Search (17 results, page 1 of 1)

  • × theme_ss:"Computerlinguistik"
  • × type_ss:"el"
  1. Boleda, G.; Evert, S.: Multiword expressions : a pain in the neck of lexical semantics (2009) 0.02
    0.021210661 = product of:
      0.042421322 = sum of:
        0.042421322 = product of:
          0.084842645 = sum of:
            0.084842645 = weight(_text_:22 in 4888) [ClassicSimilarity], result of:
              0.084842645 = score(doc=4888,freq=2.0), product of:
                0.1827397 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.052184064 = queryNorm
                0.46428138 = fieldWeight in 4888, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=4888)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    1. 3.2013 14:56:22
  2. Lezius, W.: Morphy - Morphologie und Tagging für das Deutsche (2013) 0.01
    0.014140441 = product of:
      0.028280882 = sum of:
        0.028280882 = product of:
          0.056561764 = sum of:
            0.056561764 = weight(_text_:22 in 1490) [ClassicSimilarity], result of:
              0.056561764 = score(doc=1490,freq=2.0), product of:
                0.1827397 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.052184064 = queryNorm
                0.30952093 = fieldWeight in 1490, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1490)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 3.2015 9:30:24
  3. Bager, J.: ¬Die Text-KI ChatGPT schreibt Fachtexte, Prosa, Gedichte und Programmcode (2023) 0.01
    0.014140441 = product of:
      0.028280882 = sum of:
        0.028280882 = product of:
          0.056561764 = sum of:
            0.056561764 = weight(_text_:22 in 835) [ClassicSimilarity], result of:
              0.056561764 = score(doc=835,freq=2.0), product of:
                0.1827397 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.052184064 = queryNorm
                0.30952093 = fieldWeight in 835, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=835)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    29.12.2022 18:22:55
  4. Rieger, F.: Lügende Computer (2023) 0.01
    0.014140441 = product of:
      0.028280882 = sum of:
        0.028280882 = product of:
          0.056561764 = sum of:
            0.056561764 = weight(_text_:22 in 912) [ClassicSimilarity], result of:
              0.056561764 = score(doc=912,freq=2.0), product of:
                0.1827397 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.052184064 = queryNorm
                0.30952093 = fieldWeight in 912, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=912)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    16. 3.2023 19:22:55
  5. Radford, A.; Wu, J.; Child, R.; Luan, D.; Amode, D.; Sutskever, I.: Language models are unsupervised multitask learners 0.01
    0.011551105 = product of:
      0.02310221 = sum of:
        0.02310221 = product of:
          0.04620442 = sum of:
            0.04620442 = weight(_text_:systems in 871) [ClassicSimilarity], result of:
              0.04620442 = score(doc=871,freq=4.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.28811008 = fieldWeight in 871, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.046875 = fieldNorm(doc=871)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Natural language processing tasks, such as question answering, machine translation, reading comprehension, and summarization, are typically approached with supervised learning on task-specific datasets. We demonstrate that language models begin to learn these tasks without any explicit supervision when trained on a new dataset of millions of webpages called WebText. When conditioned on a document plus questions, the answers generated by the language model reach 55 F1 on the CoQA dataset - matching or exceeding the performance of 3 out of 4 baseline systems without using the 127,000+ training examples. The capacity of the language model is essential to the success of zero-shot task transfer and increasing it improves performance in a log-linear fashion across tasks. Our largest model, GPT-2, is a 1.5B parameter Transformer that achieves state of the art results on 7 out of 8 tested language modeling datasets in a zero-shot setting but still underfits WebText. Samples from the model reflect these improvements and contain coherent paragraphs of text. These findings suggest a promising path towards building language processing systems which learn to perform tasks from their naturally occurring demonstrations.
  6. Wong, W.; Liu, W.; Bennamoun, M.: Ontology learning from text : a look back and into the future (2010) 0.01
    0.009529176 = product of:
      0.019058352 = sum of:
        0.019058352 = product of:
          0.038116705 = sum of:
            0.038116705 = weight(_text_:systems in 4733) [ClassicSimilarity], result of:
              0.038116705 = score(doc=4733,freq=2.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.23767869 = fieldWeight in 4733, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4733)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Ontologies are often viewed as the answer to the need for inter-operable semantics in modern information systems. The explosion of textual information on the "Read/Write" Web coupled with the increasing demand for ontologies to power the Semantic Web have made (semi-)automatic ontology learning from text a very promising research area. This together with the advanced state in related areas such as natural language processing have fuelled research into ontology learning over the past decade. This survey looks at how far we have come since the turn of the millennium, and discusses the remaining challenges that will define the research directions in this area in the near future.
