Search (148 results, page 2 of 8)

  • × theme_ss:"Visualisierung"
  1. Enser, P.: ¬The evolution of visual information retrieval (2009) 0.00
    0.00436691 = product of:
      0.01310073 = sum of:
        0.01310073 = product of:
          0.02620146 = sum of:
            0.02620146 = weight(_text_:of in 3659) [ClassicSimilarity], result of:
              0.02620146 = score(doc=3659,freq=20.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.38244802 = fieldWeight in 3659, product of:
                  4.472136 = tf(freq=20.0), with freq of:
                    20.0 = termFreq=20.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3659)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    This paper seeks to provide a brief overview of those developments which have taken the theory and practice of image and video retrieval into the digital age. Drawing on a voluminous literature, the context in which visual information retrieval takes place is followed by a consideration of the conceptual and practical challenges posed by the representation and recovery of visual material on the basis of its semantic content. An historical account of research endeavours in content-based retrieval, directed towards the automation of these operations in digital image scenarios, provides the main thrust of the paper. Finally, a look forwards locates visual information retrieval research within the wider context of content-based multimedia retrieval.
  2. Eckert, K: ¬The ICE-map visualization (2011) 0.00
    0.004175565 = product of:
      0.012526695 = sum of:
        0.012526695 = product of:
          0.02505339 = sum of:
            0.02505339 = weight(_text_:of in 4743) [ClassicSimilarity], result of:
              0.02505339 = score(doc=4743,freq=14.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.36569026 = fieldWeight in 4743, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4743)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    In this paper, we describe in detail the Information Content Evaluation Map (ICE-Map Visualization, formerly referred to as IC Difference Analysis). The ICE-Map Visualization is a visual data mining approach for all kinds of concept hierarchies that uses statistics about the concept usage to help a user in the evaluation and maintenance of the hierarchy. It consists of a statistical framework that employs the the notion of information content from information theory, as well as a visualization of the hierarchy and the result of the statistical analysis by means of a treemap.
  3. Oh, D.G.: Revision of the national classification system through cooperative efforts : a case of Korean Decimal Classification 6th Edition (KDC 6) (2018) 0.00
    0.004142815 = product of:
      0.012428444 = sum of:
        0.012428444 = product of:
          0.024856888 = sum of:
            0.024856888 = weight(_text_:of in 4646) [ClassicSimilarity], result of:
              0.024856888 = score(doc=4646,freq=18.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.36282203 = fieldWeight in 4646, product of:
                  4.2426405 = tf(freq=18.0), with freq of:
                    18.0 = termFreq=18.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4646)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    The general characteristics of the sixth edition of Korean Decimal Classification (KDC 6), maintained and published by the Korean Library Association (KLA), are described in detail. The processes and procedures of the revision are analyzed with special regard to various cooperative efforts of the editorial committee with the National Library of Korea, with various groups of classification researchers, library practitioners, and specialists from subject areas, and with the headquarters of the KLA and editorial publishing team. Some ideas and recommendations for future research and development for national classification systems are suggested.
  4. Pejtersen, A.M.: Implications of users' value perception for the design of a bibliographic retrieval system (1986) 0.00
    0.0041003237 = product of:
      0.01230097 = sum of:
        0.01230097 = product of:
          0.02460194 = sum of:
            0.02460194 = weight(_text_:of in 2961) [ClassicSimilarity], result of:
              0.02460194 = score(doc=2961,freq=6.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.3591007 = fieldWeight in 2961, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.09375 = fieldNorm(doc=2961)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Source
    Empirical foundation of information and software science. Ed.: J.C. Agarwal u. P. Zunde
  5. Julien, C.-A.; Leide, J.E.; Bouthillier, F.: Controlled user evaluations of information visualization interfaces for text retrieval : literature review and meta-analysis (2008) 0.00
    0.0041003237 = product of:
      0.01230097 = sum of:
        0.01230097 = product of:
          0.02460194 = sum of:
            0.02460194 = weight(_text_:of in 1718) [ClassicSimilarity], result of:
              0.02460194 = score(doc=1718,freq=24.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.3591007 = fieldWeight in 1718, product of:
                  4.8989797 = tf(freq=24.0), with freq of:
                    24.0 = termFreq=24.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1718)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    This review describes experimental designs (users, search tasks, measures, etc.) used by 31 controlled user studies of information visualization (IV) tools for textual information retrieval (IR) and a meta-analysis of the reported statistical effects. Comparable experimental designs allow research designers to compare their results with other reports, and support the development of experimentally verified design guidelines concerning which IV techniques are better suited to which types of IR tasks. The studies generally use a within-subject design with 15 or more undergraduate students performing browsing to known-item tasks on sets of at least 1,000 full-text articles or Web pages on topics of general interest/news. Results of the meta-analysis (N = 8) showed no significant effects of the IV tool as compared with a text-only equivalent, but the set shows great variability suggesting an inadequate basis of comparison. Experimental design recommendations are provided which would support comparison of existing IV tools for IR usability testing.
