Search (155 results, page 1 of 8)

  • × theme_ss:"Data Mining"
  1. Hallonsten, O.; Holmberg, D.: Analyzing structural stratification in the Swedish higher education system : data contextualization with policy-history analysis (2013) 0.13
    0.1325582 = product of:
      0.1988373 = sum of:
        0.010462033 = weight(_text_:in in 668) [ClassicSimilarity], result of:
          0.010462033 = score(doc=668,freq=8.0), product of:
            0.069613084 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.051176514 = queryNorm
            0.15028831 = fieldWeight in 668, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=668)
        0.18837526 = sum of:
          0.15370671 = weight(_text_:education in 668) [ClassicSimilarity], result of:
            0.15370671 = score(doc=668,freq=12.0), product of:
              0.24110512 = queryWeight, product of:
                4.7112455 = idf(docFreq=1080, maxDocs=44218)
                0.051176514 = queryNorm
              0.6375091 = fieldWeight in 668, product of:
                3.4641016 = tf(freq=12.0), with freq of:
                  12.0 = termFreq=12.0
                4.7112455 = idf(docFreq=1080, maxDocs=44218)
                0.0390625 = fieldNorm(doc=668)
          0.034668557 = weight(_text_:22 in 668) [ClassicSimilarity], result of:
            0.034668557 = score(doc=668,freq=2.0), product of:
              0.17921144 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.051176514 = queryNorm
              0.19345059 = fieldWeight in 668, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=668)
      0.6666667 = coord(2/3)
    
    Abstract
    20th century massification of higher education and research in academia is said to have produced structurally stratified higher education systems in many countries. Most manifestly, the research mission of universities appears to be divisive. Authors have claimed that the Swedish system, while formally unified, has developed into a binary state, and statistics seem to support this conclusion. This article makes use of a comprehensive statistical data source on Swedish higher education institutions to illustrate stratification, and uses literature on Swedish research policy history to contextualize the statistics. Highlighting the opportunities as well as constraints of the data, the article argues that there is great merit in combining statistics with a qualitative analysis when studying the structural characteristics of national higher education systems. Not least the article shows that it is an over-simplification to describe the Swedish system as binary; the stratification is more complex. On basis of the analysis, the article also argues that while global trends certainly influence national developments, higher education systems have country-specific features that may enrich the understanding of how systems evolve and therefore should be analyzed as part of a broader study of the increasingly globalized academic system.
    Date
    22. 3.2013 19:43:01
  2. Jones, K.M.L.; Rubel, A.; LeClere, E.: ¬A matter of trust : higher education institutions as information fiduciaries in an age of educational data mining and learning analytics (2020) 0.04
    0.042269282 = product of:
      0.06340392 = sum of:
        0.0090603875 = weight(_text_:in in 5968) [ClassicSimilarity], result of:
          0.0090603875 = score(doc=5968,freq=6.0), product of:
            0.069613084 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.051176514 = queryNorm
            0.1301535 = fieldWeight in 5968, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5968)
        0.05434353 = product of:
          0.10868706 = sum of:
            0.10868706 = weight(_text_:education in 5968) [ClassicSimilarity], result of:
              0.10868706 = score(doc=5968,freq=6.0), product of:
                0.24110512 = queryWeight, product of:
                  4.7112455 = idf(docFreq=1080, maxDocs=44218)
                  0.051176514 = queryNorm
                0.450787 = fieldWeight in 5968, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  4.7112455 = idf(docFreq=1080, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5968)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Higher education institutions are mining and analyzing student data to effect educational, political, and managerial outcomes. Done under the banner of "learning analytics," this work can-and often does-surface sensitive data and information about, inter alia, a student's demographics, academic performance, offline and online movements, physical fitness, mental wellbeing, and social network. With these data, institutions and third parties are able to describe student life, predict future behaviors, and intervene to address academic or other barriers to student success (however defined). Learning analytics, consequently, raise serious issues concerning student privacy, autonomy, and the appropriate flow of student data. We argue that issues around privacy lead to valid questions about the degree to which students should trust their institution to use learning analytics data and other artifacts (algorithms, predictive scores) with their interests in mind. We argue that higher education institutions are paradigms of information fiduciaries. As such, colleges and universities have a special responsibility to their students. In this article, we use the information fiduciary concept to analyze cases when learning analytics violate an institution's responsibility to its students.
  3. Gill, A.J.; Hinrichs-Krapels, S.; Blanke, T.; Grant, J.; Hedges, M.; Tanner, S.: Insight workflow : systematically combining human and computational methods to explore textual data (2017) 0.03
    0.027891522 = product of:
      0.041837282 = sum of:
        0.010462033 = weight(_text_:in in 3682) [ClassicSimilarity], result of:
          0.010462033 = score(doc=3682,freq=8.0), product of:
            0.069613084 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.051176514 = queryNorm
            0.15028831 = fieldWeight in 3682, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3682)
        0.03137525 = product of:
          0.0627505 = sum of:
            0.0627505 = weight(_text_:education in 3682) [ClassicSimilarity], result of:
              0.0627505 = score(doc=3682,freq=2.0), product of:
                0.24110512 = queryWeight, product of:
                  4.7112455 = idf(docFreq=1080, maxDocs=44218)
                  0.051176514 = queryNorm
                0.260262 = fieldWeight in 3682, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.7112455 = idf(docFreq=1080, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3682)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Analyzing large quantities of real-world textual data has the potential to provide new insights for researchers. However, such data present challenges for both human and computational methods, requiring a diverse range of specialist skills, often shared across a number of individuals. In this paper we use the analysis of a real-world data set as our case study, and use this exploration as a demonstration of our "insight workflow," which we present for use and adaptation by other researchers. The data we use are impact case study documents collected as part of the UK Research Excellence Framework (REF), consisting of 6,679 documents and 6.25 million words; the analysis was commissioned by the Higher Education Funding Council for England (published as report HEFCE 2015). In our exploration and analysis we used a variety of techniques, ranging from keyword in context and frequency information to more sophisticated methods (topic modeling), with these automated techniques providing an empirical point of entry for in-depth and intensive human analysis. We present the 60 topics to demonstrate the output of our methods, and illustrate how the variety of analysis techniques can be combined to provide insights. We note potential limitations and propose future work.