  7. Shen, M.; Liu, D.-R.; Huang, Y.-S.: Extracting semantic relations to enrich domain ontologies (2012) 0.01
    0.009529176 = product of:
      0.019058352 = sum of:
        0.019058352 = product of:
          0.038116705 = sum of:
            0.038116705 = weight(_text_:systems in 267) [ClassicSimilarity], result of:
              0.038116705 = score(doc=267,freq=2.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.23767869 = fieldWeight in 267, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=267)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Source
    Journal of Intelligent Information Systems
  8. Dias, G.: Multiword unit hybrid extraction (o.J.) 0.01
    0.009529176 = product of:
      0.019058352 = sum of:
        0.019058352 = product of:
          0.038116705 = sum of:
            0.038116705 = weight(_text_:systems in 643) [ClassicSimilarity], result of:
              0.038116705 = score(doc=643,freq=2.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.23767869 = fieldWeight in 643, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=643)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This paper describes an original hybrid system that extracts multiword unit candidates from part-of-speech tagged corpora. While classical hybrid systems manually define local part-of-speech patterns that lead to the identification of well-known multiword units (mainly compound nouns), our solution automatically identifies relevant syntactical patterns from the corpus. Word statistics are then combined with the endogenously acquired linguistic information in order to extract the most relevant sequences of words. As a result, (1) human intervention is avoided providing total flexibility of use of the system and (2) different multiword units like phrasal verbs, adverbial locutions and prepositional locutions may be identified. The system has been tested on the Brown Corpus leading to encouraging results
  9. Aizawa, A.; Kohlhase, M.: Mathematical information retrieval (2021) 0.01
    0.009529176 = product of:
      0.019058352 = sum of:
        0.019058352 = product of:
          0.038116705 = sum of:
            0.038116705 = weight(_text_:systems in 667) [ClassicSimilarity], result of:
              0.038116705 = score(doc=667,freq=2.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.23767869 = fieldWeight in 667, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=667)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    We present an overview of the NTCIR Math Tasks organized during NTCIR-10, 11, and 12. These tasks are primarily dedicated to techniques for searching mathematical content with formula expressions. In this chapter, we first summarize the task design and introduce test collections generated in the tasks. We also describe the features and main challenges of mathematical information retrieval systems and discuss future perspectives in the field.
  10. Collard, J.; Paiva, V. de; Fong, B.; Subrahmanian, E.: Extracting mathematical concepts from text (2022) 0.01
    0.009529176 = product of:
      0.019058352 = sum of:
        0.019058352 = product of:
          0.038116705 = sum of:
            0.038116705 = weight(_text_:systems in 668) [ClassicSimilarity], result of:
              0.038116705 = score(doc=668,freq=2.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.23767869 = fieldWeight in 668, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=668)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    We investigate different systems for extracting mathematical entities from English texts in the mathematical field of category theory as a first step for constructing a mathematical knowledge graph. We consider four different term extractors and compare their results. This small experiment showcases some of the issues with the construction and evaluation of terms extracted from noisy domain text. We also make available two open corpora in research mathematics, in particular in category theory: a small corpus of 755 abstracts from the journal TAC (3188 sentences), and a larger corpus from the nLab community wiki (15,000 sentences).
  11. Galitsky, B.: Can many agents answer questions better than one? (2005) 0.01
    0.008167865 = product of:
      0.01633573 = sum of:
        0.01633573 = product of:
          0.03267146 = sum of:
            0.03267146 = weight(_text_:systems in 3094) [ClassicSimilarity], result of:
              0.03267146 = score(doc=3094,freq=2.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.2037246 = fieldWeight in 3094, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3094)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The paper addresses the issue of how online natural language question answering, based on deep semantic analysis, may compete with currently popular keyword search, open domain information retrieval systems, covering a horizontal domain. We suggest the multiagent question answering approach, where each domain is represented by an agent which tries to answer questions taking into account its specific knowledge. The meta-agent controls the cooperation between question answering agents and chooses the most relevant answer(s). We argue that multiagent question answering is optimal in terms of access to business and financial knowledge, flexibility in query phrasing, and efficiency and usability of advice. The knowledge and advice encoded in the system are initially prepared by domain experts. We analyze the commercial application of multiagent question answering and the robustness of the meta-agent. The paper suggests that a multiagent architecture is optimal when a real world question answering domain combines a number of vertical ones to form a horizontal domain.