    Source
    Journal of the American Society for Information Science and Technology. 59(2008) no.6, S.1012-1024
  6. Howarth, L.C.: Mapping the world of knowledge : cartograms and the diffusion of knowledge 0.00
    0.0041003237 = product of:
      0.01230097 = sum of:
        0.01230097 = product of:
          0.02460194 = sum of:
            0.02460194 = weight(_text_:of in 3550) [ClassicSimilarity], result of:
              0.02460194 = score(doc=3550,freq=24.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.3591007 = fieldWeight in 3550, product of:
                  4.8989797 = tf(freq=24.0), with freq of:
                    24.0 = termFreq=24.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3550)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Displaying aspects of "aboutness" by means of non-verbal representations, such as notations, symbols, or icons, or through rich visual displays, such as those of topic maps, can facilitate meaning-making, putting information in context, and situating it relative to other information. As the design of displays of web-enabled information has struggled to keep pace with a bourgeoning body of digital content, increasingly innovative approaches to organizing search results have warranted greater attention. Using Worldmapper as an example, this paper examines cartograms - a derivative of the data map which adds dimensionality to the geographic positioning of information - as one approach to representing and managing subject content, and to tracking the diffusion of knowledge across place and time.
    Source
    Paradigms and conceptual systems in knowledge organization: Proceedings of the Eleventh International ISKO conference, Rome, 23-26 February 2010, ed. Claudio Gnoli, Indeks, Frankfurt M
  7. Zhu, B.; Chen, H.: Information visualization (2004) 0.00
    0.0040848707 = product of:
      0.012254612 = sum of:
        0.012254612 = product of:
          0.024509223 = sum of:
            0.024509223 = weight(_text_:of in 4276) [ClassicSimilarity], result of:
              0.024509223 = score(doc=4276,freq=70.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.35774738 = fieldWeight in 4276, product of:
                  8.3666 = tf(freq=70.0), with freq of:
                    70.0 = termFreq=70.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=4276)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Advanced technology has resulted in the generation of about one million terabytes of information every year. Ninety-reine percent of this is available in digital format (Keim, 2001). More information will be generated in the next three years than was created during all of previous human history (Keim, 2001). Collecting information is no longer a problem, but extracting value from information collections has become progressively more difficult. Various search engines have been developed to make it easier to locate information of interest, but these work well only for a person who has a specific goal and who understands what and how information is stored. This usually is not the Gase. Visualization was commonly thought of in terms of representing human mental processes (MacEachren, 1991; Miller, 1984). The concept is now associated with the amplification of these mental processes (Card, Mackinlay, & Shneiderman, 1999). Human eyes can process visual cues rapidly, whereas advanced information analysis techniques transform the computer into a powerful means of managing digitized information. Visualization offers a link between these two potent systems, the human eye and the computer (Gershon, Eick, & Card, 1998), helping to identify patterns and to extract insights from large amounts of information. The identification of patterns is important because it may lead to a scientific discovery, an interpretation of clues to solve a crime, the prediction of catastrophic weather, a successful financial investment, or a better understanding of human behavior in a computermediated environment. Visualization technology shows considerable promise for increasing the value of large-scale collections of information, as evidenced by several commercial applications of TreeMap (e.g., http://www.smartmoney.com) and Hyperbolic tree (e.g., http://www.inxight.com) to visualize large-scale hierarchical structures. Although the proliferation of visualization technologies dates from the 1990s where sophisticated hardware and software made increasingly faster generation of graphical objects possible, the role of visual aids in facilitating the construction of mental images has a long history. Visualization has been used to communicate ideas, to monitor trends implicit in data, and to explore large volumes of data for hypothesis generation. Imagine traveling to a strange place without a map, having to memorize physical and chemical properties of an element without Mendeleyev's periodic table, trying to understand the stock market without statistical diagrams, or browsing a collection of documents without interactive visual aids. A collection of information can lose its value simply because of the effort required for exhaustive exploration. Such frustrations can be overcome by visualization.
