Search (188 results, page 1 of 10)

  • × theme_ss:"Semantische Interoperabilität"
  1. Gabler, S.: Vergabe von DDC-Sachgruppen mittels eines Schlagwort-Thesaurus (2021) 0.12
    0.12172574 = product of:
      0.24345148 = sum of:
        0.058215484 = product of:
          0.17464645 = sum of:
            0.17464645 = weight(_text_:3a in 1000) [ClassicSimilarity], result of:
              0.17464645 = score(doc=1000,freq=2.0), product of:
                0.37289858 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.043984205 = queryNorm
                0.46834838 = fieldWeight in 1000, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1000)
          0.33333334 = coord(1/3)
        0.01058955 = weight(_text_:information in 1000) [ClassicSimilarity], result of:
          0.01058955 = score(doc=1000,freq=4.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.13714671 = fieldWeight in 1000, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1000)
        0.17464645 = weight(_text_:2f in 1000) [ClassicSimilarity], result of:
          0.17464645 = score(doc=1000,freq=2.0), product of:
            0.37289858 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.043984205 = queryNorm
            0.46834838 = fieldWeight in 1000, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1000)
      0.5 = coord(3/6)
    
    Content
    Master thesis Master of Science (Library and Information Studies) (MSc), Universität Wien. Advisor: Christoph Steiner. Vgl.: https://www.researchgate.net/publication/371680244_Vergabe_von_DDC-Sachgruppen_mittels_eines_Schlagwort-Thesaurus. DOI: 10.25365/thesis.70030. Vgl. dazu die Präsentation unter: https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=web&cd=&ved=0CAIQw7AJahcKEwjwoZzzytz_AhUAAAAAHQAAAAAQAg&url=https%3A%2F%2Fwiki.dnb.de%2Fdownload%2Fattachments%2F252121510%2FDA3%2520Workshop-Gabler.pdf%3Fversion%3D1%26modificationDate%3D1671093170000%26api%3Dv2&psig=AOvVaw0szwENK1or3HevgvIDOfjx&ust=1687719410889597&opi=89978449.
    Imprint
    Wien / Library and Information Studies : Universität
  2. Vetere, G.; Lenzerini, M.: Models for semantic interoperability in service-oriented architectures (2005) 0.11
    0.10866891 = product of:
      0.3260067 = sum of:
        0.08150168 = product of:
          0.24450503 = sum of:
            0.24450503 = weight(_text_:3a in 306) [ClassicSimilarity], result of:
              0.24450503 = score(doc=306,freq=2.0), product of:
                0.37289858 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.043984205 = queryNorm
                0.65568775 = fieldWeight in 306, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=306)
          0.33333334 = coord(1/3)
        0.24450503 = weight(_text_:2f in 306) [ClassicSimilarity], result of:
          0.24450503 = score(doc=306,freq=2.0), product of:
            0.37289858 = queryWeight, product of:
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.043984205 = queryNorm
            0.65568775 = fieldWeight in 306, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              8.478011 = idf(docFreq=24, maxDocs=44218)
              0.0546875 = fieldNorm(doc=306)
      0.33333334 = coord(2/6)
    
    Content
    Vgl.: http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5386707&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5386707.
  3. Veltman, K.H.: Syntactic and semantic interoperability : new approaches to knowledge and the Semantic Web (2001) 0.05
    0.04832034 = product of:
      0.09664068 = sum of:
        0.0059903543 = weight(_text_:information in 3883) [ClassicSimilarity], result of:
          0.0059903543 = score(doc=3883,freq=2.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.0775819 = fieldWeight in 3883, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=3883)
        0.061179362 = weight(_text_:united in 3883) [ClassicSimilarity], result of:
          0.061179362 = score(doc=3883,freq=2.0), product of:
            0.24675635 = queryWeight, product of:
              5.6101127 = idf(docFreq=439, maxDocs=44218)
              0.043984205 = queryNorm
            0.2479343 = fieldWeight in 3883, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.6101127 = idf(docFreq=439, maxDocs=44218)
              0.03125 = fieldNorm(doc=3883)
        0.029470965 = product of:
          0.05894193 = sum of:
            0.05894193 = weight(_text_:states in 3883) [ClassicSimilarity], result of:
              0.05894193 = score(doc=3883,freq=2.0), product of:
                0.24220218 = queryWeight, product of:
                  5.506572 = idf(docFreq=487, maxDocs=44218)
                  0.043984205 = queryNorm
                0.24335839 = fieldWeight in 3883, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.506572 = idf(docFreq=487, maxDocs=44218)
                  0.03125 = fieldNorm(doc=3883)
          0.5 = coord(1/2)
      0.5 = coord(3/6)
    