  12. Chowdhury, A.; Mccabe, M.C.: Improving information retrieval systems using part of speech tagging (1993) 0.01
    0.008167865 = product of:
      0.01633573 = sum of:
        0.01633573 = product of:
          0.03267146 = sum of:
            0.03267146 = weight(_text_:systems in 1061) [ClassicSimilarity], result of:
              0.03267146 = score(doc=1061,freq=2.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.2037246 = fieldWeight in 1061, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1061)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
  13. Aydin, Ö.; Karaarslan, E.: OpenAI ChatGPT generated literature review: : digital twin in healthcare (2022) 0.01
    0.007700737 = product of:
      0.015401474 = sum of:
        0.015401474 = product of:
          0.030802948 = sum of:
            0.030802948 = weight(_text_:systems in 851) [ClassicSimilarity], result of:
              0.030802948 = score(doc=851,freq=4.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.19207339 = fieldWeight in 851, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.03125 = fieldNorm(doc=851)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Literature review articles are essential to summarize the related work in the selected field. However, covering all related studies takes too much time and effort. This study questions how Artificial Intelligence can be used in this process. We used ChatGPT to create a literature review article to show the stage of the OpenAI ChatGPT artificial intelligence application. As the subject, the applications of Digital Twin in the health field were chosen. Abstracts of the last three years (2020, 2021 and 2022) papers were obtained from the keyword "Digital twin in healthcare" search results on Google Scholar and paraphrased by ChatGPT. Later on, we asked ChatGPT questions. The results are promising; however, the paraphrased parts had significant matches when checked with the Ithenticate tool. This article is the first attempt to show the compilation and expression of knowledge will be accelerated with the help of artificial intelligence. We are still at the beginning of such advances. The future academic publishing process will require less human effort, which in turn will allow academics to focus on their studies. In future studies, we will monitor citations to this study to evaluate the academic validity of the content produced by the ChatGPT. 1. Introduction OpenAI ChatGPT (ChatGPT, 2022) is a chatbot based on the OpenAI GPT-3 language model. It is designed to generate human-like text responses to user input in a conversational context. OpenAI ChatGPT is trained on a large dataset of human conversations and can be used to create responses to a wide range of topics and prompts. The chatbot can be used for customer service, content creation, and language translation tasks, creating replies in multiple languages. OpenAI ChatGPT is available through the OpenAI API, which allows developers to access and integrate the chatbot into their applications and systems. OpenAI ChatGPT is a variant of the GPT (Generative Pre-trained Transformer) language model developed by OpenAI. It is designed to generate human-like text, allowing it to engage in conversation with users naturally and intuitively. OpenAI ChatGPT is trained on a large dataset of human conversations, allowing it to understand and respond to a wide range of topics and contexts. It can be used in various applications, such as chatbots, customer service agents, and language translation systems. OpenAI ChatGPT is a state-of-the-art language model able to generate coherent and natural text that can be indistinguishable from text written by a human. As an artificial intelligence, ChatGPT may need help to change academic writing practices. However, it can provide information and guidance on ways to improve people's academic writing skills.
  14. Rötzer, F.: KI-Programm besser als Menschen im Verständnis natürlicher Sprache (2018) 0.01
    0.0070702205 = product of:
      0.014140441 = sum of:
        0.014140441 = product of:
          0.028280882 = sum of:
            0.028280882 = weight(_text_:22 in 4217) [ClassicSimilarity], result of:
              0.028280882 = score(doc=4217,freq=2.0), product of:
                0.1827397 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.052184064 = queryNorm
                0.15476047 = fieldWeight in 4217, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4217)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 1.2018 11:32:44
  15. Sprachtechnologie : ein Überblick (2012) 0.01
    0.0068065543 = product of:
      0.013613109 = sum of:
        0.013613109 = product of:
          0.027226217 = sum of:
            0.027226217 = weight(_text_:systems in 1750) [ClassicSimilarity], result of:
              0.027226217 = score(doc=1750,freq=2.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.1697705 = fieldWeight in 1750, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1750)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Seit mehr als einem halben Jahrhundert existieren ernsthafte und ernst zu nehmende Versuche, menschliche Sprache maschinell zu verarbeiten. Maschinelle Übersetzung oder "natürliche" Dialoge mit Computern gehören zu den ersten Ideen, die den Bereich der späteren Computerlinguistik oder Sprachtechnologie abgesteckt und deren Vorhaben geleitet haben. Heute ist dieser auch maschinelle Sprachverarbeitung (natural language processing, NLP) genannte Bereich stark ausdiversifiziert: Durch die rapide Entwicklung der Informatik ist vieles vorher Unvorstellbare Realität (z. B. automatische Telefonauskunft), einiges früher Unmögliche immerhin möglich geworden (z. B. Handhelds mit Sprachein- und -ausgabe als digitale persönliche (Informations-)Assistenten). Es gibt verschiedene Anwendungen der Computerlinguistik, von denen einige den Sprung in die kommerzielle Nutzung geschafft haben (z. B. Diktiersysteme, Textklassifikation, maschinelle Übersetzung). Immer noch wird an natürlichsprachlichen Systemen (natural language systems, NLS) verschiedenster Funktionalität (z. B. zur Beantwortung beliebiger Fragen oder zur Generierung komplexer Texte) intensiv geforscht, auch wenn die hoch gesteckten Ziele von einst längst nicht erreicht sind (und deshalb entsprechend "heruntergefahren" wurden). Wo die maschinelle Sprachverarbeitung heute steht, ist allerdings angesichts der vielfältigen Aktivitäten in der Computerlinguistik und Sprachtechnologie weder offensichtlich noch leicht in Erfahrung zu bringen (für Studierende des Fachs und erst recht für Laien). Ein Ziel dieses Buches ist, es, die aktuelle Literaturlage in dieser Hinsicht zu verbessern, indem spezifisch systembezogene Aspekte der Computerlinguistik als Überblick über die Sprachtechnologie zusammengetragen werden.
