Search (17 results, page 1 of 1)

  • × year_i:[2010 TO 2020}
  • × theme_ss:"Data Mining"
  1. Fonseca, F.; Marcinkowski, M.; Davis, C.: Cyber-human systems of thought and understanding (2019) 0.04
    0.03661915 = product of:
      0.0732383 = sum of:
        0.057547275 = weight(_text_:social in 5011) [ClassicSimilarity], result of:
          0.057547275 = score(doc=5011,freq=4.0), product of:
            0.1847249 = queryWeight, product of:
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046325076 = queryNorm
            0.3115296 = fieldWeight in 5011, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5011)
        0.015691021 = product of:
          0.031382043 = sum of:
            0.031382043 = weight(_text_:22 in 5011) [ClassicSimilarity], result of:
              0.031382043 = score(doc=5011,freq=2.0), product of:
                0.16222252 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046325076 = queryNorm
                0.19345059 = fieldWeight in 5011, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5011)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    The present challenge faced by scientists working with Big Data comes in the overwhelming volume and level of detail provided by current data sets. Exceeding traditional empirical approaches, Big Data opens a new perspective on scientific work in which data comes to play a role in the development of the scientific problematic to be developed. Addressing this reconfiguration of our relationship with data through readings of Wittgenstein, Macherey, and Popper, we propose a picture of science that encourages scientists to engage with the data in a direct way, using the data itself as an instrument for scientific investigation. Using GIS as a theme, we develop the concept of cyber-human systems of thought and understanding to bridge the divide between representative (theoretical) thinking and (non-theoretical) data-driven science. At the foundation of these systems, we invoke the concept of the "semantic pixel" to establish a logical and virtual space linking data and the work of scientists. It is with this discussion of the relationship between analysts in their pursuit of knowledge and the rise of Big Data that this present discussion of the philosophical foundations of Big Data addresses the central questions raised by social informatics research.
    Date
    7. 3.2019 16:32:22
    Footnote
    Beitrag eines Special issue on social informatics of knowledge
  2. Sun, X.; Lin, H.: Topical community detection from mining user tagging behavior and interest (2013) 0.03
    0.027297068 = product of:
      0.10918827 = sum of:
        0.10918827 = weight(_text_:social in 605) [ClassicSimilarity], result of:
          0.10918827 = score(doc=605,freq=10.0), product of:
            0.1847249 = queryWeight, product of:
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046325076 = queryNorm
            0.59108585 = fieldWeight in 605, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046875 = fieldNorm(doc=605)
      0.25 = coord(1/4)
    
    Abstract
    With the development of Web2.0, social tagging systems in which users can freely choose tags to annotate resources according to their interests have attracted much attention. In particular, literature on the emergence of collective intelligence in social tagging systems has increased. In this article, we propose a probabilistic generative model to detect latent topical communities among users. Social tags and resource contents are leveraged to model user interest in two similar and correlated ways. Our primary goal is to capture user tagging behavior and interest and discover the emergent topical community structure. The communities should be groups of users with frequent social interactions as well as similar topical interests, which would have important research implications for personalized information services. Experimental results on two real social tagging data sets with different genres have shown that the proposed generative model more accurately models user interest and detects high-quality and meaningful topical communities.
  3. Wongthontham, P.; Abu-Salih, B.: Ontology-based approach for semantic data extraction from social big data : state-of-the-art and research directions (2018) 0.02
    0.02441524 = product of:
      0.09766096 = sum of:
        0.09766096 = weight(_text_:social in 4097) [ClassicSimilarity], result of:
          0.09766096 = score(doc=4097,freq=8.0), product of:
            0.1847249 = queryWeight, product of:
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046325076 = queryNorm
            0.52868325 = fieldWeight in 4097, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046875 = fieldNorm(doc=4097)
      0.25 = coord(1/4)
    
