Search (72 results, page 1 of 4)

  • × language_ss:"e"
  • × theme_ss:"Begriffstheorie"
  1. Storms, G.; VanMechelen, I.; DeBoeck, P.: Structural-analysis of the intension and extension of semantic concepts (1994) 0.02
    0.022135815 = product of:
      0.06640744 = sum of:
        0.06640744 = sum of:
          0.024856888 = weight(_text_:of in 2574) [ClassicSimilarity], result of:
            0.024856888 = score(doc=2574,freq=18.0), product of:
              0.06850986 = queryWeight, product of:
                1.5637573 = idf(docFreq=25162, maxDocs=44218)
                0.043811057 = queryNorm
              0.36282203 = fieldWeight in 2574, product of:
                4.2426405 = tf(freq=18.0), with freq of:
                  18.0 = termFreq=18.0
                1.5637573 = idf(docFreq=25162, maxDocs=44218)
                0.0546875 = fieldNorm(doc=2574)
          0.041550554 = weight(_text_:22 in 2574) [ClassicSimilarity], result of:
            0.041550554 = score(doc=2574,freq=2.0), product of:
              0.15341885 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.043811057 = queryNorm
              0.2708308 = fieldWeight in 2574, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0546875 = fieldNorm(doc=2574)
      0.33333334 = coord(1/3)
    
    Abstract
    A method (HICLAS, DeBoeck & Rosenberg, 1988) for studying the internal structure of semantic concepts is presented. The proposed method reveals the internal structure of the extension as well as the intesion of a concept, together with a correspondence relation that shows the mutual dependence of both structures. Its use is illustrated with the analysis of simple concepts (e.g. sports) and conjunctive concepts (e.g. birds that are also pets). The underlying structure that is revealed can be interpreted as a differentiation of the simple concepts studied and for conjunctive concepts the proposed method is able to extract non-inherited and emergent features (Hampton, 1988)
    Date
    22. 7.2000 19:17:40
    Source
    European journal of cognitive psychology. 6(1994) no.1, S.43-75
  2. Besler, G.; Szulc, J.: Gottlob Frege's theory of definition as useful tool for knowledge organization : definition of 'context' - case study (2014) 0.02
    0.019557543 = product of:
      0.05867263 = sum of:
        0.05867263 = sum of:
          0.028993664 = weight(_text_:of in 1440) [ClassicSimilarity], result of:
            0.028993664 = score(doc=1440,freq=48.0), product of:
              0.06850986 = queryWeight, product of:
                1.5637573 = idf(docFreq=25162, maxDocs=44218)
                0.043811057 = queryNorm
              0.42320424 = fieldWeight in 1440, product of:
                6.928203 = tf(freq=48.0), with freq of:
                  48.0 = termFreq=48.0
                1.5637573 = idf(docFreq=25162, maxDocs=44218)
                0.0390625 = fieldNorm(doc=1440)
          0.029678967 = weight(_text_:22 in 1440) [ClassicSimilarity], result of:
            0.029678967 = score(doc=1440,freq=2.0), product of:
              0.15341885 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.043811057 = queryNorm
              0.19345059 = fieldWeight in 1440, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=1440)
      0.33333334 = coord(1/3)
    
    Abstract
    The aim of this paper is to analyze the Gottlob Frege's (1848-1925) theory of definition as a tool for knowledge organization. The objective was achieved by discussing the theory of definition including: the aims of definition, kinds of definition, condition of correct definition, what is undefinable. Frege indicated the following aims of a defining: (1) to introduce a new word, which has had no precise meaning until then (2) to explain the meaning of a word; (3) to catch a thought. We would like to present three kinds of definitions used by Frege: a contextual definition, a stipulative definition and a piecemeal definition. In the history of theory of definition Frege was the first to have formulated the condition of a correct definition. According to Frege not everything can be defined, what is logically simple cannot have a proper definition Usability of Frege's theory of definition is referred in the case study. Definitions that serve as an example are definitions of 'context'. The term 'context' is used in different situations and meanings in the field of knowledge organization. The paper is rounded by a discussion of how Frege's theory of definition can be useful for knowledge organization. To present G. Frege's theory of definition in view of the need for knowledge organization we shall start with different ranges of knowledge organization.