    Visualization can be classified as scientific visualization, software visualization, or information visualization. Although the data differ, the underlying techniques have much in common. They use the same elements (visual cues) and follow the same rules of combining visual cues to deliver patterns. They all involve understanding human perception (Encarnacao, Foley, Bryson, & Feiner, 1994) and require domain knowledge (Tufte, 1990). Because most decisions are based an unstructured information, such as text documents, Web pages, or e-mail messages, this chapter focuses an the visualization of unstructured textual documents. The chapter reviews information visualization techniques developed over the last decade and examines how they have been applied in different domains. The first section provides the background by describing visualization history and giving overviews of scientific, software, and information visualization as well as the perceptual aspects of visualization. The next section assesses important visualization techniques that convert abstract information into visual objects and facilitate navigation through displays an a computer screen. It also explores information analysis algorithms that can be applied to identify or extract salient visualizable structures from collections of information. Information visualization systems that integrate different types of technologies to address problems in different domains are then surveyed; and we move an to a survey and critique of visualization system evaluation studies. The chapter concludes with a summary and identification of future research directions.
    Source
    Annual review of information science and technology. 39(2005), S.139-177
  8. Leydesdorff, L.: Visualization of the citation impact environments of scientific journals : an online mapping exercise (2007) 0.00
    0.003945538 = product of:
      0.0118366135 = sum of:
        0.0118366135 = product of:
          0.023673227 = sum of:
            0.023673227 = weight(_text_:of in 82) [ClassicSimilarity], result of:
              0.023673227 = score(doc=82,freq=32.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.34554482 = fieldWeight in 82, product of:
                  5.656854 = tf(freq=32.0), with freq of:
                    32.0 = termFreq=32.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=82)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Aggregated journal-journal citation networks based on the Journal Citation Reports 2004 of the Science Citation Index (5,968 journals) and the Social Science Citation Index (1,712 journals) are made accessible from the perspective of any of these journals. A vector-space model Is used for normalization, and the results are brought online at http://www.leydesdorff.net/jcr04 as input files for the visualization program Pajek. The user is thus able to analyze the citation environment in terms of links and graphs. Furthermore, the local impact of a journal is defined as its share of the total citations in the specific journal's citation environments; the vertical size of the nodes is varied proportionally to this citation impact. The horizontal size of each node can be used to provide the same information after correction for within-journal (self-)citations. In the "citing" environment, the equivalents of this measure can be considered as a citation activity index which maps how the relevant journal environment is perceived by the collective of authors of a given journal. As a policy application, the mechanism of Interdisciplinary developments among the sciences is elaborated for the case of nanotechnology journals.