    Abstract
    A challenge of managing and extracting useful knowledge from social media data sources has attracted much attention from academic and industry. To address this challenge, semantic analysis of textual data is focused in this paper. We propose an ontology-based approach to extract semantics of textual data and define the domain of data. In other words, we semantically analyse the social data at two levels i.e. the entity level and the domain level. We have chosen Twitter as a social channel challenge for a purpose of concept proof. Domain knowledge is captured in ontologies which are then used to enrich the semantics of tweets provided with specific semantic conceptual representation of entities that appear in the tweets. Case studies are used to demonstrate this approach. We experiment and evaluate our proposed approach with a public dataset collected from Twitter and from the politics domain. The ontology-based approach leverages entity extraction and concept mappings in terms of quantity and accuracy of concept identification.
  4. Ebrahimi, M.; ShafieiBavani, E.; Wong, R.; Chen, F.: Twitter user geolocation by filtering of highly mentioned users (2018) 0.02
    0.02441524 = product of:
      0.09766096 = sum of:
        0.09766096 = weight(_text_:social in 4286) [ClassicSimilarity], result of:
          0.09766096 = score(doc=4286,freq=8.0), product of:
            0.1847249 = queryWeight, product of:
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046325076 = queryNorm
            0.52868325 = fieldWeight in 4286, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046875 = fieldNorm(doc=4286)
      0.25 = coord(1/4)
    
    Abstract
    Geolocated social media data provide a powerful source of information about places and regional human behavior. Because only a small amount of social media data have been geolocation-annotated, inference techniques play a substantial role to increase the volume of annotated data. Conventional research in this area has been based on the text content of posts from a given user or the social network of the user, with some recent crossovers between the text- and network-based approaches. This paper proposes a novel approach to categorize highly-mentioned users (celebrities) into Local and Global types, and consequently use Local celebrities as location indicators. A label propagation algorithm is then used over the refined social network for geolocation inference. Finally, we propose a hybrid approach by merging a text-based method as a back-off strategy into our network-based approach. Empirical experiments over three standard Twitter benchmark data sets demonstrate that our approach outperforms state-of-the-art user geolocation methods.
  5. Thelwall, M.; Wilkinson, D.: Public dialogs in social network sites : What is their purpose? (2010) 0.02
    0.02114422 = product of:
      0.08457688 = sum of:
        0.08457688 = weight(_text_:social in 3327) [ClassicSimilarity], result of:
          0.08457688 = score(doc=3327,freq=6.0), product of:
            0.1847249 = queryWeight, product of:
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046325076 = queryNorm
            0.45785317 = fieldWeight in 3327, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046875 = fieldNorm(doc=3327)
      0.25 = coord(1/4)
    
    Abstract
    Social network sites (SNSs) such as MySpace and Facebook are important venues for interpersonal communication, especially among youth. One way in which members can communicate is to write public messages on each other's profile, but how is this unusual means of communication used in practice? An analysis of 2,293 public comment exchanges extracted from large samples of U.S. and U.K. MySpace members found them to be relatively rapid, but rarely used for prolonged exchanges. They seem to fulfill two purposes: making initial contact and keeping in touch occasionally such as at birthdays and other important dates. Although about half of the dialogs seem to exchange some gossip, the dialogs seem typically too short to play the role of gossip-based social grooming for typical pairs of Friends, but close Friends may still communicate extensively in SNSs with other methods.
  6. Mining text data (2012) 0.02
    0.016276827 = product of:
      0.06510731 = sum of:
        0.06510731 = weight(_text_:social in 362) [ClassicSimilarity], result of:
          0.06510731 = score(doc=362,freq=8.0), product of:
            0.1847249 = queryWeight, product of:
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046325076 = queryNorm
            0.3524555 = fieldWeight in 362, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.03125 = fieldNorm(doc=362)
      0.25 = coord(1/4)
    
    Abstract
    Text mining applications have experienced tremendous advances because of web 2.0 and social networking applications. Recent advances in hardware and software technology have lead to a number of unique scenarios where text mining algorithms are learned. Mining Text Data introduces an important niche in the text analytics field, and is an edited volume contributed by leading international researchers and practitioners focused on social networks & data mining. This book contains a wide swath in topics across social networks & data mining. Each chapter contains a comprehensive survey including the key research content on the topic, and the future directions of research in the field. There is a special focus on Text Embedded with Heterogeneous and Multimedia Data which makes the mining process much more challenging. A number of methods have been designed such as transfer learning and cross-lingual mining for such cases. Mining Text Data simplifies the content, so that advanced-level students, practitioners and researchers in computer science can benefit from this book. Academic and corporate libraries, as well as ACM, IEEE, and Management Science focused on information security, electronic commerce, databases, data mining, machine learning, and statistics are the primary buyers for this reference book.
    Content
    Inhalt: An Introduction to Text Mining.- Information Extraction from Text.- A Survey of Text Summarization Techniques.- A Survey of Text Clustering Algorithms.- Dimensionality Reduction and Topic Modeling.- A Survey of Text Classification Algorithms.- Transfer Learning for Text Mining.- Probabilistic Models for Text Mining.- Mining Text Streams.- Translingual Mining from Text Data.- Text Mining in Multimedia.- Text Analytics in Social Media.- A Survey of Opinion Mining and Sentiment Analysis.- Biomedical Text Mining: A Survey of Recent Progress.- Index.
  7. Mohr, J.W.; Bogdanov, P.: Topic models : what they are and why they matter (2013) 0.01
    0.01220762 = product of:
      0.04883048 = sum of:
        0.04883048 = weight(_text_:social in 1142) [ClassicSimilarity], result of:
          0.04883048 = score(doc=1142,freq=2.0), product of:
            0.1847249 = queryWeight, product of:
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046325076 = queryNorm
            0.26434162 = fieldWeight in 1142, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046875 = fieldNorm(doc=1142)
      0.25 = coord(1/4)
    