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  3. Jouis, C.: Logic of relationships (2002) 0.02
    0.01871548 = product of:
      0.05614644 = sum of:
        0.05614644 = sum of:
          0.026467472 = weight(_text_:of in 1204) [ClassicSimilarity], result of:
            0.026467472 = score(doc=1204,freq=40.0), product of:
              0.06850986 = queryWeight, product of:
                1.5637573 = idf(docFreq=25162, maxDocs=44218)
                0.043811057 = queryNorm
              0.38633084 = fieldWeight in 1204, product of:
                6.3245554 = tf(freq=40.0), with freq of:
                  40.0 = termFreq=40.0
                1.5637573 = idf(docFreq=25162, maxDocs=44218)
                0.0390625 = fieldNorm(doc=1204)
          0.029678967 = weight(_text_:22 in 1204) [ClassicSimilarity], result of:
            0.029678967 = score(doc=1204,freq=2.0), product of:
              0.15341885 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.043811057 = queryNorm
              0.19345059 = fieldWeight in 1204, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=1204)
      0.33333334 = coord(1/3)
    
    Abstract
    A main goal of recent studies in semantics is to integrate into conceptual structures the models of representation used in linguistics, logic, and/or artificial intelligence. A fundamental problem resides in the need to structure knowledge and then to check the validity of constructed representations. We propose associating logical properties with relationships by introducing the relationships into a typed and functional system of specifcations. This makes it possible to compare conceptual representations against the relationships established between the concepts. The mandatory condition to validate such a conceptual representation is consistency. The semantic system proposed is based an a structured set of semantic primitives-types, relations, and properties-based an a global model of language processing, Applicative and Cognitive Grammar (ACG) (Desc16s, 1990), and an extension of this model to terminology (Jouis & Mustafa 1995, 1996, 1997). The ACG postulates three levels of representation of languages, including a cognitive level. At this level, the meanings of lexical predicates are represented by semantic cognitive schemes. From this perspective, we propose a set of semantic concepts, which defines an organized system of meanings. Relations are part of a specification network based an a general terminological scheure (i.e., a coherent system of meanings of relations). In such a system, a specific relation may be characterized as to its: (1) functional type (the semantic type of arguments of the relation); (2) algebraic properties (reflexivity, symmetry, transitivity, etc.); and (3) combinatorial relations with other entities in the same context (for instance, the part of the text where a concept is defined).
    Date
    1.12.2002 11:12:22
    Source
    The semantics of relationships: an interdisciplinary perspective. Eds: Green, R., C.A. Bean u. S.H. Myaeng
  4. Marradi, A.: ¬The concept of concept : concepts and terms (2012) 0.02
    0.01826274 = product of:
      0.054788217 = sum of:
        0.054788217 = sum of:
          0.02510925 = weight(_text_:of in 33) [ClassicSimilarity], result of:
            0.02510925 = score(doc=33,freq=36.0), product of:
              0.06850986 = queryWeight, product of:
                1.5637573 = idf(docFreq=25162, maxDocs=44218)
                0.043811057 = queryNorm
              0.36650562 = fieldWeight in 33, product of:
                6.0 = tf(freq=36.0), with freq of:
                  36.0 = termFreq=36.0
                1.5637573 = idf(docFreq=25162, maxDocs=44218)
                0.0390625 = fieldNorm(doc=33)
          0.029678967 = weight(_text_:22 in 33) [ClassicSimilarity], result of:
            0.029678967 = score(doc=33,freq=2.0), product of:
              0.15341885 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.043811057 = queryNorm
              0.19345059 = fieldWeight in 33, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=33)
      0.33333334 = coord(1/3)
    
    Abstract
    The concept of concept has seldom been examined in its entirety, and the term very seldom defined. The rigidity, or lack thereof, and the homogeneity, or lack thereof, of concepts, are only two of their characteristics that have been debated. These issues are reviewed in this paper, namely: 1) does a concept represent its referent(s), or is it a free creation of the mind?; 2) can a concept be analyzed in parts or elements?; 3) must a concept be general, i.e., refer to a category or a type, or can it refer to a single object, physical or mental?; 4) are concepts as clearly delimited as terms are? Are concepts voiceless terms?; and, 5) what do terms contribute to an individual's and a community's conceptual richness? As regards the relationship of concepts with their referents in the stage of formation, it seems reasonable to conclude that said relationship may be close in some concepts, less close in others, and lacking altogether in some cases. The set of elements of a concept, which varies from individual to individual and across time inside the same individual, is called the intension of a concept. The set of referents of a concept is called the extension of that concept. Most concepts don't have a clearly delimited extension: their referents form a fuzzy set. The aspects of a concept's intension form a scale of generality. A concept is not equal to the term that describes it; rather, many terms are joined to concepts. Language, therefore, renders a gamut of services to the development, consolidation, and communication of conceptual richness.