    Source
    Journal of the American Society for Information Science and Technology. 58(2007) no.1, S.25-38
  9. Choi, I.: Visualizations of cross-cultural bibliographic classification : comparative studies of the Korean Decimal Classification and the Dewey Decimal Classification (2017) 0.00
    0.003945538 = product of:
      0.0118366135 = sum of:
        0.0118366135 = product of:
          0.023673227 = sum of:
            0.023673227 = weight(_text_:of in 3869) [ClassicSimilarity], result of:
              0.023673227 = score(doc=3869,freq=32.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.34554482 = fieldWeight in 3869, product of:
                  5.656854 = tf(freq=32.0), with freq of:
                    32.0 = termFreq=32.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3869)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    The changes in KO systems induced by sociocultural influences may include those in both classificatory principles and cultural features. The proposed study will examine the Korean Decimal Classification (KDC)'s adaptation of the Dewey Decimal Classification (DDC) by comparing the two systems. This case manifests the sociocultural influences on KOSs in a cross-cultural context. Therefore, the study aims at an in-depth investigation of sociocultural influences by situating a KOS in a cross-cultural environment and examining the dynamics between two classification systems designed to organize information resources in two distinct sociocultural contexts. As a preceding stage of the comparison, the analysis was conducted on the changes that result from the meeting of different sociocultural feature in a descriptive method. The analysis aims to identify variations between the two schemes in comparison of the knowledge structures of the two classifications, in terms of the quantity of class numbers that represent concepts and their relationships in each of the individual main classes. The most effective analytic strategy to show the patterns of the comparison was visualizations of similarities and differences between the two systems. Increasing or decreasing tendencies in the class through various editions were analyzed. Comparing the compositions of the main classes and distributions of concepts in the KDC and DDC discloses the differences in their knowledge structures empirically. This phase of quantitative analysis and visualizing techniques generates empirical evidence leading to interpretation.
  10. Samoylenko, I.; Chao, T.-C.; Liu, W.-C.; Chen, C.-M.: Visualizing the scientific world and its evolution (2006) 0.00
    0.003925761 = product of:
      0.011777283 = sum of:
        0.011777283 = product of:
          0.023554565 = sum of:
            0.023554565 = weight(_text_:of in 5911) [ClassicSimilarity], result of:
              0.023554565 = score(doc=5911,freq=22.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.34381276 = fieldWeight in 5911, product of:
                  4.690416 = tf(freq=22.0), with freq of:
                    22.0 = termFreq=22.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5911)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    We propose an approach to visualizing the scientific world and its evolution by constructing minimum spanning trees (MSTs) and a two-dimensional map of scientific journals using the database of the Science Citation Index (SCI) during 1994-2001. The structures of constructed MSTs are consistent with the sorting of SCI categories. The map of science is constructed based on our MST results. Such a map shows the relation among various knowledge clusters and their citation properties. The temporal evolution of the scientific world can also be delineated in the map. In particular, this map clearly shows a linear structure of the scientific world, which contains three major domains including physical sciences, life sciences, and medical sciences. The interaction of various knowledge fields can be clearly seen from this scientific world map. This approach can be applied to various levels of knowledge domains.
    Object
    Map of Science
    Source
    Journal of the American Society for Information Science and Technology. 57(2006) no.11, S.1461-1469
  11. Aris, A.; Shneiderman, B.; Qazvinian, V.; Radev, D.: Visual overviews for discovering key papers and influences across research fronts (2009) 0.00
    0.003925761 = product of:
      0.011777283 = sum of:
        0.011777283 = product of:
          0.023554565 = sum of:
            0.023554565 = weight(_text_:of in 3156) [ClassicSimilarity], result of:
              0.023554565 = score(doc=3156,freq=22.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.34381276 = fieldWeight in 3156, product of:
                  4.690416 = tf(freq=22.0), with freq of:
                    22.0 = termFreq=22.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3156)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Gaining a rapid overview of an emerging scientific topic, sometimes called research fronts, is an increasingly common task due to the growing amount of interdisciplinary collaboration. Visual overviews that show temporal patterns of paper publication and citation links among papers can help researchers and analysts to see the rate of growth of topics, identify key papers, and understand influences across subdisciplines. This article applies a novel network-visualization tool based on meaningful layouts of nodes to present research fronts and show citation links that indicate influences across research fronts. To demonstrate the value of two-dimensional layouts with multiple regions and user control of link visibility, we conducted a design-oriented, preliminary case study with 6 domain experts over a 4-month period. The main benefits were being able (a) to easily identify key papers and see the increasing number of papers within a research front, and (b) to quickly see the strength and direction of influence across related research fronts.