    Abstract
    We provide a brief, non-technical introduction to the text mining methodology known as "topic modeling." We summarize the theory and background of the method and discuss what kinds of things are found by topic models. Using a text corpus comprised of the eight articles from the special issue of Poetics on the subject of topic models, we run a topic model on these articles, both as a way to introduce the methodology and also to help summarize some of the ways in which social and cultural scientists are using topic models. We review some of the critiques and debates over the use of the method and finally, we link these developments back to some of the original innovations in the field of content analysis that were pioneered by Harold D. Lasswell and colleagues during and just after World War II.
  8. Bella, A. La; Fronzetti Colladon, A.; Battistoni, E.; Castellan, S.; Francucci, M.: Assessing perceived organizational leadership styles through twitter text mining (2018) 0.01
    0.01220762 = product of:
      0.04883048 = sum of:
        0.04883048 = weight(_text_:social in 2400) [ClassicSimilarity], result of:
          0.04883048 = score(doc=2400,freq=2.0), product of:
            0.1847249 = queryWeight, product of:
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046325076 = queryNorm
            0.26434162 = fieldWeight in 2400, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046875 = fieldNorm(doc=2400)
      0.25 = coord(1/4)
    
    Abstract
    We propose a text classification tool based on support vector machines for the assessment of organizational leadership styles, as appearing to Twitter users. We collected Twitter data over 51 days, related to the first 30 Italian organizations in the 2015 ranking of Forbes Global 2000-out of which we selected the five with the most relevant volumes of tweets. We analyzed the communication of the company leaders, together with the dialogue among the stakeholders of each company, to understand the association with perceived leadership styles and dimensions. To assess leadership profiles, we referred to the 10-factor model developed by Barchiesi and La Bella in 2007. We maintain the distinctiveness of the approach we propose, as it allows a rapid assessment of the perceived leadership capabilities of an enterprise, as they emerge from its social media interactions. It can also be used to show how companies respond and manage their communication when specific events take place, and to assess their stakeholder's reactions.
  9. Ma, Z.; Sun, A.; Cong, G.: On predicting the popularity of newly emerging hashtags in Twitter (2013) 0.01
    0.010173016 = product of:
      0.040692065 = sum of:
        0.040692065 = weight(_text_:social in 967) [ClassicSimilarity], result of:
          0.040692065 = score(doc=967,freq=2.0), product of:
            0.1847249 = queryWeight, product of:
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046325076 = queryNorm
            0.22028469 = fieldWeight in 967, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.0390625 = fieldNorm(doc=967)
      0.25 = coord(1/4)
    
    Abstract
    Because of Twitter's popularity and the viral nature of information dissemination on Twitter, predicting which Twitter topics will become popular in the near future becomes a task of considerable economic importance. Many Twitter topics are annotated by hashtags. In this article, we propose methods to predict the popularity of new hashtags on Twitter by formulating the problem as a classification task. We use five standard classification models (i.e., Naïve bayes, k-nearest neighbors, decision trees, support vector machines, and logistic regression) for prediction. The main challenge is the identification of effective features for describing new hashtags. We extract 7 content features from a hashtag string and the collection of tweets containing the hashtag and 11 contextual features from the social graph formed by users who have adopted the hashtag. We conducted experiments on a Twitter data set consisting of 31 million tweets from 2 million Singapore-based users. The experimental results show that the standard classifiers using the extracted features significantly outperform the baseline methods that do not use these features. Among the five classifiers, the logistic regression model performs the best in terms of the Micro-F1 measure. We also observe that contextual features are more effective than content features.
  10. Li, D.; Tang, J.; Ding, Y.; Shuai, X.; Chambers, T.; Sun, G.; Luo, Z.; Zhang, J.: Topic-level opinion influence model (TOIM) : an investigation using tencent microblogging (2015) 0.01
    0.010173016 = product of:
      0.040692065 = sum of:
        0.040692065 = weight(_text_:social in 2345) [ClassicSimilarity], result of:
          0.040692065 = score(doc=2345,freq=2.0), product of:
            0.1847249 = queryWeight, product of:
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046325076 = queryNorm
            0.22028469 = fieldWeight in 2345, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2345)
      0.25 = coord(1/4)
    