    Abstract
    At VVWW-7 (Brisbane, 1997), Tim Berners-Lee outlined his vision of a global reasoning web. At VVWW- 8 (Toronto, May 1998), he developed this into a vision of a semantic web, where one Gould search not just for isolated words, but for meaning in the form of logically provable claims. In the past four years this vision has spread with amazing speed. The semantic web has been adopted by the European Commission as one of the important goals of the Sixth Framework Programme. In the United States it has become linked with the Defense Advanced Research Projects Agency (DARPA). While this quest to achieve a semantic web is new, the quest for meaning in language has a history that is almost as old as language itself. Accordingly this paper opens with a survey of the historical background. The contributions of the Dublin Core are reviewed briefly. To achieve a semantic web requires both syntactic and semantic interoperability. These challenges are outlined. A basic contention of this paper is that semantic interoperability requires much more than a simple agreement concerning the static meaning of a term. Different levels of agreement (local, regional, national and international) are involved and these levels have their own history. Hence, one of the larger challenges is to create new systems of knowledge organization, which identify and connect these different levels. With respect to meaning or semantics, early twentieth century pioneers such as Wüster were hopeful that it might be sufficient to limit oneself to isolated terms and words without reference to the larger grammatical context: to concept systems rather than to propositional logic. While a fascination with concept systems implicitly dominates many contemporary discussions, this paper suggests why this approach is not sufficient. The final section of this paper explores how an approach using propositional logic could lead to a new approach to universals and particulars. This points to a re-organization of knowledge, and opens the way for a vision of a semantic web with all the historical and cultural richness and complexity of language itself.
    Source
    New review of information networking. 7(2001) no.xx, S.xx-xx
  4. Gödert, W.: Ontological spine, localization and multilingual access : some reflections and a proposal (2008) 0.04
    0.039370134 = product of:
      0.1181104 = sum of:
        0.010483121 = weight(_text_:information in 4334) [ClassicSimilarity], result of:
          0.010483121 = score(doc=4334,freq=2.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.13576832 = fieldWeight in 4334, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4334)
        0.10762728 = weight(_text_:networks in 4334) [ClassicSimilarity], result of:
          0.10762728 = score(doc=4334,freq=4.0), product of:
            0.20804176 = queryWeight, product of:
              4.72992 = idf(docFreq=1060, maxDocs=44218)
              0.043984205 = queryNorm
            0.517335 = fieldWeight in 4334, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              4.72992 = idf(docFreq=1060, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4334)
      0.33333334 = coord(2/6)
    
