Search (4 results, page 1 of 1)

  • × author_ss:"Chau, M."
  • × year_i:[2000 TO 2010}
  1. Chen, H.; Lally, A.M.; Zhu, B.; Chau, M.: HelpfulMed : Intelligent searching for medical information over the Internet (2003) 0.01
    0.009625921 = product of:
      0.019251842 = sum of:
        0.019251842 = product of:
          0.038503684 = sum of:
            0.038503684 = weight(_text_:systems in 1615) [ClassicSimilarity], result of:
              0.038503684 = score(doc=1615,freq=4.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.24009174 = fieldWeight in 1615, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1615)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The Medical professionals and researchers need information from reputable sources to accomplish their work. Unfortunately, the Web has a large number of documents that are irrelevant to their work, even those documents that purport to be "medically-related." This paper describes an architecture designed to integrate advanced searching and indexing algorithms, an automatic thesaurus, or "concept space," and Kohonen-based Self-Organizing Map (SOM) technologies to provide searchers with finegrained results. Initial results indicate that these systems provide complementary retrieval functionalities. HelpfulMed not only allows users to search Web pages and other online databases, but also allows them to build searches through the use of an automatic thesaurus and browse a graphical display of medical-related topics. Evaluation results for each of the different components are included. Our spidering algorithm outperformed both breadth-first search and PageRank spiders an a test collection of 100,000 Web pages. The automatically generated thesaurus performed as well as both MeSH and UMLS-systems which require human mediation for currency. Lastly, a variant of the Kohonen SOM was comparable to MeSH terms in perceived cluster precision and significantly better at perceived cluster recall.
  2. Qin, J.; Zhou, Y.; Chau, M.; Chen, H.: Multilingual Web retrieval : an experiment in English-Chinese business intelligence (2006) 0.01
    0.009625921 = product of:
      0.019251842 = sum of:
        0.019251842 = product of:
          0.038503684 = sum of:
            0.038503684 = weight(_text_:systems in 5054) [ClassicSimilarity], result of:
              0.038503684 = score(doc=5054,freq=4.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.24009174 = fieldWeight in 5054, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5054)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    As increasing numbers of non-English resources have become available on the Web, the interesting and important issue of how Web users can retrieve documents in different languages has arisen. Cross-language information retrieval (CLIP), the study of retrieving information in one language by queries expressed in another language, is a promising approach to the problem. Cross-language information retrieval has attracted much attention in recent years. Most research systems have achieved satisfactory performance on standard Text REtrieval Conference (TREC) collections such as news articles, but CLIR techniques have not been widely studied and evaluated for applications such as Web portals. In this article, the authors present their research in developing and evaluating a multilingual English-Chinese Web portal that incorporates various CLIP techniques for use in the business domain. A dictionary-based approach was adopted and combines phrasal translation, co-occurrence analysis, and pre- and posttranslation query expansion. The portal was evaluated by domain experts, using a set of queries in both English and Chinese. The experimental results showed that co-occurrence-based phrasal translation achieved a 74.6% improvement in precision over simple word-byword translation. When used together, pre- and posttranslation query expansion improved the performance slightly, achieving a 78.0% improvement over the baseline word-by-word translation approach. In general, applying CLIR techniques in Web applications shows promise.
    Footnote
    Beitrag einer special topic section on multilingual information systems
  3. Chau, M.; Lu, Y.; Fang, X.; Yang, C.C.: Characteristics of character usage in Chinese Web searching (2009) 0.01
    0.008837775 = product of:
      0.01767555 = sum of:
        0.01767555 = product of:
          0.0353511 = sum of:
            0.0353511 = weight(_text_:22 in 2456) [ClassicSimilarity], result of:
              0.0353511 = score(doc=2456,freq=2.0), product of:
                0.1827397 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.052184064 = queryNorm
                0.19345059 = fieldWeight in 2456, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2456)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22.11.2008 17:57:22
  4. Chen, H.; Fan, H.; Chau, M.; Zeng, D.: MetaSpider : meta-searching and categorization on the Web (2001) 0.01
    0.0068065543 = product of:
      0.013613109 = sum of:
        0.013613109 = product of:
          0.027226217 = sum of:
            0.027226217 = weight(_text_:systems in 6849) [ClassicSimilarity], result of:
              0.027226217 = score(doc=6849,freq=2.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.1697705 = fieldWeight in 6849, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=6849)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    It has become increasingly difficult to locate relevant information on the Web, even with the help of Web search engines. Two approaches to addressing the low precision and poor presentation of search results of current search tools are studied: meta-search and document categorization. Meta-search engines improve precision by selecting and integrating search results from generic or domain-specific Web search engines or other resources. Document categorization promises better organization and presentation of retrieved results. This article introduces MetaSpider, a meta-search engine that has real-time indexing and categorizing functions. We report in this paper the major components of MetaSpider and discuss related technical approaches. Initial results of a user evaluation study comparing Meta-Spider, NorthernLight, and MetaCrawler in terms of clustering performance and of time and effort expended show that MetaSpider performed best in precision rate, but disclose no statistically significant differences in recall rate and time requirements. Our experimental study also reveals that MetaSpider exhibited a higher level of automation than the other two systems and facilitated efficient searching by providing the user with an organized, comprehensive view of the retrieved documents.