  16. Brown, T.B.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.; Agarwal, S.; Herbert-Voss, A.; Krueger, G.; Henighan, T.; Child, R.; Ramesh, A.; Ziegler, D.M.; Wu, J.; Winter, C.; Hesse, C.; Chen, M.; Sigler, E.; Litwin, M.; Gray, S.; Chess, B.; Clark, J.; Berner, C.; McCandlish, S.; Radford, A.; Sutskever, I.; Amodei, D.: Language models are few-shot learners (2020) 0.01
    0.0054452433 = product of:
      0.010890487 = sum of:
        0.010890487 = product of:
          0.021780973 = sum of:
            0.021780973 = weight(_text_:systems in 872) [ClassicSimilarity], result of:
              0.021780973 = score(doc=872,freq=2.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.1358164 = fieldWeight in 872, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.03125 = fieldNorm(doc=872)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Recent work has demonstrated substantial gains on many NLP tasks and benchmarks by pre-training on a large corpus of text followed by fine-tuning on a specific task. While typically task-agnostic in architecture, this method still requires task-specific fine-tuning datasets of thousands or tens of thousands of examples. By contrast, humans can generally perform a new language task from only a few examples or from simple instructions - something which current NLP systems still largely struggle to do. Here we show that scaling up language models greatly improves task-agnostic, few-shot performance, sometimes even reaching competitiveness with prior state-of-the-art fine-tuning approaches. Specifically, we train GPT-3, an autoregressive language model with 175 billion parameters, 10x more than any previous non-sparse language model, and test its performance in the few-shot setting. For all tasks, GPT-3 is applied without any gradient updates or fine-tuning, with tasks and few-shot demonstrations specified purely via text interaction with the model. GPT-3 achieves strong performance on many NLP datasets, including translation, question-answering, and cloze tasks, as well as several tasks that require on-the-fly reasoning or domain adaptation, such as unscrambling words, using a novel word in a sentence, or performing 3-digit arithmetic. At the same time, we also identify some datasets where GPT-3's few-shot learning still struggles, as well as some datasets where GPT-3 faces methodological issues related to training on large web corpora. Finally, we find that GPT-3 can generate samples of news articles which human evaluators have difficulty distinguishing from articles written by humans. We discuss broader societal impacts of this finding and of GPT-3 in general.
  17. Jha, A.: Why GPT-4 isn't all it's cracked up to be (2023) 0.00
    0.004764588 = product of:
      0.009529176 = sum of:
        0.009529176 = product of:
          0.019058352 = sum of:
            0.019058352 = weight(_text_:systems in 923) [ClassicSimilarity], result of:
              0.019058352 = score(doc=923,freq=2.0), product of:
                0.16037072 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.052184064 = queryNorm
                0.118839346 = fieldWeight in 923, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=923)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    People use symbols to think about the world: if I say the words "cat", "house" or "aeroplane", you know instantly what I mean. Symbols can also be used to describe the way things are behaving (running, falling, flying) or they can represent how things should behave in relation to each other (a "+" means add the numbers before and after). Symbolic AI is a way to embed this human knowledge and reasoning into computer systems. Though the idea has been around for decades, it fell by the wayside a few years ago as deep learning-buoyed by the sudden easy availability of lots of training data and cheap computing power-became more fashionable. In the near future at least, there's no doubt people will find LLMs useful. But whether they represent a critical step on the path towards AGI, or rather just an intriguing detour, remains to be seen."