Search (2 results, page 1 of 1)

  • × theme_ss:"Data Mining"
  • × year_i:[2020 TO 2030}
  1. Jones, K.M.L.; Rubel, A.; LeClere, E.: ¬A matter of trust : higher education institutions as information fiduciaries in an age of educational data mining and learning analytics (2020) 0.01
    0.008252066 = product of:
      0.049512394 = sum of:
        0.049512394 = weight(_text_:network in 5968) [ClassicSimilarity], result of:
          0.049512394 = score(doc=5968,freq=2.0), product of:
            0.2012564 = queryWeight, product of:
              4.4533744 = idf(docFreq=1398, maxDocs=44218)
              0.045191888 = queryNorm
            0.2460165 = fieldWeight in 5968, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.4533744 = idf(docFreq=1398, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5968)
      0.16666667 = coord(1/6)
    
    Abstract
    Higher education institutions are mining and analyzing student data to effect educational, political, and managerial outcomes. Done under the banner of "learning analytics," this work can-and often does-surface sensitive data and information about, inter alia, a student's demographics, academic performance, offline and online movements, physical fitness, mental wellbeing, and social network. With these data, institutions and third parties are able to describe student life, predict future behaviors, and intervene to address academic or other barriers to student success (however defined). Learning analytics, consequently, raise serious issues concerning student privacy, autonomy, and the appropriate flow of student data. We argue that issues around privacy lead to valid questions about the degree to which students should trust their institution to use learning analytics data and other artifacts (algorithms, predictive scores) with their interests in mind. We argue that higher education institutions are paradigms of information fiduciaries. As such, colleges and universities have a special responsibility to their students. In this article, we use the information fiduciary concept to analyze cases when learning analytics violate an institution's responsibility to its students.
  2. Lowe, D.B.; Dollinger, I.; Koster, T.; Herbert, B.E.: Text mining for type of research classification (2021) 0.01
    0.006668431 = product of:
      0.040010586 = sum of:
        0.040010586 = weight(_text_:computer in 720) [ClassicSimilarity], result of:
          0.040010586 = score(doc=720,freq=2.0), product of:
            0.16515417 = queryWeight, product of:
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.045191888 = queryNorm
            0.24226204 = fieldWeight in 720, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.6545093 = idf(docFreq=3109, maxDocs=44218)
              0.046875 = fieldNorm(doc=720)
      0.16666667 = coord(1/6)
    
    Abstract
    This project brought together undergraduate students in Computer Science with librarians to mine abstracts of articles from the Texas A&M University Libraries' institutional repository, OAKTrust, in order to probe the creation of new metadata to improve discovery and use. The mining operation task consisted simply of classifying the articles into two categories of research type: basic research ("for understanding," "curiosity-based," or "knowledge-based") and applied research ("use-based"). These categories are fundamental especially for funders but are also important to researchers. The mining-to-classification steps took several iterations, but ultimately, we achieved good results with the toolkit BERT (Bidirectional Encoder Representations from Transformers). The project and its workflows represent a preview of what may lie ahead in the future of crafting metadata using text mining techniques to enhance discoverability.