    Date
    22. 1.2012 13:11:25
    Series
    Forum: The philosophy of classification
  5. Olson, H.A.: How we construct subjects : a feminist analysis (2007) 0.02
    0.015472822 = product of:
      0.046418466 = sum of:
        0.046418466 = sum of:
          0.016739499 = weight(_text_:of in 5588) [ClassicSimilarity], result of:
            0.016739499 = score(doc=5588,freq=16.0), product of:
              0.06850986 = queryWeight, product of:
                1.5637573 = idf(docFreq=25162, maxDocs=44218)
                0.043811057 = queryNorm
              0.24433708 = fieldWeight in 5588, product of:
                4.0 = tf(freq=16.0), with freq of:
                  16.0 = termFreq=16.0
                1.5637573 = idf(docFreq=25162, maxDocs=44218)
                0.0390625 = fieldNorm(doc=5588)
          0.029678967 = weight(_text_:22 in 5588) [ClassicSimilarity], result of:
            0.029678967 = score(doc=5588,freq=2.0), product of:
              0.15341885 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.043811057 = queryNorm
              0.19345059 = fieldWeight in 5588, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=5588)
      0.33333334 = coord(1/3)
    
    Abstract
    To organize information, librarians create structures. These structures grow from a logic that goes back at least as far as Aristotle. It is the basis of classification as we practice it, and thesauri and subject headings have developed from it. Feminist critiques of logic suggest that logic is gendered in nature. This article will explore how these critiques play out in contemporary standards for the organization of information. Our widely used classification schemes embody principles such as hierarchical force that conform to traditional/Aristotelian logic. Our subject heading strings follow a linear path of subdivision. Our thesauri break down subjects into discrete concepts. In thesauri and subject heading lists we privilege hierarchical relationships, reflected in the syndetic structure of broader and narrower terms, over all other relationships. Are our classificatory and syndetic structures gendered? Are there other options? Carol Gilligan's In a Different Voice (1982), Women's Ways of Knowing (Belenky, Clinchy, Goldberger, & Tarule, 1986), and more recent related research suggest a different type of structure for women's knowledge grounded in "connected knowing." This article explores current and potential elements of connected knowing in subject access with a focus on the relationships, both paradigmatic and syntagmatic, between concepts.