    Source
    Journal of the American Society for Information Science and Technology. 60(2009) no.11, S.2219-2228
  12. Leydesdorff, L.; Persson, O.: Mapping the geography of science : distribution patterns and networks of relations among cities and institutes (2010) 0.00
    0.003925761 = product of:
      0.011777283 = sum of:
        0.011777283 = product of:
          0.023554565 = sum of:
            0.023554565 = weight(_text_:of in 3704) [ClassicSimilarity], result of:
              0.023554565 = score(doc=3704,freq=22.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.34381276 = fieldWeight in 3704, product of:
                  4.690416 = tf(freq=22.0), with freq of:
                    22.0 = termFreq=22.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3704)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Using Google Earth, Google Maps, and/or network visualization programs such as Pajek, one can overlay the network of relations among addresses in scientific publications onto the geographic map. The authors discuss the pros and cons of various options, and provide software (freeware) for bridging existing gaps between the Science Citation Indices (Thomson Reuters) and Scopus (Elsevier), on the one hand, and these various visualization tools on the other. At the level of city names, the global map can be drawn reliably on the basis of the available address information. At the level of the names of organizations and institutes, there are problems of unification both in the ISI databases and with Scopus. Pajek enables a combination of visualization and statistical analysis, whereas the Google Maps and its derivatives provide superior tools on the Internet.
    Source
    Journal of the American Society for Information Science and Technology. 61(2010) no.8, S.1622-1634
  13. Gelernter, J.: Visual classification with information visualization (Infoviz) for digital library collections (2007) 0.00
    0.0039058835 = product of:
      0.01171765 = sum of:
        0.01171765 = product of:
          0.0234353 = sum of:
            0.0234353 = weight(_text_:of in 423) [ClassicSimilarity], result of:
              0.0234353 = score(doc=423,freq=16.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.34207192 = fieldWeight in 423, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=423)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    The purpose of information visualization (infoviz) is to show information graphically. That purpose is often obscured by infoviz designs that are not well understood in practice. This paper offers an overview of infoviz culled from the literature on applications of information visualization for the digital library: how the clustering works that creates the topics and those topics are represented graphically. It presents a taxonomy of infoviz designs in one, two and three dimensions. It is suggested that user evaluations of infoviz designs might be used to enrich infoviz theory and, whether through application of the theory or through application of user remarks, developers might improve infoviz interface comprehensibility. Design recommendations are made in an effort to improve weaknesses and capitalize on strengths of present interfaces in representing knowledge visually.
  14. Hall, P.: Disorderly reasoning in information design (2009) 0.00
    0.0039058835 = product of:
      0.01171765 = sum of:
        0.01171765 = product of:
          0.0234353 = sum of:
            0.0234353 = weight(_text_:of in 3099) [ClassicSimilarity], result of:
              0.0234353 = score(doc=3099,freq=16.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.34207192 = fieldWeight in 3099, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3099)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    The importance of information visualization as a means of transforming data into visual, understandable form is now embraced across university campuses and research institutes world-wide. Yet, the role of designers in this field of activity is often overlooked by the dominant scientific and technological interests in data visualization, and a corporate culture reliant on off-the-shelf visualization tools. This article is an attempt to describe the value of design thinking in information visualization with reference to Horst Rittel's ([1988]) definition of disorderly reasoning, and to frame design as a critical act of translating between scientific, technical, and aesthetic interests.