  4. Hofstede, A.H.M. ter; Proper, H.A.; Van der Weide, T.P.: Exploiting fact verbalisation in conceptual information modelling (1997) 0.02
    0.024635023 = product of:
      0.036952533 = sum of:
        0.012684541 = weight(_text_:in in 2908) [ClassicSimilarity], result of:
          0.012684541 = score(doc=2908,freq=6.0), product of:
            0.069613084 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.051176514 = queryNorm
            0.1822149 = fieldWeight in 2908, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2908)
        0.02426799 = product of:
          0.04853598 = sum of:
            0.04853598 = weight(_text_:22 in 2908) [ClassicSimilarity], result of:
              0.04853598 = score(doc=2908,freq=2.0), product of:
                0.17921144 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051176514 = queryNorm
                0.2708308 = fieldWeight in 2908, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2908)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Focuses on the information modelling side of conceptual modelling. Deals with the exploitation of fact verbalisations after finishing the actual information system. Verbalisations are used as input for the design of the so-called information model. Exploits these verbalisation in 4 directions: considers their use for a conceptual query language, the verbalisation of instances, the description of the contents of a database and for the verbalisation of queries in a computer supported query environment. Provides an example session with an envisioned tool for end user query formulations that exploits the verbalisation
    Source
    Information systems. 22(1997) nos.5/6, S.349-385
  5. Matson, L.D.; Bonski, D.J.: Do digital libraries need librarians? (1997) 0.02
    0.024069648 = product of:
      0.03610447 = sum of:
        0.008369626 = weight(_text_:in in 1737) [ClassicSimilarity], result of:
          0.008369626 = score(doc=1737,freq=2.0), product of:
            0.069613084 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.051176514 = queryNorm
            0.120230645 = fieldWeight in 1737, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0625 = fieldNorm(doc=1737)
        0.027734846 = product of:
          0.05546969 = sum of:
            0.05546969 = weight(_text_:22 in 1737) [ClassicSimilarity], result of:
              0.05546969 = score(doc=1737,freq=2.0), product of:
                0.17921144 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051176514 = queryNorm
                0.30952093 = fieldWeight in 1737, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1737)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Defines digital libraries and discusses the effects of new technology on librarians. Examines the different viewpoints of librarians and information technologists on digital libraries. Describes the development of a digital library at the National Drug Intelligence Center, USA, which was carried out in collaboration with information technology experts. The system is based on Web enabled search technology to find information, data visualization and data mining to visualize it and use of SGML as an information standard to store it
    Date
    22.11.1998 18:57:22
  6. Lusti, M.: Data Warehousing and Data Mining : Eine Einführung in entscheidungsunterstützende Systeme (1999) 0.02
    0.024069648 = product of:
      0.03610447 = sum of:
        0.008369626 = weight(_text_:in in 4261) [ClassicSimilarity], result of:
          0.008369626 = score(doc=4261,freq=2.0), product of:
            0.069613084 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.051176514 = queryNorm
            0.120230645 = fieldWeight in 4261, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0625 = fieldNorm(doc=4261)
        0.027734846 = product of:
          0.05546969 = sum of:
            0.05546969 = weight(_text_:22 in 4261) [ClassicSimilarity], result of:
              0.05546969 = score(doc=4261,freq=2.0), product of:
                0.17921144 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051176514 = queryNorm
                0.30952093 = fieldWeight in 4261, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4261)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Date
    17. 7.2002 19:22:06
  7. Amir, A.; Feldman, R.; Kashi, R.: ¬A new and versatile method for association generation (1997) 0.02
    0.024069648 = product of:
      0.03610447 = sum of:
        0.008369626 = weight(_text_:in in 1270) [ClassicSimilarity], result of:
          0.008369626 = score(doc=1270,freq=2.0), product of:
            0.069613084 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.051176514 = queryNorm
            0.120230645 = fieldWeight in 1270, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0625 = fieldNorm(doc=1270)
        0.027734846 = product of:
          0.05546969 = sum of:
            0.05546969 = weight(_text_:22 in 1270) [ClassicSimilarity], result of:
              0.05546969 = score(doc=1270,freq=2.0), product of:
                0.17921144 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051176514 = queryNorm
                0.30952093 = fieldWeight in 1270, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1270)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Current algorithms for finding associations among the attributes describing data in a database have a number of shortcomings. Presents a novel method for association generation, that answers all desiderata. The method is different from all existing algorithms and especially suitable to textual databases with binary attributes. Uses subword trees for quick indexing into the required database statistics. Tests the algorithm on the Reuters-22173 database with satisfactory results
    Source
    Information systems. 22(1997) nos.5/6, S.333-347
  8. Vaughan, L.; Chen, Y.: Data mining from web search queries : a comparison of Google trends and Baidu index (2015) 0.02
    0.021419886 = product of:
      0.032129828 = sum of:
        0.014795548 = weight(_text_:in in 1605) [ClassicSimilarity], result of:
          0.014795548 = score(doc=1605,freq=16.0), product of:
            0.069613084 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.051176514 = queryNorm
            0.21253976 = fieldWeight in 1605, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1605)
        0.017334279 = product of:
          0.034668557 = sum of:
            0.034668557 = weight(_text_:22 in 1605) [ClassicSimilarity], result of:
              0.034668557 = score(doc=1605,freq=2.0), product of:
                0.17921144 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051176514 = queryNorm
                0.19345059 = fieldWeight in 1605, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1605)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Numerous studies have explored the possibility of uncovering information from web search queries but few have examined the factors that affect web query data sources. We conducted a study that investigated this issue by comparing Google Trends and Baidu Index. Data from these two services are based on queries entered by users into Google and Baidu, two of the largest search engines in the world. We first compared the features and functions of the two services based on documents and extensive testing. We then carried out an empirical study that collected query volume data from the two sources. We found that data from both sources could be used to predict the quality of Chinese universities and companies. Despite the differences between the two services in terms of technology, such as differing methods of language processing, the search volume data from the two were highly correlated and combining the two data sources did not improve the predictive power of the data. However, there was a major difference between the two in terms of data availability. Baidu Index was able to provide more search volume data than Google Trends did. Our analysis showed that the disadvantage of Google Trends in this regard was due to Google's smaller user base in China. The implication of this finding goes beyond China. Google's user bases in many countries are smaller than that in China, so the search volume data related to those countries could result in the same issue as that related to China.
