Search (19 results, page 1 of 1)

  • × author_ss:"Järvelin, K."
  1. Vakkari, P.; Järvelin, K.; Chang, Y.-W.: ¬The association of disciplinary background with the evolution of topics and methods in Library and Information Science research 1995-2015 (2023) 0.04
    0.038064104 = product of:
      0.07612821 = sum of:
        0.07612821 = sum of:
          0.040714126 = weight(_text_:research in 998) [ClassicSimilarity], result of:
            0.040714126 = score(doc=998,freq=6.0), product of:
              0.1491455 = queryWeight, product of:
                2.8529835 = idf(docFreq=6931, maxDocs=44218)
                0.05227703 = queryNorm
              0.2729826 = fieldWeight in 998, product of:
                2.4494898 = tf(freq=6.0), with freq of:
                  6.0 = termFreq=6.0
                2.8529835 = idf(docFreq=6931, maxDocs=44218)
                0.0390625 = fieldNorm(doc=998)
          0.03541408 = weight(_text_:22 in 998) [ClassicSimilarity], result of:
            0.03541408 = score(doc=998,freq=2.0), product of:
              0.18306525 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.05227703 = queryNorm
              0.19345059 = fieldWeight in 998, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=998)
      0.5 = coord(1/2)
    
    Abstract
    The paper reports a longitudinal analysis of the topical and methodological development of Library and Information Science (LIS). Its focus is on the effects of researchers' disciplines on these developments. The study extends an earlier cross-sectional study (Vakkari et al., Journal of the Association for Information Science and Technology, 2022a, 73, 1706-1722) by a coordinated dataset representing a content analysis of articles published in 31 scholarly LIS journals in 1995, 2005, and 2015. It is novel in its coverage of authors' disciplines, topical and methodological aspects in a coordinated dataset spanning two decades thus allowing trend analysis. The findings include a shrinking trend in the share of LIS from 67 to 36% while Computer Science, and Business and Economics increase their share from 9 and 6% to 21 and 16%, respectively. The earlier cross-sectional study (Vakkari et al., Journal of the Association for Information Science and Technology, 2022a, 73, 1706-1722) for the year 2015 identified three topical clusters of LIS research, focusing on topical subfields, methodologies, and contributing disciplines. Correspondence analysis confirms their existence already in 1995 and traces their development through the decades. The contributing disciplines infuse their concepts, research questions, and approaches to LIS and may also subsume vital parts of LIS in their own structures of knowledge production.
    Date
    22. 6.2023 18:15:06
  2. Järvelin, K.; Kristensen, J.; Niemi, T.; Sormunen, E.; Keskustalo, H.: ¬A deductive data model for query expansion (1996) 0.04
    0.035352234 = product of:
      0.07070447 = sum of:
        0.07070447 = sum of:
          0.028207572 = weight(_text_:research in 2230) [ClassicSimilarity], result of:
            0.028207572 = score(doc=2230,freq=2.0), product of:
              0.1491455 = queryWeight, product of:
                2.8529835 = idf(docFreq=6931, maxDocs=44218)
                0.05227703 = queryNorm
              0.18912788 = fieldWeight in 2230, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                2.8529835 = idf(docFreq=6931, maxDocs=44218)
                0.046875 = fieldNorm(doc=2230)
          0.042496894 = weight(_text_:22 in 2230) [ClassicSimilarity], result of:
            0.042496894 = score(doc=2230,freq=2.0), product of:
              0.18306525 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.05227703 = queryNorm
              0.23214069 = fieldWeight in 2230, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=2230)
      0.5 = coord(1/2)
    
    Source
    Proceedings of the 19th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (ACM SIGIR '96), Zürich, Switzerland, August 18-22, 1996. Eds.: H.P. Frei et al
  3. Tuomaala, O.; Järvelin, K.; Vakkari, P.: Evolution of library and information science, 1965-2005 : content analysis of journal articles (2014) 0.02
    0.019490402 = product of:
      0.038980804 = sum of:
        0.038980804 = product of:
          0.07796161 = sum of:
            0.07796161 = weight(_text_:research in 1309) [ClassicSimilarity], result of:
              0.07796161 = score(doc=1309,freq=22.0), product of:
                0.1491455 = queryWeight, product of:
                  2.8529835 = idf(docFreq=6931, maxDocs=44218)
                  0.05227703 = queryNorm
                0.5227218 = fieldWeight in 1309, product of:
                  4.690416 = tf(freq=22.0), with freq of:
                    22.0 = termFreq=22.0
                  2.8529835 = idf(docFreq=6931, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1309)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This article first analyzes library and information science (LIS) research articles published in core LIS journals in 2005. It also examines the development of LIS from 1965 to 2005 in light of comparable data sets for 1965, 1985, and 2005. In both cases, the authors report (a) how the research articles are distributed by topic and (b) what approaches, research strategies, and methods were applied in the articles. In 2005, the largest research areas in LIS by this measure were information storage and retrieval, scientific communication, library and information-service activities, and information seeking. The same research areas constituted the quantitative core of LIS in the previous years since 1965. Information retrieval has been the most popular area of research over the years. The proportion of research on library and information-service activities decreased after 1985, but the popularity of information seeking and of scientific communication grew during the period studied. The viewpoint of research has shifted from library and information organizations to end users and development of systems for the latter. The proportion of empirical research strategies was high and rose over time, with the survey method being the single most important method. However, attention to evaluation and experiments increased considerably after 1985. Conceptual research strategies and system analysis, description, and design were quite popular, but declining. The most significant changes from 1965 to 2005 are the decreasing interest in library and information-service activities and the growth of research into information seeking and scientific communication.