    Date
    11.12.2019 19:00:22
  6. Kageura, K.: Terminological semantics : an examination of 'concept' and 'meaning' in the study of terms (1995) 0.01
    0.0054670977 = product of:
      0.016401293 = sum of:
        0.016401293 = product of:
          0.032802586 = sum of:
            0.032802586 = weight(_text_:of in 4561) [ClassicSimilarity], result of:
              0.032802586 = score(doc=4561,freq=24.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.47880095 = fieldWeight in 4561, product of:
                  4.8989797 = tf(freq=24.0), with freq of:
                    24.0 = termFreq=24.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4561)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    The importance of 'concept' in the study of terms is recognized by most researchers in the field of terminological research. However, the theoretical status of 'concept' in the study of terms has not been clarified so far. Against this background, the status of 'concept' in the study of terms is theoretically examined in comparison with the status of 'meaning' in the semantic study of general languages. Sketches a possible scheme by which 'concept' and 'meaning' are properly plyced in the theoretical study of terms
  7. Barite, M.G.: ¬The notion of "category" : its implications in subject analysis and in the construction and evaluation of indexing languages (2000) 0.00
    0.0047837105 = product of:
      0.014351131 = sum of:
        0.014351131 = product of:
          0.028702263 = sum of:
            0.028702263 = weight(_text_:of in 6036) [ClassicSimilarity], result of:
              0.028702263 = score(doc=6036,freq=24.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.41895083 = fieldWeight in 6036, product of:
                  4.8989797 = tf(freq=24.0), with freq of:
                    24.0 = termFreq=24.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=6036)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    The notion of category, from Aristotle and Kant to the present time, has been used as a basic intellectual tool for the analysis of the existence and changeableness of things. Ranganathan was the first to extrapolate the concept into the Theory of Classification, placing it as an essential axis for the logical organization of knowledge and the construction of indexing languages. This paper proposes a conceptual and methodological reexamination of the notion of category from a functional and instrumental perspective, and tries to clarify the essential characters of categories in that context, and their present implications regarding the construction and evaluation of indexing languages
  8. Eckes, T.: Knowledge structures and knowledge representation : psychological models of conceptual order (1990) 0.00
    0.0047346456 = product of:
      0.014203937 = sum of:
        0.014203937 = product of:
          0.028407874 = sum of:
            0.028407874 = weight(_text_:of in 861) [ClassicSimilarity], result of:
              0.028407874 = score(doc=861,freq=8.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.41465378 = fieldWeight in 861, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.09375 = fieldNorm(doc=861)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Source
    Conceptual and numerical analysis of data. Proc. of the 13th Conf. of the Gesellschaft für Klassifikation, Augsburg, 10.-12.4.1989. Ed.: O. Opitz
  9. Mervis, C.B.; Rosch, E.: Categorization of natural objects (1981) 0.00
    0.004463867 = product of:
      0.0133916 = sum of:
        0.0133916 = product of:
          0.0267832 = sum of:
            0.0267832 = weight(_text_:of in 2913) [ClassicSimilarity], result of:
              0.0267832 = score(doc=2913,freq=4.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.39093933 = fieldWeight in 2913, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.125 = fieldNorm(doc=2913)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Source
    Annual review of psychology. 32(1981), S.89-115
  10. Cruse, D.A.: Hyponymy and its varieties (2002) 0.00
    0.004463867 = product of:
      0.0133916 = sum of:
        0.0133916 = product of:
          0.0267832 = sum of:
            0.0267832 = weight(_text_:of in 1186) [ClassicSimilarity], result of:
              0.0267832 = score(doc=1186,freq=16.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.39093933 = fieldWeight in 1186, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1186)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    This chapter deals with the paradigmatic sense relation of hyponymy as manifested in nouns. A number of approaches to the definition of the relation are discussed, with particular attention being given to the problems of framing a prototype-theoretical characterization. An account is offered of a number of sub-varieties of hyponymy.