    Source
    Journal of the Association for Information Science and Technology. 66(2015) no.1, S.13-22
  9. Fonseca, F.; Marcinkowski, M.; Davis, C.: Cyber-human systems of thought and understanding (2019) 0.02
    0.019354125 = product of:
      0.029031187 = sum of:
        0.011696909 = weight(_text_:in in 5011) [ClassicSimilarity], result of:
          0.011696909 = score(doc=5011,freq=10.0), product of:
            0.069613084 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.051176514 = queryNorm
            0.16802745 = fieldWeight in 5011, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5011)
        0.017334279 = product of:
          0.034668557 = sum of:
            0.034668557 = weight(_text_:22 in 5011) [ClassicSimilarity], result of:
              0.034668557 = score(doc=5011,freq=2.0), product of:
                0.17921144 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051176514 = queryNorm
                0.19345059 = fieldWeight in 5011, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5011)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    The present challenge faced by scientists working with Big Data comes in the overwhelming volume and level of detail provided by current data sets. Exceeding traditional empirical approaches, Big Data opens a new perspective on scientific work in which data comes to play a role in the development of the scientific problematic to be developed. Addressing this reconfiguration of our relationship with data through readings of Wittgenstein, Macherey, and Popper, we propose a picture of science that encourages scientists to engage with the data in a direct way, using the data itself as an instrument for scientific investigation. Using GIS as a theme, we develop the concept of cyber-human systems of thought and understanding to bridge the divide between representative (theoretical) thinking and (non-theoretical) data-driven science. At the foundation of these systems, we invoke the concept of the "semantic pixel" to establish a logical and virtual space linking data and the work of scientists. It is with this discussion of the relationship between analysts in their pursuit of knowledge and the rise of Big Data that this present discussion of the philosophical foundations of Big Data addresses the central questions raised by social informatics research.
    Date
    7. 3.2019 16:32:22
  10. Lackes, R.; Tillmanns, C.: Data Mining für die Unternehmenspraxis : Entscheidungshilfen und Fallstudien mit führenden Softwarelösungen (2006) 0.02
    0.018052235 = product of:
      0.027078353 = sum of:
        0.0062772194 = weight(_text_:in in 1383) [ClassicSimilarity], result of:
          0.0062772194 = score(doc=1383,freq=2.0), product of:
            0.069613084 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.051176514 = queryNorm
            0.09017298 = fieldWeight in 1383, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.046875 = fieldNorm(doc=1383)
        0.020801133 = product of:
          0.041602265 = sum of:
            0.041602265 = weight(_text_:22 in 1383) [ClassicSimilarity], result of:
              0.041602265 = score(doc=1383,freq=2.0), product of:
                0.17921144 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051176514 = queryNorm
                0.23214069 = fieldWeight in 1383, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1383)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Das Buch richtet sich an Praktiker in Unternehmen, die sich mit der Analyse von großen Datenbeständen beschäftigen. Nach einem kurzen Theorieteil werden vier Fallstudien aus dem Customer Relationship Management eines Versandhändlers bearbeitet. Dabei wurden acht führende Softwarelösungen verwendet: der Intelligent Miner von IBM, der Enterprise Miner von SAS, Clementine von SPSS, Knowledge Studio von Angoss, der Delta Miner von Bissantz, der Business Miner von Business Object und die Data Engine von MIT. Im Rahmen der Fallstudien werden die Stärken und Schwächen der einzelnen Lösungen deutlich, und die methodisch-korrekte Vorgehensweise beim Data Mining wird aufgezeigt. Beides liefert wertvolle Entscheidungshilfen für die Auswahl von Standardsoftware zum Data Mining und für die praktische Datenanalyse.
    Date
    22. 3.2008 14:46:06
  11. Hölzig, C.: Google spürt Grippewellen auf : Die neue Anwendung ist bisher auf die USA beschränkt (2008) 0.02
    0.017135909 = product of:
      0.025703862 = sum of:
        0.011836439 = weight(_text_:in in 2403) [ClassicSimilarity], result of:
          0.011836439 = score(doc=2403,freq=16.0), product of:
            0.069613084 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.051176514 = queryNorm
            0.17003182 = fieldWeight in 2403, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.03125 = fieldNorm(doc=2403)
        0.013867423 = product of:
          0.027734846 = sum of:
            0.027734846 = weight(_text_:22 in 2403) [ClassicSimilarity], result of:
              0.027734846 = score(doc=2403,freq=2.0), product of:
                0.17921144 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051176514 = queryNorm
                0.15476047 = fieldWeight in 2403, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2403)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Content
    "Vor Google gibt es kein Entrinnen. Nun macht sich die größte Internetsuchmaschine daran, auch gefährliche Grippewellen in den USA vorauszusagen - und das schneller als die US-Gesundheitsbehörde. In den Regionen, in denen die Influenza grassiert, häufen sich erfahrungsgemäß auch die Online-Anfragen im Internet speziell zu diesem Thema. "Wir haben einen engen Zusammenhang feststellen können zwischen Personen, die nach themenbezogenen Informationen suchen, und Personen, die tatsächlich an der Grippe erkrankt sind", schreibt Google. Ein Webtool namens "Google Flu Trends" errechnet aus den Anfragen die Ausbreitung von Grippeviren. Auch wenn nicht jeder Nutzer erkrankt sei, spiegele die Zahl der Anfragen doch ziemlich genau die Entwicklung einer Grippewelle wider. Das belege ein Vergleich mit den Daten der US-Seuchenkontrollbehörde CDC, die in den meisten Fällen nahezu identisch seien. Die Internet-Suchmaschine könne anders als die Gesundheitsbehörde täglich auf aktuelle Daten zurückgreifen. Dadurch sei Google in der Lage, die Grippesaison ein bis zwei Wochen früher vorherzusagen. Und Zeit bedeutet Leben, wie Lyn Finelli sagt, Leiter der Abteilung Influenza der USSeuchenkontrollbehörde: "Je früher wir gewarnt werden, desto früher können wir handeln. Dies kann die Anzahl der Erkrankten erheblich minimieren." "Google Flu Trends" ist das erste Projekt, das Datenbanken einer Suchmaschine nutzt, um einen auftretenden Grippevirus zu lokalisieren - zurzeit nur in den USA, aber weltweite Prognosen wären ein folgerichtiger nächster Schritt. Philip M. Polgreen von der Universität von Iowa verspricht sich noch viel mehr: "Theoretisch können wir diese Flut an Informationen dazu nutzen, auch den Verlauf anderer Krankheiten besser zu studieren." Um das Grippe-Ausbreitungsmodell zu erstellen, hat Google mehrere hundert Milliarden Suchanfragen aus den vergangenen Jahren analysiert. Datenschützer haben den Internetgiganten bereits mehrfach als "datenschutzfeindlich" eingestuft. Die Anwender wüssten weder, was mit den gesammelten Daten passiere, noch wie lange gespeicherte Informationen verfügbar seien. Google versichert jedoch, dass "Flu Trends" die Privatsphäre wahre. Das Tool könne niemals dazu genutzt werden, einzelne Nutzer zu identifizieren, da wir bei der Erstellung der Statistiken lediglich anonyme Datenmaterialien nutzen. Die Muster, die wir in den Daten analysieren, ergeben erst in einem größeren Kontext Sinn." An einer echten Virus-Grippe - nicht zu verwechseln mit einer Erkältung - erkranken weltweit mehrere Millionen Menschen, mehr als 500 000 sterben daran."