  4. Pirkola, A.; Hedlund, T.; Keskustalo, H.; Järvelin, K.: Dictionary-based cross-language information retrieval : problems, methods, and research findings (2001) 0.02
    0.016454415 = product of:
      0.03290883 = sum of:
        0.03290883 = product of:
          0.06581766 = sum of:
            0.06581766 = weight(_text_:research in 3908) [ClassicSimilarity], result of:
              0.06581766 = score(doc=3908,freq=2.0), product of:
                0.1491455 = queryWeight, product of:
                  2.8529835 = idf(docFreq=6931, maxDocs=44218)
                  0.05227703 = queryNorm
                0.44129837 = fieldWeight in 3908, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.8529835 = idf(docFreq=6931, maxDocs=44218)
                  0.109375 = fieldNorm(doc=3908)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
  5. Järvelin, K.; Vakkari, P.: LIS research across 50 years: content analysis of journal articles : offering an information-centric conception of memes (2022) 0.02
    0.015547963 = product of:
      0.031095926 = sum of:
        0.031095926 = product of:
          0.06219185 = sum of:
            0.06219185 = weight(_text_:research in 949) [ClassicSimilarity], result of:
              0.06219185 = score(doc=949,freq=14.0), product of:
                0.1491455 = queryWeight, product of:
                  2.8529835 = idf(docFreq=6931, maxDocs=44218)
                  0.05227703 = queryNorm
                0.41698778 = fieldWeight in 949, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  2.8529835 = idf(docFreq=6931, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=949)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Purpose This paper analyses the research in Library and Information Science (LIS) and reports on (1) the status of LIS research in 2015 and (2) on the evolution of LIS research longitudinally from 1965 to 2015. Design/methodology/approach The study employs a quantitative intellectual content analysis of articles published in 30+ scholarly LIS journals, following the design by Tuomaala et al. (2014). In the content analysis, we classify articles along eight dimensions covering topical content and methodology. Findings The topical findings indicate that the earlier strong LIS emphasis on L&I services has declined notably, while scientific and professional communication has become the most popular topic. Information storage and retrieval has given up its earlier strong position towards the end of the years analyzed. Individuals are increasingly the units of observation. End-user's and developer's viewpoints have strengthened at the cost of intermediaries' viewpoint. LIS research is methodologically increasingly scattered since survey, scientometric methods, experiment, case studies and qualitative studies have all gained in popularity. Consequently, LIS may have become more versatile in the analysis of its research objects during the years analyzed. Originality/value Among quantitative intellectual content analyses of LIS research, the study is unique in its scope: length of analysis period (50 years), width (8 dimensions covering topical content and methodology) and depth (the annual batch of 30+ scholarly journals).