    Source
    The semantics of relationships: an interdisciplinary perspective. Eds: Green, R., C.A. Bean u. S.H. Myaeng
  11. Simoes, G.; Machado, L.; Gnoli, C.; Souza, R.: Can an ontologically-oriented KO do without concepts? (2020) 0.00
    0.004428855 = product of:
      0.013286565 = sum of:
        0.013286565 = product of:
          0.02657313 = sum of:
            0.02657313 = weight(_text_:of in 4964) [ClassicSimilarity], result of:
              0.02657313 = score(doc=4964,freq=28.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.38787308 = fieldWeight in 4964, product of:
                  5.2915025 = tf(freq=28.0), with freq of:
                    28.0 = termFreq=28.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4964)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    The ontological approach in the development of KOS is an attempt to overcome the limitations of the traditional epistemological approach. Questions raise about the representation and organization of ontologically-oriented KO units, such as BFO universals or ILC phenomena. The study aims to compare the ontological approaches of BFO and ILC using a hermeneutic approach. We found that the differences between the units of the two systems are primarily due to the formal level of abstraction of BFO and the different organizations, namely the grouping of phenomena into ILC classes that represent complex compounds of entities in the BFO approach. In both systems the use of concepts is considered instrumental, although in the ILC they constitute the intersubjective component of the phenomena whereas in BFO they serve to access the entities of reality but are not part of them.
    Source
    Knowledge Organization at the Interface. Proceedings of the Sixteenth International ISKO Conference, 2020 Aalborg, Denmark. Ed.: M. Lykke et al
  12. Hjoerland, B.: Concepts, paradigms and knowledge organization (2010) 0.00
    0.004267752 = product of:
      0.012803256 = sum of:
        0.012803256 = product of:
          0.025606511 = sum of:
            0.025606511 = weight(_text_:of in 3512) [ClassicSimilarity], result of:
              0.025606511 = score(doc=3512,freq=26.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.37376386 = fieldWeight in 3512, product of:
                  5.0990195 = tf(freq=26.0), with freq of:
                    26.0 = termFreq=26.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3512)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    It is argued that concepts are the building blocks of knowledge organizing systems (KOS). Objections to this view are considered and answers are provided. By implication the theory of concepts constitutes the foundation for knowledge organization (KO). The theory of concepts is understood as related to and derived from theories of knowledge. Different theories of knowledge such as empiricism, rationalism, historicism and pragmatism imply different theories of concepts. Such different epistemologies and their associated theories of concepts represent different methodological ideals which probably compete in all knowledge domains. Different approaches to KO are also in fundamental ways associated with different theories of concepts. The paper holds that the historicist and pragmatic theory of concept should be considered most valuable. By implication is it is necessary to know about competing theories in the fields being organized. A further implication of the pragmatic view is that the construction of a KOS must be understood as a way of participating in the discourses in the domain that is being represented.
    Source
    Paradigms and conceptual systems in knowledge organization: Proceedings of the Eleventh International ISKO Conference, 23-26 February 2010 Rome, Italy. Edited by Claudio Gnoli and Fulvio Mazzocchi
  13. Sowa, J.F.: Top-level ontological categories (1995) 0.00
    0.004175565 = product of:
      0.012526695 = sum of:
        0.012526695 = product of:
          0.02505339 = sum of:
            0.02505339 = weight(_text_:of in 4743) [ClassicSimilarity], result of:
              0.02505339 = score(doc=4743,freq=14.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.36569026 = fieldWeight in 4743, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4743)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Surveys ontological questions that arise in artificial intelligence, some of the answers that have been proposed by various philosophers, and an application of the philosophical analysis to the clarification of some current issues in artificial intelligence. Charles Sanders Peirce and Alfred North Whitehead have developed the most complete systems of categories. Their analyses suggest a basic structure of categories that can provide some guidelines for the design of artificial intelligence systems