    Date
    3. 5.1997 8:44:22
  12. Chowdhury, G.G.: Template mining for information extraction from digital documents (1999) 0.02
    0.01617866 = product of:
      0.04853598 = sum of:
        0.04853598 = product of:
          0.09707196 = sum of:
            0.09707196 = weight(_text_:22 in 4577) [ClassicSimilarity], result of:
              0.09707196 = score(doc=4577,freq=2.0), product of:
                0.17921144 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051176514 = queryNorm
                0.5416616 = fieldWeight in 4577, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.109375 = fieldNorm(doc=4577)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    2. 4.2000 18:01:22
  13. Peters, G.; Gaese, V.: ¬Das DocCat-System in der Textdokumentation von G+J (2003) 0.02
    0.016078722 = product of:
      0.02411808 = sum of:
        0.010250657 = weight(_text_:in in 1507) [ClassicSimilarity], result of:
          0.010250657 = score(doc=1507,freq=12.0), product of:
            0.069613084 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.051176514 = queryNorm
            0.14725187 = fieldWeight in 1507, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.03125 = fieldNorm(doc=1507)
        0.013867423 = product of:
          0.027734846 = sum of:
            0.027734846 = weight(_text_:22 in 1507) [ClassicSimilarity], result of:
              0.027734846 = score(doc=1507,freq=2.0), product of:
                0.17921144 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051176514 = queryNorm
                0.15476047 = fieldWeight in 1507, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1507)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Wir werden einmal die Grundlagen des Text-Mining-Systems bei IBM darstellen, dann werden wir das Projekt etwas umfangreicher und deutlicher darstellen, da kennen wir uns aus. Von daher haben wir zwei Teile, einmal Heidelberg, einmal Hamburg. Noch einmal zur Technologie. Text-Mining ist eine von IBM entwickelte Technologie, die in einer besonderen Ausformung und Programmierung für uns zusammengestellt wurde. Das Projekt hieß bei uns lange Zeit DocText Miner und heißt seit einiger Zeit auf Vorschlag von IBM DocCat, das soll eine Abkürzung für Document-Categoriser sein, sie ist ja auch nett und anschaulich. Wir fangen an mit Text-Mining, das bei IBM in Heidelberg entwickelt wurde. Die verstehen darunter das automatische Indexieren als eine Instanz, also einen Teil von Text-Mining. Probleme werden dabei gezeigt, und das Text-Mining ist eben eine Methode zur Strukturierung von und der Suche in großen Dokumentenmengen, die Extraktion von Informationen und, das ist der hohe Anspruch, von impliziten Zusammenhängen. Das letztere sei dahingestellt. IBM macht das quantitativ, empirisch, approximativ und schnell. das muss man wirklich sagen. Das Ziel, und das ist ganz wichtig für unser Projekt gewesen, ist nicht, den Text zu verstehen, sondern das Ergebnis dieser Verfahren ist, was sie auf Neudeutsch a bundle of words, a bag of words nennen, also eine Menge von bedeutungstragenden Begriffen aus einem Text zu extrahieren, aufgrund von Algorithmen, also im Wesentlichen aufgrund von Rechenoperationen. Es gibt eine ganze Menge von linguistischen Vorstudien, ein wenig Linguistik ist auch dabei, aber nicht die Grundlage der ganzen Geschichte. Was sie für uns gemacht haben, ist also die Annotierung von Pressetexten für unsere Pressedatenbank. Für diejenigen, die es noch nicht kennen: Gruner + Jahr führt eine Textdokumentation, die eine Datenbank führt, seit Anfang der 70er Jahre, da sind z.Z. etwa 6,5 Millionen Dokumente darin, davon etwas über 1 Million Volltexte ab 1993. Das Prinzip war lange Zeit, dass wir die Dokumente, die in der Datenbank gespeichert waren und sind, verschlagworten und dieses Prinzip haben wir auch dann, als der Volltext eingeführt wurde, in abgespeckter Form weitergeführt. Zu diesen 6,5 Millionen Dokumenten gehören dann eben auch ungefähr 10 Millionen Faksimileseiten, weil wir die Faksimiles auch noch standardmäßig aufheben.