    Abstract
    Text mining has been widely used in multiple types of user-generated data to infer user opinion, but its application to microblogging is difficult because text messages are short and noisy, providing limited information about user opinion. Given that microblogging users communicate with each other to form a social network, we hypothesize that user opinion is influenced by its neighbors in the network. In this paper, we infer user opinion on a topic by combining two factors: the user's historical opinion about relevant topics and opinion influence from his/her neighbors. We thus build a topic-level opinion influence model (TOIM) by integrating both topic factor and opinion influence factor into a unified probabilistic model. We evaluate our model in one of the largest microblogging sites in China, Tencent Weibo, and the experiments show that TOIM outperforms baseline methods in opinion inference accuracy. Moreover, incorporating indirect influence further improves inference recall and f1-measure. Finally, we demonstrate some useful applications of TOIM in analyzing users' behaviors in Tencent Weibo.
  11. Tonkin, E.L.; Tourte, G.J.L.: Working with text. tools, techniques and approaches for text mining (2016) 0.01
    0.010173016 = product of:
      0.040692065 = sum of:
        0.040692065 = weight(_text_:social in 4019) [ClassicSimilarity], result of:
          0.040692065 = score(doc=4019,freq=2.0), product of:
            0.1847249 = queryWeight, product of:
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046325076 = queryNorm
            0.22028469 = fieldWeight in 4019, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4019)
      0.25 = coord(1/4)
    
    Abstract
    What is text mining, and how can it be used? What relevance do these methods have to everyday work in information science and the digital humanities? How does one develop competences in text mining? Working with Text provides a series of cross-disciplinary perspectives on text mining and its applications. As text mining raises legal and ethical issues, the legal background of text mining and the responsibilities of the engineer are discussed in this book. Chapters provide an introduction to the use of the popular GATE text mining package with data drawn from social media, the use of text mining to support semantic search, the development of an authority system to support content tagging, and recent techniques in automatic language evaluation. Focused studies describe text mining on historical texts, automated indexing using constrained vocabularies, and the use of natural language processing to explore the climate science literature. Interviews are included that offer a glimpse into the real-life experience of working within commercial and academic text mining.
  12. Liu, B.: Web data mining : exploring hyperlinks, contents, and usage data (2011) 0.01
    0.008138414 = product of:
      0.032553654 = sum of:
        0.032553654 = weight(_text_:social in 354) [ClassicSimilarity], result of:
          0.032553654 = score(doc=354,freq=2.0), product of:
            0.1847249 = queryWeight, product of:
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.046325076 = queryNorm
            0.17622775 = fieldWeight in 354, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9875789 = idf(docFreq=2228, maxDocs=44218)
              0.03125 = fieldNorm(doc=354)
      0.25 = coord(1/4)
    