    Source
    International journal of human-computer studies. 43(1995) nos.5/6, S.669-685
  14. Hudon, M.: Preparing terminological definitions for indexing and retrieval thesauri : a model (1996) 0.00
    0.004175565 = product of:
      0.012526695 = sum of:
        0.012526695 = product of:
          0.02505339 = sum of:
            0.02505339 = weight(_text_:of in 5193) [ClassicSimilarity], result of:
              0.02505339 = score(doc=5193,freq=14.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.36569026 = fieldWeight in 5193, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.0625 = fieldNorm(doc=5193)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    A model for standardizing existing definitions and/or writing new definitions for thesaurus descriptors has been developed, within the framework of a research project concerned with the usefulness of terminological definitions for indexers working with a thesaurus. The proposed model is an expansion of a model presented by Sager and L'Homme in 1994. Examples of its application in a thesaurus describing the field of Adult literacy programming and training are introduced
    Source
    Knowledge organization and change: Proceedings of the Fourth International ISKO Conference, 15-18 July 1996, Library of Congress, Washington, DC. Ed.: R. Green
  15. Guarino, N.; Welty, C.: Identity and subsumption (2002) 0.00
    0.004142815 = product of:
      0.012428444 = sum of:
        0.012428444 = product of:
          0.024856888 = sum of:
            0.024856888 = weight(_text_:of in 1195) [ClassicSimilarity], result of:
              0.024856888 = score(doc=1195,freq=18.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.36282203 = fieldWeight in 1195, product of:
                  4.2426405 = tf(freq=18.0), with freq of:
                    18.0 = termFreq=18.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1195)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    The intuitive simplicity of the so-called is-a (or subsumption) relationship has led to widespread ontological misuse. Where previous work has focused largely an the semantics of the relationship itself, we concentrate here an the ontological nature of its arguments, in Order to tell whether a single is-a link is ontologically well-founded. For this purpose, we introduce some techniques based an the philosophical notions of identity, unity, and essence, which have been adapted to the needs of taxonomy design. We demonstrate the effectiveness of these techniques by taking real examples of poorly structured taxonomies and revealing cases of invalid generalization.
    Source
    The semantics of relationships: an interdisciplinary perspective. Eds: Green, R., C.A. Bean u. S.H. Myaeng
  16. Hovy, E.: Comparing sets of semantic relations in ontologies (2002) 0.00
    0.0041003237 = product of:
      0.01230097 = sum of:
        0.01230097 = product of:
          0.02460194 = sum of:
            0.02460194 = weight(_text_:of in 2178) [ClassicSimilarity], result of:
              0.02460194 = score(doc=2178,freq=24.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.3591007 = fieldWeight in 2178, product of:
                  4.8989797 = tf(freq=24.0), with freq of:
                    24.0 = termFreq=24.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2178)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    A set of semantic relations is created every time a domain modeler wants to solve some complex problem computationally. These relations are usually organized into ontologies. But three is little standardization of ontologies today, and almost no discussion an ways of comparing relations, of determining a general approach to creating relations, or of modeling in general. This chapter outlines an approach to establishing a general methodology for comparing and justifying sets of relations (and ontologies in general). It first provides several dozen characteristics of ontologies, organized into three taxonomies of increasingly detailed features, by which many essential characteristics of ontologies can be described. These features enable one to compare ontologies at a general level, without studying every concept they contain. But sometimes it is necessary to make detailed comparisons of content. The chapter then illustrates one method for determining salient points for comparison, using algorithms that semi-automatically identify similarities and differences between ontologies.