    Date
    22. 4.2003 11:45:36
  14. Medien-Informationsmanagement : Archivarische, dokumentarische, betriebswirtschaftliche, rechtliche und Berufsbild-Aspekte ; [Frühjahrstagung der Fachgruppe 7 im Jahr 2000 in Weimar und Folgetagung 2001 in Köln] (2003) 0.02
    0.0160543 = product of:
      0.02408145 = sum of:
        0.013680883 = weight(_text_:in in 1833) [ClassicSimilarity], result of:
          0.013680883 = score(doc=1833,freq=38.0), product of:
            0.069613084 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.051176514 = queryNorm
            0.19652747 = fieldWeight in 1833, product of:
              6.164414 = tf(freq=38.0), with freq of:
                38.0 = termFreq=38.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0234375 = fieldNorm(doc=1833)
        0.010400566 = product of:
          0.020801133 = sum of:
            0.020801133 = weight(_text_:22 in 1833) [ClassicSimilarity], result of:
              0.020801133 = score(doc=1833,freq=2.0), product of:
                0.17921144 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051176514 = queryNorm
                0.116070345 = fieldWeight in 1833, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=1833)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Als in den siebziger Jahren des vergangenen Jahrhunderts immer häufiger die Bezeichnung Informationsmanager für Leute propagiert wurde, die bis dahin als Dokumentare firmierten, wurde dies in den etablierten Kreisen der Archivare und Bibliothekare gelegentlich belächelt und als Zeichen einer Identitätskrise oder jedenfalls einer Verunsicherung des damit überschriebenen Berufsbilds gewertet. Für den Berufsstand der Medienarchivare/Mediendokumentare, die sich seit 1960 in der Fachgruppe 7 des Vereins, später Verbands deutscher Archivare (VdA) organisieren, gehörte diese Verortung im Zeichen neuer inhaltlicher Herausforderungen (Informationsflut) und Technologien (EDV) allerdings schon früh zu den Selbstverständlichkeiten des Berufsalltags. "Halt, ohne uns geht es nicht!" lautete die Überschrift eines Artikels im Verbandsorgan "Info 7", der sich mit der Einrichtung von immer mächtigeren Leitungsnetzen und immer schnelleren Datenautobahnen beschäftigte. Information, Informationsgesellschaft: diese Begriffe wurden damals fast nur im technischen Sinne verstanden. Die informatisierte, nicht die informierte Gesellschaft stand im Vordergrund - was wiederum Kritiker auf den Plan rief, von Joseph Weizenbaum in den USA bis hin zu den Informations-Ökologen in Bremen. Bei den nationalen, manchmal auch nur regionalen Projekten und Modellversuchen mit Datenautobahnen - auch beim frühen Btx - war nie so recht deutlich geworden, welche Inhalte in welcher Gestalt durch diese Netze und Straßen gejagt werden sollten und wer diese Inhalte eigentlich selektieren, portionieren, positionieren, kurz: managen sollte. Spätestens mit dem World Wide Web sind diese Projekte denn auch obsolet geworden, jedenfalls was die Hardware und Software anging. Geblieben ist das Thema Inhalte (neudeutsch: Content). Und - immer drängender im nicht nur technischen Verständnis - das Thema Informationsmanagement. MedienInformationsManagement war die Frühjahrstagung der Fachgruppe 7 im Jahr 2000 in Weimar überschrieben, und auch die Folgetagung 2001 in Köln, die der multimedialen Produktion einen dokumentarischen Pragmatismus gegenüber stellte, handelte vom Geschäftsfeld Content und von Content-Management-Systemen. Die in diesem 6. Band der Reihe Beiträge zur Mediendokumentation versammelten Vorträge und Diskussionsbeiträge auf diesen beiden Tagungen beleuchten das Titel-Thema aus den verschiedensten Blickwinkeln: archivarischen, dokumentarischen, kaufmännischen, berufsständischen und juristischen. Deutlich wird dabei, daß die Berufsbezeichnung Medienarchivarln/Mediendokumentarln ziemlich genau für all das steht, was heute mit sog. alten wie neuen Medien im organisatorischen, d.h. ordnenden und vermittelnden Sinne geschieht. Im besonderen Maße trifft dies auf das Internet und die aus ihm geborenen Intranets zu. Beide bedürfen genauso der ordnenden Hand, die sich an den alten Medien, an Buch, Zeitung, Tonträger, Film etc. geschult hat, denn sie leben zu großen Teilen davon. Daß das Internet gleichwohl ein Medium sui generis ist und die alten Informationsberufe vor ganz neue Herausforderungen stellt - auch das durchzieht die Beiträge von Weimar und Köln.
    Vorliegender Band umgreift den gegenwärtigen Stand der Diskussion um das Handling von Informationen in und mit Hilfe von neuen und alten Medien und liefert außerdem dem Verein Fortbildung für Medienarchivare/ Mediendokumentare (VFM), der seit dem 5. Band die Reihe herausgibt, eine weitere Handreichung für die zusammen mit dem Deutschen Institut, für publizistische Bildungsarbeit in Hagen veranstalteten Seminare. Im Anhang sind außer den vollständigen Programmen der beiden Frühjahrstagungen die Namen und institutionellen Anbindungen der Referenten nachzulesen. Allen Autoren des Bandes sei für ihre Bereitschaft, an dieser Publikation mitzuwirken, gedankt, insbesondere denen, die sich auch noch der Mühe unterziehen mußten, das Transkript ihres in freier Rede gehaltenen Vortrags in eine lesbare Fassung zu bringen. Manche Eigentümlichkeiten des Stils sind dieser freien Rede geschuldet - oder vielleicht auch gedankt, denn sie geben damit umso lebendiger die Atmosphäre jener Frühlingstage in Weimar und Köln wieder.
    Content
    Enthält u.a. die Beiträge (Dokumentarische Aspekte): Günter Perers/Volker Gaese: Das DocCat-System in der Textdokumentation von Gr+J (Weimar 2000) Thomas Gerick: Finden statt suchen. Knowledge Retrieval in Wissensbanken. Mit organisiertem Wissen zu mehr Erfolg (Weimar 2000) Winfried Gödert: Aufbereitung und Rezeption von Information (Weimar 2000) Elisabeth Damen: Klassifikation als Ordnungssystem im elektronischen Pressearchiv (Köln 2001) Clemens Schlenkrich: Aspekte neuer Regelwerksarbeit - Multimediales Datenmodell für ARD und ZDF (Köln 2001) Josef Wandeler: Comprenez-vous only Bahnhof'? - Mehrsprachigkeit in der Mediendokumentation (Köln 200 1)
    Date
    11. 5.2008 19:49:22
  15. KDD : techniques and applications (1998) 0.01
    0.013867422 = product of:
      0.041602265 = sum of:
        0.041602265 = product of:
          0.08320453 = sum of:
            0.08320453 = weight(_text_:22 in 6783) [ClassicSimilarity], result of:
              0.08320453 = score(doc=6783,freq=2.0), product of:
                0.17921144 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051176514 = queryNorm
                0.46428138 = fieldWeight in 6783, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=6783)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Footnote
    A special issue of selected papers from the Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD'97), held Singapore, 22-23 Feb 1997
  16. Lischka, K.: Spurensuche im Datenwust : Data-Mining-Software fahndet nach kriminellen Mitarbeitern, guten Kunden - und bald vielleicht auch nach Terroristen (2002) 0.01
    0.013550482 = product of:
      0.020325722 = sum of:
