, ignoring to a large degree the semantic dimension, i.e., understanding the meaning of the query and of the document content. Combining search and semantics gives birth to the idea of semantic search. Traditional search engines have already advertised some semantic dimensions. Some of them, for instance, can enhance their generated result sets with documents that are semantically related to the query terms even though they may not include these terms. Nevertheless, the exploitation of the semantic search has not yet reached its full potential. In this book, Roberto De Virgilio, Francesco Guerra and Yannis Velegrakis present an extensive overview of the work done in Semantic Search and other related areas. They explore different technologies and solutions in depth, making their collection a valuable and stimulating reading for both academic and industrial researchers. The book is divided into three parts. The first introduces the readers to the basic notions of the Web of Data. It describes the different kinds of data that exist, their topology, and their storing and indexing techniques. The second part is dedicated to Web Search. It presents different types of search, like the exploratory or the path-oriented, alongside methods for their efficient and effective implementation. Other related topics included in this part are the use of uncertainty in query answering, the exploitation of ontologies, and the use of semantics in mashup design and operation. The focus of the third part is on linked data, and more specifically, on applying ideas originating in recommender systems on linked data management, and on techniques for the efficiently querying answering on linked data.