  6. Vakkari, P.; Chang, Y.-W.; Järvelin, K.: Disciplinary contributions to research topics and methodology in Library and Information Science : leading to fragmentation? (2022) 0.01
    0.014394616 = product of:
      0.028789232 = sum of:
        0.028789232 = product of:
          0.057578463 = sum of:
            0.057578463 = weight(_text_:research in 767) [ClassicSimilarity], result of:
              0.057578463 = score(doc=767,freq=12.0), product of:
                0.1491455 = queryWeight, product of:
                  2.8529835 = idf(docFreq=6931, maxDocs=44218)
                  0.05227703 = queryNorm
                0.38605565 = fieldWeight in 767, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  2.8529835 = idf(docFreq=6931, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=767)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The study analyses contributions to Library and Information Science (LIS) by researchers representing various disciplines. How are such contributions associated with the choice of research topics and methodology? The study employs a quantitative content analysis of articles published in 31 scholarly LIS journals in 2015. Each article is seen as a contribution to LIS by the authors' disciplines, which are inferred from their affiliations. The unit of analysis is the article-discipline pair. Of the contribution instances, the share of LIS is one third. Computer Science contributes one fifth and Business and Economics one sixth. The latter disciplines dominate the contributions in information retrieval, information seeking, and scientific communication indicating strong influences in LIS. Correspondence analysis reveals three clusters of research, one focusing on traditional LIS with contributions from LIS and Humanities and survey-type research; another on information retrieval with contributions from Computer Science and experimental research; and the third on scientific communication with contributions from Natural Sciences and Medicine and citation analytic research. The strong differentiation of scholarly contributions in LIS hints to the fragmentation of LIS as a discipline.
  7. Järvelin, K.; Persson, O.: ¬The DCI-index : discounted cumulated impact-based research evaluation (2008) 0.01
    0.013297176 = product of:
      0.026594352 = sum of:
        0.026594352 = product of:
          0.053188704 = sum of:
            0.053188704 = weight(_text_:research in 2332) [ClassicSimilarity], result of:
              0.053188704 = score(doc=2332,freq=4.0), product of:
                0.1491455 = queryWeight, product of:
                  2.8529835 = idf(docFreq=6931, maxDocs=44218)
                  0.05227703 = queryNorm
                0.35662293 = fieldWeight in 2332, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  2.8529835 = idf(docFreq=6931, maxDocs=44218)
                  0.0625 = fieldNorm(doc=2332)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The article by K. Järvelin & O. Persson published in JASIST 59(9), The DCI-Index: Discounted Cumulated Impact-Based Research Evaluation, (pp. 1433-1440) contains an unfortunate error in one of its formulas, Equation 3. The present paper gives the correction and an example of impact analysis based on the corrected formula.
  8. Järvelin, K.; Persson, O.: ¬The DCI index : discounted cumulated impact-based research evaluation (2008) 0.01
    0.013140426 = product of:
      0.026280852 = sum of:
        0.026280852 = product of:
          0.052561704 = sum of:
            0.052561704 = weight(_text_:research in 2694) [ClassicSimilarity], result of:
              0.052561704 = score(doc=2694,freq=10.0), product of:
                0.1491455 = queryWeight, product of:
                  2.8529835 = idf(docFreq=6931, maxDocs=44218)
                  0.05227703 = queryNorm
                0.352419 = fieldWeight in 2694, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  2.8529835 = idf(docFreq=6931, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2694)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Research evaluation is increasingly popular and important among research funding bodies and science policy makers. Various indicators have been proposed to evaluate the standing of individual scientists, institutions, journals, or countries. A simple and popular one among the indicators is the h-index, the Hirsch index (Hirsch 2005), which is an indicator for lifetime achievement of a scholar. Several other indicators have been proposed to complement or balance the h-index. However, these indicators have no conception of aging. The AR-index (Jin et al. 2007) incorporates aging but divides the received citation counts by the raw age of the publication. Consequently, the decay of a publication is very steep and insensitive to disciplinary differences. In addition, we believe that a publication becomes outdated only when it is no longer cited, not because of its age. Finally, all indicators treat citations as equally material when one might reasonably think that a citation from a heavily cited publication should weigh more than a citation froma non-cited or little-cited publication.We propose a new indicator, the Discounted Cumulated Impact (DCI) index, which devalues old citations in a smooth way. It rewards an author for receiving new citations even if the publication is old. Further, it allows weighting of the citations by the citation weight of the citing publication. DCI can be used to calculate research performance on the basis of the h-core of a scholar or any other publication data.
    Content
    Erratum in: Järvelin, K., O. Persson: The DCI-index: discounted cumulated impact-based research evaluation. Erratum re. In: Journal of the American Society for Information Science and Technology. 59(2008) no.14, S.2350-2352.