        0.009925156 = weight(_text_:in in 1178) [ClassicSimilarity], result of:
          0.009925156 = score(doc=1178,freq=20.0), product of:
            0.069613084 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.051176514 = queryNorm
            0.14257601 = fieldWeight in 1178, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0234375 = fieldNorm(doc=1178)
        0.010400566 = product of:
          0.020801133 = sum of:
            0.020801133 = weight(_text_:22 in 1178) [ClassicSimilarity], result of:
              0.020801133 = score(doc=1178,freq=2.0), product of:
                0.17921144 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051176514 = queryNorm
                0.116070345 = fieldWeight in 1178, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=1178)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Content
    "Ob man als Terrorist einen Anschlag gegen die Vereinigten Staaten plant, als Kassierer Scheine aus der Kasse unterschlägt oder für bestimmte Produkte besonders gerne Geld ausgibt - einen Unterschied macht Data-Mining-Software da nicht. Solche Programme analysieren riesige Daten- mengen und fällen statistische Urteile. Mit diesen Methoden wollen nun die For- scher des "Information Awaren in den Vereinigten Staaten Spuren von Terroristen in den Datenbanken von Behörden und privaten Unternehmen wie Kreditkartenfirmen finden. 200 Millionen Dollar umfasst der Jahresetat für die verschiedenen Forschungsprojekte. Dass solche Software in der Praxis funktioniert, zeigen die steigenden Umsätze der Anbieter so genannter Customer-Relationship-Management-Software. Im vergangenen Jahr ist das Potenzial für analytische CRM-Anwendungen laut dem Marktforschungsinstitut IDC weltweit um 22 Prozent gewachsen, bis zum Jahr 2006 soll es in Deutschland mit einem jährlichen Plus von 14,1 Prozent so weitergehen. Und das trotz schwacher Konjunktur - oder gerade deswegen. Denn ähnlich wie Data-Mining der USRegierung helfen soll, Terroristen zu finden, entscheiden CRM-Programme heute, welche Kunden für eine Firma profitabel sind. Und welche es künftig sein werden, wie Manuela Schnaubelt, Sprecherin des CRM-Anbieters SAP, beschreibt: "Die Kundenbewertung ist ein zentraler Bestandteil des analytischen CRM. Sie ermöglicht es Unternehmen, sich auf die für sie wichtigen und richtigen Kunden zu fokussieren. Darüber hinaus können Firmen mit speziellen Scoring- Verfahren ermitteln, welche Kunden langfristig in welchem Maße zum Unternehmenserfolg beitragen." Die Folgen der Bewertungen sind für die Betroffenen nicht immer positiv: Attraktive Kunden profitieren von individuellen Sonderangeboten und besonderer Zuwendung. Andere hängen vielleicht so lauge in der Warteschleife des Telefonservice, bis die profitableren Kunden abgearbeitet sind. So könnte eine praktische Umsetzung dessen aussehen, was SAP-Spreche-rin Schnaubelt abstrakt beschreibt: "In vielen Unternehmen wird Kundenbewertung mit der klassischen ABC-Analyse durchgeführt, bei der Kunden anhand von Daten wie dem Umsatz kategorisiert werden. A-Kunden als besonders wichtige Kunden werden anders betreut als C-Kunden." Noch näher am geplanten Einsatz von Data-Mining zur Terroristenjagd ist eine Anwendung, die heute viele Firmen erfolgreich nutzen: Sie spüren betrügende Mitarbeiter auf. Werner Sülzer vom großen CRM-Anbieter NCR Teradata beschreibt die Möglichkeiten so: "Heute hinterlässt praktisch jeder Täter - ob Mitarbeiter, Kunde oder Lieferant - Datenspuren bei seinen wirtschaftskriminellen Handlungen. Es muss vorrangig darum gehen, einzelne Spuren zu Handlungsmustern und Täterprofilen zu verdichten. Das gelingt mittels zentraler Datenlager und hoch entwickelter Such- und Analyseinstrumente." Von konkreten Erfolgen sprich: Entlas-sungen krimineller Mitarbeiter-nach Einsatz solcher Programme erzählen Unternehmen nicht gerne. Matthias Wilke von der "Beratungsstelle für Technologiefolgen und Qualifizierung" (BTQ) der Gewerkschaft Verdi weiß von einem Fall 'aus der Schweiz. Dort setzt die Handelskette "Pick Pay" das Programm "Lord Lose Prevention" ein. Zwei Monate nach Einfüh-rung seien Unterschlagungen im Wert von etwa 200 000 Franken ermittelt worden. Das kostete mehr als 50 verdächtige Kassiererinnen und Kassierer den Job.
    Jede Kasse schickt die Daten zu Stornos, Rückgaben, Korrekturen und dergleichen an eine zentrale Datenbank. Aus den Informationen errechnet das Programm Kassiererprofile. Wessen Arbeit stark Durchschnitt abweicht, macht sich verdächtig. Die Kriterien" legen im Einzelnen die Revisionsabteilungen fest, doch generell gilt: "Bei Auffälligkeiten wie überdurchschnittlichvielenStornierungen, Off nen der Kassenschublade ohne Verkauf nach einem Storno oder Warenrücknahmen ohne Kassenbon, können die Vorgänge nachträglich einzelnen Personen zugeordnet werden", sagt Rene Schiller, Marketing-Chef des Lord-Herstellers Logware. Ein Kündigungsgrund ist eine solche Datensammlung vor Gericht nicht. Doch auf der Basis können Unternehmen gezielt Detektive einsetzen. Oder sie konfrontieren die Mitarbeiter mit dem Material; woraufhin Schuldige meist gestehen. Wilke sieht Programme wie Lord kritisch:"Jeder, der in dem Raster auffällt, kann ein potenzieller Betrüger oder Dieb sein und verdient besondere Beobachtung." Dabei könne man vom Standard abweichen, weil man unausgeschlafen und deshalb unkonzentriert sei. Hier tut sich für Wilke die Gefahr technisierter Leistungskontrolle auf. "Es ist ja nicht schwierig, mit den Programmen zu berechnen, wie lange beispielsweise das Kassieren eines Samstagseinkaufs durchschnittlich dauert." Die Betriebsräte - ihre Zustimmung ist beim Einsatz technischer Kon trolleinrichtungen nötig - verurteilen die wertende Software weniger eindeutig. Im Gegenteil: Bei Kaufhof und Edeka haben sie dem Einsatz zugestimmt. Denn: "Die wollen ja nicht, dass ganze Abteilungen wegen Inventurverlusten oder dergleichen unter Generalverdacht fallen", erklärt Gewerkschaftler Wilke: "Angesichts der Leistungen kommerzieller Data-Mining-Programme verblüfft es, dass in den Vereinigten Staaten das "Information Awareness Office" noch drei Jahre für Forschung und Erprobung der eigenen Programme veranschlagt. 2005 sollen frühe Prototypen zur Terroristensuche einesgetz werden. Doch schon jetzt regt sich Protest. Datenschützer wie Marc Botenberg vom Informationszentrum für Daten schutz sprechen vom "ehrgeizigsten öffentlichen Überwachungssystem, das je vorgeschlagen wurde". Sie warnen besonders davor, Daten aus der Internetnutzung und private Mails auszuwerten. Das Verteidigungsministerium rudert zurück. Man denke nicht daran, über die Software im Inland aktiv zu werden. "Das werden die Geheimdienste, die Spionageabwehr und die Strafverfolger tun", sagt Unterstaatssekretär Edward Aldridge. Man werde während der Entwicklung und der Tests mit konstruierten und einigen - aus Sicht der Datenschützer unbedenklichen - realen Informationen arbeiten. Zu denken gibt jedoch Aldriges Antwort auf die Frage, warum so viel Geld für die Entwicklung von Übersetzungssoftware eingeplant ist: Damit man Datenbanken in anderen Sprachen nutzen könne - sofern man auf sie rechtmäßigen Zugriff bekommt."