    Content
    Inhalt: 1. Introduction 2. Association Rules and Sequential Patterns 3. Supervised Learning 4. Unsupervised Learning 5. Partially Supervised Learning 6. Information Retrieval and Web Search 7. Social Network Analysis 8. Web Crawling 9. Structured Data Extraction: Wrapper Generation 10. Information Integration
  13. Qiu, X.Y.; Srinivasan, P.; Hu, Y.: Supervised learning models to predict firm performance with annual reports : an empirical study (2014) 0.01
    0.007842129 = product of:
      0.031368516 = sum of:
        0.031368516 = product of:
          0.06273703 = sum of:
            0.06273703 = weight(_text_:aspects in 1205) [ClassicSimilarity], result of:
              0.06273703 = score(doc=1205,freq=2.0), product of:
                0.20938325 = queryWeight, product of:
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.046325076 = queryNorm
                0.29962775 = fieldWeight in 1205, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1205)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    Text mining and machine learning methodologies have been applied toward knowledge discovery in several domains, such as biomedicine and business. Interestingly, in the business domain, the text mining and machine learning community has minimally explored company annual reports with their mandatory disclosures. In this study, we explore the question "How can annual reports be used to predict change in company performance from one year to the next?" from a text mining perspective. Our article contributes a systematic study of the potential of company mandatory disclosures using a computational viewpoint in the following aspects: (a) We characterize our research problem along distinct dimensions to gain a reasonably comprehensive understanding of the capacity of supervised learning methods in predicting change in company performance using annual reports, and (b) our findings from unbiased systematic experiments provide further evidence about the economic incentives faced by analysts in their stock recommendations and speculations on analysts having access to more information in producing earnings forecast.
  14. O'Brien, H.L.; Lebow, M.: Mixed-methods approach to measuring user experience in online news interactions (2013) 0.01
    0.0065351077 = product of:
      0.026140431 = sum of:
        0.026140431 = product of:
          0.052280862 = sum of:
            0.052280862 = weight(_text_:aspects in 1001) [ClassicSimilarity], result of:
              0.052280862 = score(doc=1001,freq=2.0), product of:
                0.20938325 = queryWeight, product of:
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.046325076 = queryNorm
                0.2496898 = fieldWeight in 1001, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.5198684 = idf(docFreq=1308, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1001)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    When it comes to evaluating online information experiences, what metrics matter? We conducted a study in which 30 people browsed and selected content within an online news website. Data collected included psychometric scales (User Engagement, Cognitive Absorption, System Usability Scales), self-reported interest in news content, and performance metrics (i.e., reading time, browsing time, total time, number of pages visited, and use of recommended links); a subset of the participants had their physiological responses recorded during the interaction (i.e., heart rate, electrodermal activity, electrocmytogram). Findings demonstrated the concurrent validity of the psychometric scales and interest ratings and revealed that increased time on tasks, number of pages visited, and use of recommended links were not necessarily indicative of greater self-reported engagement, cognitive absorption, or perceived usability. Positive ratings of news content were associated with lower physiological activity. The implications of this research are twofold. First, we propose that user experience is a useful framework for studying online information interactions and will result in a broader conceptualization of information interaction and its evaluation. Second, we advocate a mixed-methods approach to measurement that employs a suite of metrics capable of capturing the pragmatic (e.g., usability) and hedonic (e.g., fun, engagement) aspects of information interactions. We underscore the importance of using multiple measures in information research, because our results emphasize that performance and physiological data must be interpreted in the context of users' subjective experiences.
  15. Hallonsten, O.; Holmberg, D.: Analyzing structural stratification in the Swedish higher education system : data contextualization with policy-history analysis (2013) 0.00
    0.0039227554 = product of:
      0.015691021 = sum of:
        0.015691021 = product of:
          0.031382043 = sum of:
            0.031382043 = weight(_text_:22 in 668) [ClassicSimilarity], result of:
              0.031382043 = score(doc=668,freq=2.0), product of:
                0.16222252 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046325076 = queryNorm
                0.19345059 = fieldWeight in 668, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=668)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    22. 3.2013 19:43:01
  16. Vaughan, L.; Chen, Y.: Data mining from web search queries : a comparison of Google trends and Baidu index (2015) 0.00
    0.0039227554 = product of:
      0.015691021 = sum of:
        0.015691021 = product of:
          0.031382043 = sum of:
            0.031382043 = weight(_text_:22 in 1605) [ClassicSimilarity], result of:
              0.031382043 = score(doc=1605,freq=2.0), product of:
                0.16222252 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046325076 = queryNorm
                0.19345059 = fieldWeight in 1605, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1605)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Source
    Journal of the Association for Information Science and Technology. 66(2015) no.1, S.13-22
  17. Jäger, L.: Von Big Data zu Big Brother (2018) 0.00
    0.003138204 = product of:
      0.012552816 = sum of:
        0.012552816 = product of:
          0.025105633 = sum of:
            0.025105633 = weight(_text_:22 in 5234) [ClassicSimilarity], result of:
              0.025105633 = score(doc=5234,freq=2.0), product of:
                0.16222252 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046325076 = queryNorm
                0.15476047 = fieldWeight in 5234, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=5234)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    22. 1.2018 11:33:49