  9. Vakkari, P.; Järvelin, K.: Explanation in information seeking and retrieval (2005) 0.01
    0.011515692 = product of:
      0.023031384 = sum of:
        0.023031384 = product of:
          0.046062768 = sum of:
            0.046062768 = weight(_text_:research in 643) [ClassicSimilarity], result of:
              0.046062768 = score(doc=643,freq=12.0), product of:
                0.1491455 = queryWeight, product of:
                  2.8529835 = idf(docFreq=6931, maxDocs=44218)
                  0.05227703 = queryNorm
                0.3088445 = fieldWeight in 643, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  2.8529835 = idf(docFreq=6931, maxDocs=44218)
                  0.03125 = fieldNorm(doc=643)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Information Retrieval (IR) is a research area both within Computer Science and Information Science. It has by and large two communities: a Computer Science oriented experimental approach and a user-oriented Information Science approach with a Social Science background. The communities hold a critical stance towards each other (e.g., Ingwersen, 1996), the latter suspecting the realism of the former, and the former suspecting the usefulness of the latter. Within Information Science the study of information seeking (IS) also has a Social Science background. There is a lot of research in each of these particular areas of information seeking and retrieval (IS&R). However, the three communities do not really communicate with each other. Why is this, and could the relationships be otherwise? Do the communities in fact belong together? Or perhaps each community is better off forgetting about the existence of the other two? We feel that the relationships between the research areas have not been properly analyzed. One way to analyze the relationships is to examine what each research area is trying to find out: which phenomena are being explained and how. We believe that IS&R research would benefit from being analytic about its frameworks, models and theories, not just at the level of meta-theories, but also much more concretely at the level of study designs. Over the years there have been calls for more context in the study of IS&R. Work tasks as well as cultural activities/interests have been proposed as the proper context for information access. For example, Wersig (1973) conceptualized information needs from the tasks perspective. He argued that in order to learn about information needs and seeking, one needs to take into account the whole active professional role of the individuals being investigated. Byström and Järvelin (1995) analysed IS processes in the light of tasks of varying complexity. Ingwersen (1996) discussed the role of tasks and their descriptions and problematic situations from a cognitive perspective on IR. Most recently, Vakkari (2003) reviewed task-based IR and Järvelin and Ingwersen (2004) proposed the extension of IS&R research toward the task context. Therefore there is much support to the task context, but how should it be applied in IS&R?
  10. Ingwersen, P.; Järvelin, K.: ¬The turn : integration of information seeking and retrieval in context (2005) 0.01
    0.011379943 = product of:
      0.022759886 = sum of:
        0.022759886 = product of:
          0.045519773 = sum of:
            0.045519773 = weight(_text_:research in 1323) [ClassicSimilarity], result of:
              0.045519773 = score(doc=1323,freq=30.0), product of:
                0.1491455 = queryWeight, product of:
                  2.8529835 = idf(docFreq=6931, maxDocs=44218)
                  0.05227703 = queryNorm
                0.3052038 = fieldWeight in 1323, product of:
                  5.477226 = tf(freq=30.0), with freq of:
                    30.0 = termFreq=30.0
                  2.8529835 = idf(docFreq=6931, maxDocs=44218)
                  0.01953125 = fieldNorm(doc=1323)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The Turn analyzes the research of information seeking and retrieval (IS&R) and proposes a new direction of integrating research in these two areas: the fields should turn off their separate and narrow paths and construct a new avenue of research. An essential direction for this avenue is context as given in the subtitle Integration of Information Seeking and Retrieval in Context. Other essential themes in the book include: IS&R research models, frameworks and theories; search and works tasks and situations in context; interaction between humans and machines; information acquisition, relevance and information use; research design and methodology based on a structured set of explicit variables - all set into the holistic cognitive approach. The present monograph invites the reader into a construction project - there is much research to do for a contextual understanding of IS&R. The Turn represents a wide-ranging perspective of IS&R by providing a novel unique research framework, covering both individual and social aspects of information behavior, including the generation, searching, retrieval and use of information. Regarding traditional laboratory information retrieval research, the monograph proposes the extension of research toward actors, search and work tasks, IR interaction and utility of information. Regarding traditional information seeking research, it proposes the extension toward information access technology and work task contexts. The Turn is the first synthesis of research in the broad area of IS&R ranging from systems oriented laboratory IR research to social science oriented information seeking studies. TOC:Introduction.- The Cognitive Framework for Information.- The Development of Information Seeking Research.- Systems-Oriented Information Retrieval.- Cognitive and User-Oriented Information Retrieval.- The Integrated IS&R Research Framework.- Implications of the Cognitive Framework for IS&R.- Towards a Research Program.- Conclusion.- Definitions.- References.- Index.