  17. Information visualization in data mining and knowledge discovery (2002) 0.01
    0.013444836 = product of:
      0.020167254 = sum of:
        0.0132335415 = weight(_text_:in in 1789) [ClassicSimilarity], result of:
          0.0132335415 = score(doc=1789,freq=80.0), product of:
            0.069613084 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.051176514 = queryNorm
            0.19010136 = fieldWeight in 1789, product of:
              8.944272 = tf(freq=80.0), with freq of:
                80.0 = termFreq=80.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.015625 = fieldNorm(doc=1789)
        0.0069337115 = product of:
          0.013867423 = sum of:
            0.013867423 = weight(_text_:22 in 1789) [ClassicSimilarity], result of:
              0.013867423 = score(doc=1789,freq=2.0), product of:
                0.17921144 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051176514 = queryNorm
                0.07738023 = fieldWeight in 1789, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.015625 = fieldNorm(doc=1789)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Date
    23. 3.2008 19:10:22
    Footnote
    Rez. in: JASIST 54(2003) no.9, S.905-906 (C.A. Badurek): "Visual approaches for knowledge discovery in very large databases are a prime research need for information scientists focused an extracting meaningful information from the ever growing stores of data from a variety of domains, including business, the geosciences, and satellite and medical imagery. This work presents a summary of research efforts in the fields of data mining, knowledge discovery, and data visualization with the goal of aiding the integration of research approaches and techniques from these major fields. The editors, leading computer scientists from academia and industry, present a collection of 32 papers from contributors who are incorporating visualization and data mining techniques through academic research as well application development in industry and government agencies. Information Visualization focuses upon techniques to enhance the natural abilities of humans to visually understand data, in particular, large-scale data sets. It is primarily concerned with developing interactive graphical representations to enable users to more intuitively make sense of multidimensional data as part of the data exploration process. It includes research from computer science, psychology, human-computer interaction, statistics, and information science. Knowledge Discovery in Databases (KDD) most often refers to the process of mining databases for previously unknown patterns and trends in data. Data mining refers to the particular computational methods or algorithms used in this process. The data mining research field is most related to computational advances in database theory, artificial intelligence and machine learning. This work compiles research summaries from these main research areas in order to provide "a reference work containing the collection of thoughts and ideas of noted researchers from the fields of data mining and data visualization" (p. 8). It addresses these areas in three main sections: the first an data visualization, the second an KDD and model visualization, and the last an using visualization in the knowledge discovery process. The seven chapters of Part One focus upon methodologies and successful techniques from the field of Data Visualization. Hoffman and Grinstein (Chapter 2) give a particularly good overview of the field of data visualization and its potential application to data mining. An introduction to the terminology of data visualization, relation to perceptual and cognitive science, and discussion of the major visualization display techniques are presented. Discussion and illustration explain the usefulness and proper context of such data visualization techniques as scatter plots, 2D and 3D isosurfaces, glyphs, parallel coordinates, and radial coordinate visualizations. Remaining chapters present the need for standardization of visualization methods, discussion of user requirements in the development of tools, and examples of using information visualization in addressing research problems.
    In 13 chapters, Part Two provides an introduction to KDD, an overview of data mining techniques, and examples of the usefulness of data model visualizations. The importance of visualization throughout the KDD process is stressed in many of the chapters. In particular, the need for measures of visualization effectiveness, benchmarking for identifying best practices, and the use of standardized sample data sets is convincingly presented. Many of the important data mining approaches are discussed in this complementary context. Cluster and outlier detection, classification techniques, and rule discovery algorithms are presented as the basic techniques common to the KDD process. The potential effectiveness of using visualization in the data modeling process are illustrated in chapters focused an using visualization for helping users understand the KDD process, ask questions and form hypotheses about their data, and evaluate the accuracy and veracity of their results. The 11 chapters of Part Three provide an overview of the KDD process and successful approaches to integrating KDD, data mining, and visualization in complementary domains. Rhodes (Chapter 21) begins this section with an excellent overview of the relation between the KDD process and data mining techniques. He states that the "primary goals of data mining are to describe the existing data and to predict the behavior or characteristics of future data of the same type" (p. 281). These goals are met by data mining tasks such as classification, regression, clustering, summarization, dependency modeling, and change or deviation detection. Subsequent chapters demonstrate how visualization can aid users in the interactive process of knowledge discovery by graphically representing the results from these iterative tasks. Finally, examples of the usefulness of integrating visualization and data mining tools in the domain of business, imagery and text mining, and massive data sets are provided. This text concludes with a thorough and useful 17-page index and lengthy yet integrating 17-page summary of the academic and industrial backgrounds of the contributing authors. A 16-page set of color inserts provide a better representation of the visualizations discussed, and a URL provided suggests that readers may view all the book's figures in color on-line, although as of this submission date it only provides access to a summary of the book and its contents. The overall contribution of this work is its focus an bridging two distinct areas of research, making it a valuable addition to the Morgan Kaufmann Series in Database Management Systems. The editors of this text have met their main goal of providing the first textbook integrating knowledge discovery, data mining, and visualization. Although it contributes greatly to our under- standing of the development and current state of the field, a major weakness of this text is that there is no concluding chapter to discuss the contributions of the sum of these contributed papers or give direction to possible future areas of research. "Integration of expertise between two different disciplines is a difficult process of communication and reeducation. Integrating data mining and visualization is particularly complex because each of these fields in itself must draw an a wide range of research experience" (p. 300). Although this work contributes to the crossdisciplinary communication needed to advance visualization in KDD, a more formal call for an interdisciplinary research agenda in a concluding chapter would have provided a more satisfying conclusion to a very good introductory text.