    Source
    Journal of the American Society for Information Science and Technology. 60(2009) no.9, S.1877-1882
  15. Maaten, L. van den: Accelerating t-SNE using Tree-Based Algorithms (2014) 0.00
    0.0039058835 = product of:
      0.01171765 = sum of:
        0.01171765 = product of:
          0.0234353 = sum of:
            0.0234353 = weight(_text_:of in 3886) [ClassicSimilarity], result of:
              0.0234353 = score(doc=3886,freq=16.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.34207192 = fieldWeight in 3886, product of:
                  4.0 = tf(freq=16.0), with freq of:
                    16.0 = termFreq=16.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3886)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    The paper investigates the acceleration of t-SNE-an embedding technique that is commonly used for the visualization of high-dimensional data in scatter plots-using two tree-based algorithms. In particular, the paper develops variants of the Barnes-Hut algorithm and of the dual-tree algorithm that approximate the gradient used for learning t-SNE embeddings in O(N*logN). Our experiments show that the resulting algorithms substantially accelerate t-SNE, and that they make it possible to learn embeddings of data sets with millions of objects. Somewhat counterintuitively, the Barnes-Hut variant of t-SNE appears to outperform the dual-tree variant.
    Source
    Journal of machine learning research. 15(2014), S.3221-3245
  16. Denton, W.: On dentographs, a new method of visualizing library collections (2012) 0.00
    0.003865822 = product of:
      0.011597466 = sum of:
        0.011597466 = product of:
          0.023194931 = sum of:
            0.023194931 = weight(_text_:of in 580) [ClassicSimilarity], result of:
              0.023194931 = score(doc=580,freq=12.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.33856338 = fieldWeight in 580, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.0625 = fieldNorm(doc=580)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    A dentograph is a visualization of a library's collection built on the idea that a classification scheme is a mathematical function mapping one set of things (books or the universe of knowledge) onto another (a set of numbers and letters). Dentographs can visualize aspects of just one collection or can be used to compare two or more collections. This article describes how to build them, with examples and code using Ruby and R, and discusses some problems and future directions.
  17. Eckert, K.: Thesaurus analysis and visualization in semantic search applications (2007) 0.00
    0.0038202507 = product of:
      0.011460752 = sum of:
        0.011460752 = product of:
          0.022921504 = sum of:
            0.022921504 = weight(_text_:of in 3222) [ClassicSimilarity], result of:
              0.022921504 = score(doc=3222,freq=30.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.33457235 = fieldWeight in 3222, product of:
                  5.477226 = tf(freq=30.0), with freq of:
                    30.0 = termFreq=30.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3222)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    The use of thesaurus-based indexing is a common approach for increasing the performance of information retrieval. In this thesis, we examine the suitability of a thesaurus for a given set of information and evaluate improvements of existing thesauri to get better search results. On this area, we focus on two aspects: 1. We demonstrate an analysis of the indexing results achieved by an automatic document indexer and the involved thesaurus. 2. We propose a method for thesaurus evaluation which is based on a combination of statistical measures and appropriate visualization techniques that support the detection of potential problems in a thesaurus. In this chapter, we give an overview of the context of our work. Next, we briefly outline the basics of thesaurus-based information retrieval and describe the Collexis Engine that was used for our experiments. In Chapter 3, we describe two experiments in automatically indexing documents in the areas of medicine and economics with corresponding thesauri and compare the results to available manual annotations. Chapter 4 describes methods for assessing thesauri and visualizing the result in terms of a treemap. We depict examples of interesting observations supported by the method and show that we actually find critical problems. We conclude with a discussion of open questions and future research in Chapter 5.
  18. Parsons, P.; Sedig, K.: Adjustable properties of visual representations : improving the quality of human-information interaction (2014) 0.00
    0.0038202507 = product of:
      0.011460752 = sum of:
        0.011460752 = product of:
          0.022921504 = sum of:
            0.022921504 = weight(_text_:of in 1214) [ClassicSimilarity], result of:
              0.022921504 = score(doc=1214,freq=30.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.33457235 = fieldWeight in 1214, product of:
                  5.477226 = tf(freq=30.0), with freq of:
                    30.0 = termFreq=30.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1214)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Complex cognitive activities, such as analytical reasoning, problem solving, and sense making, are often performed through the mediation of interactive computational tools. Examples include visual analytics, decision support, and educational tools. Through interaction with visual representations of information at the visual interface of these tools, a joint, coordinated cognitive system is formed. This partnership results in a number of relational properties-those depending on both humans and tools-that researchers and designers must be aware of if such tools are to effectively support the performance of complex cognitive activities. This article presents 10 properties of interactive visual representations that are essential and relational and whose values can be adjusted through interaction. By adjusting the values of these properties, better coordination between humans and tools can be effected, leading to higher quality performance of complex cognitive activities. This article examines how the values of these properties affect cognitive processing and visual reasoning and demonstrates the necessity of making their values adjustable-all of which is situated within a broader theoretical framework concerned with human-information interaction in complex cognitive activities. This framework can facilitate systematic research, design, and evaluation in numerous fields including information visualization, health informatics, visual analytics, and educational technology.