  11. Saastamoinen, M.; Järvelin, K.: Search task features in work tasks of varying types and complexity (2017) 0.01
    0.010624223 = product of:
      0.021248447 = sum of:
        0.021248447 = product of:
          0.042496894 = sum of:
            0.042496894 = weight(_text_:22 in 3589) [ClassicSimilarity], result of:
              0.042496894 = score(doc=3589,freq=2.0), product of:
                0.18306525 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05227703 = queryNorm
                0.23214069 = fieldWeight in 3589, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3589)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Information searching in practice seldom is an end in itself. In work, work task (WT) performance forms the context, which information searching should serve. Therefore, information retrieval (IR) systems development/evaluation should take the WT context into account. The present paper analyzes how WT features: task complexity and task types, affect information searching in authentic work: the types of information needs, search processes, and search media. We collected data on 22 information professionals in authentic work situations in three organization types: city administration, universities, and companies. The data comprise 286 WTs and 420 search tasks (STs). The data include transaction logs, video recordings, daily questionnaires, interviews. and observation. The data were analyzed quantitatively. Even if the participants used a range of search media, most STs were simple throughout the data, and up to 42% of WTs did not include searching. WT's effects on STs are not straightforward: different WT types react differently to WT complexity. Due to the simplicity of authentic searching, the WT/ST types in interactive IR experiments should be reconsidered.
  12. Ahlgren, P.; Järvelin, K.: Measuring impact of twelve information scientists using the DCI index (2010) 0.01
    0.009972882 = product of:
      0.019945765 = sum of:
        0.019945765 = product of:
          0.03989153 = sum of:
            0.03989153 = weight(_text_:research in 3593) [ClassicSimilarity], result of:
              0.03989153 = score(doc=3593,freq=4.0), product of:
                0.1491455 = queryWeight, product of:
                  2.8529835 = idf(docFreq=6931, maxDocs=44218)
                  0.05227703 = queryNorm
                0.2674672 = fieldWeight in 3593, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  2.8529835 = idf(docFreq=6931, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3593)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The Discounted Cumulated Impact (DCI) index has recently been proposed for research evaluation. In the present work an earlier dataset by Cronin and Meho (2007) is reanalyzed, with the aim of exemplifying the salient features of the DCI index. We apply the index on, and compare our results to, the outcomes of the Cronin-Meho (2007) study. Both authors and their top publications are used as units of analysis, which suggests that, by adjusting the parameters of evaluation according to the needs of research evaluation, the DCI index delivers data on an author's (or publication's) lifetime impact or current impact at the time of evaluation on an author's (or publication's) capability of inviting citations from highly cited later publications as an indication of impact, and on the relative impact across a set of authors (or publications) over their lifetime or currently.
  13. Näppilä, T.; Järvelin, K.; Niemi, T.: ¬A tool for data cube construction from structurally heterogeneous XML documents (2008) 0.01
    0.00885352 = product of:
      0.01770704 = sum of:
        0.01770704 = product of:
          0.03541408 = sum of:
            0.03541408 = weight(_text_:22 in 1369) [ClassicSimilarity], result of:
              0.03541408 = score(doc=1369,freq=2.0), product of:
                0.18306525 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05227703 = queryNorm
                0.19345059 = fieldWeight in 1369, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1369)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    9. 2.2008 17:22:42
  14. Järvelin, K.: ¬An analysis of two approaches in information retrieval : from frameworks to study designs (2007) 0.01
    0.007051893 = product of:
      0.014103786 = sum of:
        0.014103786 = product of:
          0.028207572 = sum of:
            0.028207572 = weight(_text_:research in 326) [ClassicSimilarity], result of:
              0.028207572 = score(doc=326,freq=2.0), product of:
                0.1491455 = queryWeight, product of:
                  2.8529835 = idf(docFreq=6931, maxDocs=44218)
                  0.05227703 = queryNorm
                0.18912788 = fieldWeight in 326, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.8529835 = idf(docFreq=6931, maxDocs=44218)
                  0.046875 = fieldNorm(doc=326)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    There is a well-known gap between systems-oriented information retrieval (IR) and user-oriented IR, which cognitive IR seeks to bridge. It is therefore interesting to analyze approaches at the level of frameworks, models, and study designs. This article is an exercise in such an analysis, focusing on two significant approaches to IR: the lab IR approach and P. Ingwersen's (1996) cognitive IR approach. The article focuses on their research frameworks, models, hypotheses, laws and theories, study designs, and possible contributions. The two approaches are quite different, which becomes apparent in the use of Independent, controlled, and dependent variables in the study designs of each approach. Thus, each approach is capable of contributing very differently to understanding and developing information access. The article also discusses integrating the approaches at the study-design level.