    With contributors almost exclusively from the computer science field, the intended audience of this work is heavily slanted towards a computer science perspective. However, it is highly readable and provides introductory material that would be useful to information scientists from a variety of domains. Yet, much interesting work in information visualization from other fields could have been included giving the work more of an interdisciplinary perspective to complement their goals of integrating work in this area. Unfortunately, many of the application chapters are these, shallow, and lack complementary illustrations of visualization techniques or user interfaces used. However, they do provide insight into the many applications being developed in this rapidly expanding field. The authors have successfully put together a highly useful reference text for the data mining and information visualization communities. Those interested in a good introduction and overview of complementary research areas in these fields will be satisfied with this collection of papers. The focus upon integrating data visualization with data mining complements texts in each of these fields, such as Advances in Knowledge Discovery and Data Mining (Fayyad et al., MIT Press) and Readings in Information Visualization: Using Vision to Think (Card et. al., Morgan Kauffman). This unique work is a good starting point for future interaction between researchers in the fields of data visualization and data mining and makes a good accompaniment for a course focused an integrating these areas or to the main reference texts in these fields."
    Series
    Morgan Kaufmann series in data management systems
  18. Jäger, L.: Von Big Data zu Big Brother (2018) 0.01
    0.012034824 = product of:
      0.018052235 = sum of:
        0.004184813 = weight(_text_:in in 5234) [ClassicSimilarity], result of:
          0.004184813 = score(doc=5234,freq=2.0), product of:
            0.069613084 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.051176514 = queryNorm
            0.060115322 = fieldWeight in 5234, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.03125 = fieldNorm(doc=5234)
        0.013867423 = product of:
          0.027734846 = sum of:
            0.027734846 = weight(_text_:22 in 5234) [ClassicSimilarity], result of:
              0.027734846 = score(doc=5234,freq=2.0), product of:
                0.17921144 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051176514 = queryNorm
                0.15476047 = fieldWeight in 5234, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=5234)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    1983 bewegte ein einziges Thema die gesamte Bundesrepublik: die geplante Volkszählung. Jeder Haushalt in Westdeutschland sollte Fragebögen mit 36 Fragen zur Wohnsituation, den im Haushalt lebenden Personen und über ihre Einkommensverhältnisse ausfüllen. Es regte sich massiver Widerstand, hunderte Bürgerinitiativen formierten sich im ganzen Land gegen die Befragung. Man wollte nicht "erfasst" werden, die Privatsphäre war heilig. Es bestand die (berechtigte) Sorge, dass die Antworten auf den eigentlich anonymisierten Fragebögen Rückschlüsse auf die Identität der Befragten zulassen. Das Bundesverfassungsgericht gab den Klägern gegen den Zensus Recht: Die geplante Volkszählung verstieß gegen den Datenschutz und damit auch gegen das Grundgesetz. Sie wurde gestoppt. Nur eine Generation später geben wir sorglos jedes Mal beim Einkaufen die Bonuskarte der Supermarktkette heraus, um ein paar Punkte für ein Geschenk oder Rabatte beim nächsten Einkauf zu sammeln. Und dabei wissen wir sehr wohl, dass der Supermarkt damit unser Konsumverhalten bis ins letzte Detail erfährt. Was wir nicht wissen, ist, wer noch Zugang zu diesen Daten erhält. Deren Käufer bekommen nicht nur Zugriff auf unsere Einkäufe, sondern können über sie auch unsere Gewohnheiten, persönlichen Vorlieben und Einkommen ermitteln. Genauso unbeschwert surfen wir im Internet, googeln und shoppen, mailen und chatten. Google, Facebook und Microsoft schauen bei all dem nicht nur zu, sondern speichern auf alle Zeiten alles, was wir von uns geben, was wir einkaufen, was wir suchen, und verwenden es für ihre eigenen Zwecke. Sie durchstöbern unsere E-Mails, kennen unser persönliches Zeitmanagement, verfolgen unseren momentanen Standort, wissen um unsere politischen, religiösen und sexuellen Präferenzen (wer kennt ihn nicht, den Button "an Männern interessiert" oder "an Frauen interessiert"?), unsere engsten Freunde, mit denen wir online verbunden sind, unseren Beziehungsstatus, welche Schule wir besuchen oder besucht haben und vieles mehr.
    Date
    22. 1.2018 11:33:49
  19. Bath, P.A.: Data mining in health and medical information (2003) 0.01
    0.0068337712 = product of:
      0.020501314 = sum of:
        0.020501314 = weight(_text_:in in 4263) [ClassicSimilarity], result of:
          0.020501314 = score(doc=4263,freq=12.0), product of:
            0.069613084 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.051176514 = queryNorm
            0.29450375 = fieldWeight in 4263, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0625 = fieldNorm(doc=4263)
      0.33333334 = coord(1/3)
    
    Abstract
    Data mining (DM) is part of a process by which information can be extracted from data or databases and used to inform decision making in a variety of contexts (Benoit, 2002; Michalski, Bratka & Kubat, 1997). DM includes a range of tools and methods for extractiog information; their use in the commercial sector for knowledge extraction and discovery has been one of the main driving forces in their development (Adriaans & Zantinge, 1996; Benoit, 2002). DM has been developed and applied in numerous areas. This review describes its use in analyzing health and medical information.
  20. Maaten, L. van den: Learning a parametric embedding by preserving local structure (2009) 0.01
    0.0064586527 = product of:
      0.019375958 = sum of:
        0.019375958 = weight(_text_:in in 3883) [ClassicSimilarity], result of:
          0.019375958 = score(doc=3883,freq=14.0), product of:
            0.069613084 = queryWeight, product of:
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.051176514 = queryNorm
            0.27833787 = fieldWeight in 3883, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.3602545 = idf(docFreq=30841, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3883)
      0.33333334 = coord(1/3)
    
    Abstract
    The paper presents a new unsupervised dimensionality reduction technique, called parametric t-SNE, that learns a parametric mapping between the high-dimensional data space and the low-dimensional latent space. Parametric t-SNE learns the parametric mapping in such a way that the local structure of the data is preserved as well as possible in the latent space. We evaluate the performance of parametric t-SNE in experiments on three datasets, in which we compare it to the performance of two other unsupervised parametric dimensionality reduction techniques. The results of experiments illustrate the strong performance of parametric t-SNE, in particular, in learning settings in which the dimensionality of the latent space is relatively low.

Years

Languages

  • e 122
  • d 33

Types

  • a 126
  • m 20
  • el 16
  • s 15
  • x 2
  • p 1
  • More… Less…