    Source
    Journal of the Association for Information Science and Technology. 65(2014) no.3, S.455-482
  19. Nehmadi, L.; Meyer, J.; Parmet, Y.; Ben-Asher, N.: Predicting a screen area's perceived importance from spatial and physical attributes (2011) 0.00
    0.003743066 = product of:
      0.0112291975 = sum of:
        0.0112291975 = product of:
          0.022458395 = sum of:
            0.022458395 = weight(_text_:of in 4757) [ClassicSimilarity], result of:
              0.022458395 = score(doc=4757,freq=20.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.32781258 = fieldWeight in 4757, product of:
                  4.472136 = tf(freq=20.0), with freq of:
                    20.0 = termFreq=20.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4757)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    The editor's decision where and how to place items on a screen is crucial for the design of information displays, such as websites. We developed a statistical model that can facilitate automating this process by predicting the perceived importance of screen items from their location and size. The model was developed based on a 2-step experiment in which we asked participants to rate the importance of text articles that differed in size, screen location, and title size. Articles were either presented for 0.5 seconds or for unlimited time. In a stepwise regression analysis, the model's variables accounted for 65% of the variance in the importance ratings. In a validation study, the model predicted 85% of the variance of the mean apparent importance of screen items. The model also predicted individual raters' importance perception ratings. We discuss the implications of such a model in the context of automating layout generation. An automated system for layout generation can optimize data presentation to suit users' individual information and display preferences.
    Source
    Journal of the American Society for Information Science and Technology. 62(2011) no.9, S.1829-1838
  20. Albertson, D.: Visual information seeking (2015) 0.00
    0.003743066 = product of:
      0.0112291975 = sum of:
        0.0112291975 = product of:
          0.022458395 = sum of:
            0.022458395 = weight(_text_:of in 1847) [ClassicSimilarity], result of:
              0.022458395 = score(doc=1847,freq=20.0), product of:
                0.06850986 = queryWeight, product of:
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.043811057 = queryNorm
                0.32781258 = fieldWeight in 1847, product of:
                  4.472136 = tf(freq=20.0), with freq of:
                    20.0 = termFreq=20.0
                  1.5637573 = idf(docFreq=25162, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1847)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    The present study reports on the information seeking processes in a visual context, referred to throughout as visual information seeking. This study synthesizes research throughout different, yet complementary, areas, each capable of contributing findings and understanding to visual information seeking. Methods previously applied for examining the visual information seeking process are reviewed, including interactive experiments, surveys, and various qualitative approaches. The methods and resulting findings are presented and structured according to generalized phases of existing information seeking models, which include the needs, actions, and assessments of users. A review of visual information needs focuses on need and thus query formulation; user actions, as reviewed, centers on search and browse behaviors and the observed trends, concluded by a survey of users' assessments of visual information as part of the interactive process. This separate examination, specific to a visual context, is significant; visual information can influence outcomes in an interactive process and presents variations in the types of needs, tasks, considerations, and decisions of users, as compared to information seeking in other contexts.
    Source
    Journal of the Association for Information Science and Technology. 66(2015) no.6, S.1091-1105

Years

Languages

  • e 140
  • d 7
  • a 1
  • More… Less…

Types

  • a 125
  • el 28
  • m 12
  • x 6
  • s 2
  • b 1
  • p 1
  • r 1
  • More… Less…

Subjects

Classifications