  15. Hansen, P.; Järvelin, K.: Collaborative Information Retrieval in an information-intensive domain (2005) 0.01
    0.007051893 = product of:
      0.014103786 = sum of:
        0.014103786 = product of:
          0.028207572 = sum of:
            0.028207572 = weight(_text_:research in 1040) [ClassicSimilarity], result of:
              0.028207572 = score(doc=1040,freq=2.0), product of:
                0.1491455 = queryWeight, product of:
                  2.8529835 = idf(docFreq=6931, maxDocs=44218)
                  0.05227703 = queryNorm
                0.18912788 = fieldWeight in 1040, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.8529835 = idf(docFreq=6931, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1040)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    In this article we investigate the expressions of collaborative activities within information seeking and retrieval processes (IS&R). Generally, information seeking and retrieval is regarded as an individual and isolated process in IR research. We assume that an IS&R situation is not merely an individual effort, but inherently involves various collaborative activities. We present empirical results from a real-life and information-intensive setting within the patent domain, showing that the patent task performance process involves highly collaborative aspects throughout the stages of the information seeking and retrieval process. Furthermore, we show that these activities may be categorised and related to different stages in an information seeking and retrieval process. Therefore, the assumption that information retrieval performance is purely individual needs to be reconsidered. Finally, we also propose a refined IR framework involving collaborative aspects.
  16. Pharo, N.; Järvelin, K.: ¬The SST method : a tool for analysing Web information search processes (2004) 0.01
    0.005876578 = product of:
      0.011753156 = sum of:
        0.011753156 = product of:
          0.023506312 = sum of:
            0.023506312 = weight(_text_:research in 2533) [ClassicSimilarity], result of:
              0.023506312 = score(doc=2533,freq=2.0), product of:
                0.1491455 = queryWeight, product of:
                  2.8529835 = idf(docFreq=6931, maxDocs=44218)
                  0.05227703 = queryNorm
                0.15760657 = fieldWeight in 2533, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.8529835 = idf(docFreq=6931, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2533)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    The article presents the search situation transition (SST) method for analysing Web information search (WIS) processes. The idea of the method is to analyse searching behaviour, the process, in detail and connect both the searchers' actions (captured in a log) and his/her intentions and goals, which log analysis never captures. On the other hand, ex post factor surveys, while popular in WIS research, cannot capture the actual search processes. The method is presented through three facets: its domain, its procedure, and its justification. The method's domain is presented in the form of a conceptual framework which maps five central categories that influence WIS processes; the searcher, the social/organisational environment, the work task, the search task, and the process itself. The method's procedure includes various techniques for data collection and analysis. The article presents examples from real WIS processes and shows how the method can be used to identify the interplay of the categories during the processes. It is shown that the method presents a new approach in information seeking and retrieval by focusing on the search process as a phenomenon and by explicating how different information seeking factors directly affect the search process.