    Source
    The semantics of relationships: an interdisciplinary perspective. Eds: Green, R., C.A. Bean u. S.H. Myaeng
  17. Garcia Marco, F.J.; Esteban Navarro, M.A.: On some contributions of the cognitive sciences and epistemology to a theory of classification (1993) 0.00
    0.003925761 = product of:
      0.011777283 = sum of:
        0.011777283 = product of:
          0.023554565 = sum of:
            0.023554565 = weight(_text_:of in 5876) [ClassicSimilarity], result of:
              0.023554565 = score(doc=5876,freq=22.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.34381276 = fieldWeight in 5876, product of:
                  4.690416 = tf(freq=22.0), with freq of:
                    22.0 = termFreq=22.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5876)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Intended is first of all a preliminary review of the implications that the new approaches to the theory of classification, mainly from cognitive psychology and epistemology may have for information work and research. As a secondary topic the scientific relations existing among information science, epistemology and the cognitive sciences are discussed. Classification is seen as a central activity in all daily and scientific activities, and, of course, of knowledge organization in information services. There is a mutual implication between classification and conceptualization, as the former moves in a natural way to the latter and the best result elaborated for classification is the concept. Research in concept theory is a need for a theory of classification. In this direction it is of outstanding importance to integrate the achievements of 'natural concept formation theory' (NCFT) as an alternative approach to conceptualization different from the traditional one of logicians and problem solving researchers. In conclusion both approaches are seen as being complementary: the NCFT approach being closer to the user and the logical one being more suitable for experts, including 'expert systems'
  18. Pribbenow, S.: Meronymic relationships : from classical mereology to complex part-whole relations (2002) 0.00
    0.003925761 = product of:
      0.011777283 = sum of:
        0.011777283 = product of:
          0.023554565 = sum of:
            0.023554565 = weight(_text_:of in 1202) [ClassicSimilarity], result of:
              0.023554565 = score(doc=1202,freq=22.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.34381276 = fieldWeight in 1202, product of:
                  4.690416 = tf(freq=22.0), with freq of:
                    22.0 = termFreq=22.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1202)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Meronymic or partonomic relations are ontological relations that are considered as fundamental as the ubiquitous, taxonomic subsumption relationship. While the latter is well-established and thoroughly investigated, there is still much work to be done in the field of meronymic relations. The aim of this chapter is to provide an overview an current research in characterizing, formalizing, classifying, and processing meronymic or partonomic relations (also called part-whole relations in artificial intelligence and application domains). The first part of the chapter investigates the role of knowledge about parts in human cognition, for example, visual perception and conceptual knowledge. The second part describes the classical approach provided by formal mereology and its extensions, which use one single transitive part-of relation, thus focusing an the notion of "part" and neglecting the notion of (something being a) "whole". This limitation leads to classifications of different part-whole relations, one of which is presented in the last part of the chapter.
    Source
    The semantics of relationships: an interdisciplinary perspective. Eds: Green, R., C.A. Bean u. S.H. Myaeng
  19. Nakamura, Y.: Subdivisions vs. conjunctions : a discussion on concept theory (1998) 0.00
    0.0039058835 = product of:
      0.01171765 = sum of:
        0.01171765 = product of:
          0.0234353 = sum of:
            0.0234353 = weight(_text_:of in 69) [ClassicSimilarity], result of:
              0.0234353 = score(doc=69,freq=16.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.34207192 = fieldWeight in 69, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=69)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    After studying the relations between two words(nouns) that constitute a compound term, the relation between corresponding concepts discussed. The impossibility of having a conjunction between two concepts that have no common feature causes inconvenience in the application of concept theory to information retrieval problems. Another kind of conjunctions, different from that by co-occurrence, is proposed and characteristics of this conjunction is studied. It revealed that one of new ones has the same character with colon combination in UDC. The possibility of having three kinds of conjunction including Wsterian concept conjunction is presented. It is also discussed that subdivisions can be replaced by new conjunctions
    Source
    Structures and relations in knowledge organization: Proceedings of the 5th International ISKO-Conference, Lille, 25.-29.8.1998. Ed.: W. Mustafa el Hadi et al
  20. Nedobity, W.: Concepts versus meaning as reflected by the works of E. Wüster and L. Wittgenstein (1989) 0.00
    0.003865822 = product of:
      0.011597466 = sum of:
        0.011597466 = product of:
          0.023194931 = sum of:
            0.023194931 = weight(_text_:of in 791) [ClassicSimilarity], result of:
              0.023194931 = score(doc=791,freq=12.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.33856338 = fieldWeight in 791, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.0625 = fieldNorm(doc=791)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Attempts at evaluating the different methods of investigating the meaning of a term in the writings of L. Wittgenstein and E. Wüster. It is shown that Wittgenstein's view of meaning is in contrast to conceptual thinking. The differences in approach and result are pointed out. Parallels of semantic methods to the ones in conceptology are shown

Types

  • a 63
  • m 5
  • s 5
  • el 1
  • n 1
  • x 1
  • More… Less…