  17. Talvensaari, T.; Laurikkala, J.; Järvelin, K.; Juhola, M.: ¬A study on automatic creation of a comparable document collection in cross-language information retrieval (2006) 0.01
    0.005876578 = product of:
      0.011753156 = sum of:
        0.011753156 = product of:
          0.023506312 = sum of:
            0.023506312 = weight(_text_:research in 5601) [ClassicSimilarity], result of:
              0.023506312 = score(doc=5601,freq=2.0), product of:
                0.1491455 = queryWeight, product of:
                  2.8529835 = idf(docFreq=6931, maxDocs=44218)
                  0.05227703 = queryNorm
                0.15760657 = fieldWeight in 5601, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.8529835 = idf(docFreq=6931, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5601)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Purpose - To present a method for creating a comparable document collection from two document collections in different languages. Design/methodology/approach - The best query keys were extracted from a Finnish source collection (articles of the newspaper Aamulehti) with the relative average term frequency formula. The keys were translated into English with a dictionary-based query translation program. The resulting lists of words were used as queries that were run against the target collection (Los Angeles Times articles) with the nearest neighbor method. The documents were aligned with unrestricted and date-restricted alignment schemes, which were also combined. Findings - The combined alignment scheme was found the best, when the relatedness of the document pairs was assessed with a five-degree relevance scale. Of the 400 document pairs, roughly 40 percent were highly or fairly related and 75 percent included at least lexical similarity. Research limitations/implications - The number of alignment pairs was small due to the short common time period of the two collections, and their geographical (and thus, topical) remoteness. In future, our aim is to build larger comparable corpora in various languages and use them as source of translation knowledge for the purposes of cross-language information retrieval (CLIR). Practical implications - Readily available parallel corpora are scarce. With this method, two unrelated document collections can relatively easily be aligned to create a CLIR resource. Originality/value - The method can be applied to weakly linked collections and morphologically complex languages, such as Finnish.
  18. Saarikoski, J.; Laurikkala, J.; Järvelin, K.; Juhola, M.: ¬A study of the use of self-organising maps in information retrieval (2009) 0.01
    0.005876578 = product of:
      0.011753156 = sum of:
        0.011753156 = product of:
          0.023506312 = sum of:
            0.023506312 = weight(_text_:research in 2836) [ClassicSimilarity], result of:
              0.023506312 = score(doc=2836,freq=2.0), product of:
                0.1491455 = queryWeight, product of:
                  2.8529835 = idf(docFreq=6931, maxDocs=44218)
                  0.05227703 = queryNorm
                0.15760657 = fieldWeight in 2836, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.8529835 = idf(docFreq=6931, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2836)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Purpose - The aim of this paper is to explore the possibility of retrieving information with Kohonen self-organising maps, which are known to be effective to group objects according to their similarity or dissimilarity. Design/methodology/approach - After conventional preprocessing, such as transforming into vector space, documents from a German document collection were trained for a neural network of Kohonen self-organising map type. Such an unsupervised network forms a document map from which relevant objects can be found according to queries. Findings - Self-organising maps ordered documents to groups from which it was possible to find relevant targets. Research limitations/implications - The number of documents used was moderate due to the limited number of documents associated to test topics. The training of self-organising maps entails rather long running times, which is their practical limitation. In future, the aim will be to build larger networks by compressing document matrices, and to develop document searching in them. Practical implications - With self-organising maps the distribution of documents can be visualised and relevant documents found in document collections of limited size. Originality/value - The paper reports on an approach that can be especially used to group documents and also for information search. So far self-organising maps have rarely been studied for information retrieval. Instead, they have been applied to document grouping tasks.
  19. Kumpulainen, S.; Järvelin, K.: Barriers to task-based information access in molecular medicine (2012) 0.01
    0.005876578 = product of:
      0.011753156 = sum of:
        0.011753156 = product of:
          0.023506312 = sum of:
            0.023506312 = weight(_text_:research in 4965) [ClassicSimilarity], result of:
              0.023506312 = score(doc=4965,freq=2.0), product of:
                0.1491455 = queryWeight, product of:
                  2.8529835 = idf(docFreq=6931, maxDocs=44218)
                  0.05227703 = queryNorm
                0.15760657 = fieldWeight in 4965, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  2.8529835 = idf(docFreq=6931, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4965)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    We analyze barriers to task-based information access in molecular medicine, focusing on research tasks, which provide task performance sessions of varying complexity. Molecular medicine is a relevant domain because it offers thousands of digital resources as the information environment. Data were collected through shadowing of real work tasks. Thirty work task sessions were analyzed and barriers in these identified. The barriers were classified by their character (conceptual, syntactic, and technological) and by their context of appearance (work task, system integration, or system). Also, work task sessions were grouped into three complexity classes and the frequency of barriers of varying types across task complexity levels were analyzed. Our findings indicate that although most of the barriers are on system level, there is a quantum of barriers in integration and work task contexts. These barriers might be overcome through attention to the integrated use of multiple systems at least for the most frequent uses. This can be done by means of standardization and harmonization of the data and by taking the requirements of the work tasks into account in system design and development, because information access is seldom an end itself, but rather serves to reach the goals of work tasks.