    Abstract
    In this paper the following problem is discussed: Which possibilities exist to integrate localized knowledge into knowledge structures like classification systems or other documentary languages for the design of OPACs and information systems? It is proposed to combine a de-localized classificatory structure - best describes as 'ontological spine' - with multilingual semantic networks. Each of these networks should represent the respective localized knowledge along an extended set of typed semantic relations serving as entry points vocabulary as well as a semantic basis for navigational purposes within the localized knowledge context. The spine should enable a link between well-known and not well-known knowledge structures.
  5. Kutz, O.; Mossakowski, T.; Galinski, C.; Lange, C.: Towards a standard for heterogeneous ontology integration and interoperability (2011) 0.04
    0.039182335 = product of:
      0.117547005 = sum of:
        0.010483121 = weight(_text_:information in 114) [ClassicSimilarity], result of:
          0.010483121 = score(doc=114,freq=2.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.13576832 = fieldWeight in 114, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=114)
        0.10706388 = weight(_text_:united in 114) [ClassicSimilarity], result of:
          0.10706388 = score(doc=114,freq=2.0), product of:
            0.24675635 = queryWeight, product of:
              5.6101127 = idf(docFreq=439, maxDocs=44218)
              0.043984205 = queryNorm
            0.433885 = fieldWeight in 114, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.6101127 = idf(docFreq=439, maxDocs=44218)
              0.0546875 = fieldNorm(doc=114)
      0.33333334 = coord(2/6)
    
    Abstract
    Even though ontologies are widely being used to enable interoperability in information-rich endeavours, there is currently no united framework for ontology interoperability itself. Surprisingly little of the state of the art in modularity and structuring, e.g. in software engineering, has been applied to ontology engineering so far. However, application areas like Ambient Assisted Living (AAL), which require synchronization and orchestration of interoperable services, are in dire need of safe and secure ontology interoperability. OntoIOp (Ontology Integration and Interoperability), a new international standard proposed in ISO/TC 37/SC 3, aims at filling this gap.
  6. Kollia, I.; Tzouvaras, V.; Drosopoulos, N.; Stamou, G.: ¬A systemic approach for effective semantic access to cultural content (2012) 0.04
    0.03777097 = product of:
      0.11331291 = sum of:
        0.0764742 = weight(_text_:united in 130) [ClassicSimilarity], result of:
          0.0764742 = score(doc=130,freq=2.0), product of:
            0.24675635 = queryWeight, product of:
              5.6101127 = idf(docFreq=439, maxDocs=44218)
              0.043984205 = queryNorm
            0.30991787 = fieldWeight in 130, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.6101127 = idf(docFreq=439, maxDocs=44218)
              0.0390625 = fieldNorm(doc=130)
        0.03683871 = product of:
          0.07367742 = sum of:
            0.07367742 = weight(_text_:states in 130) [ClassicSimilarity], result of:
              0.07367742 = score(doc=130,freq=2.0), product of:
                0.24220218 = queryWeight, product of:
                  5.506572 = idf(docFreq=487, maxDocs=44218)
                  0.043984205 = queryNorm
                0.304198 = fieldWeight in 130, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.506572 = idf(docFreq=487, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=130)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Abstract
    A large on-going activity for digitization, dissemination and preservation of cultural heritage is taking place in Europe, United States and the world, which involves all types of cultural institutions, i.e., galleries, libraries, museums, archives and all types of cultural content. The development of Europeana, as a single point of access to European Cultural Heritage, has probably been the most important result of the activities in the field till now. Semantic interoperability, linked open data, user involvement and user generated content are key issues in these developments. This paper presents a system that provides content providers and users the ability to map, in an effective way, their own metadata schemas to common domain standards and the Europeana (ESE, EDM) data models. The system is currently largely used by many European research projects and the Europeana. Based on these mappings, semantic query answering techniques are proposed as a means for effective access to digital cultural heritage, providing users with content enrichment, linking of data based on their involvement and facilitating content search and retrieval. An experimental study is presented, involving content from national content aggregators, as well as thematic content aggregators and the Europeana, which illustrates the proposed system
  7. Huckstorf, A.; Petras, V.: Mind the lexical gap : EuroVoc Building Block of the Semantic Web (2011) 0.03
    0.0348255 = product of:
      0.1044765 = sum of:
        0.012707461 = weight(_text_:information in 2782) [ClassicSimilarity], result of:
          0.012707461 = score(doc=2782,freq=4.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.16457605 = fieldWeight in 2782, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=2782)
        0.09176904 = weight(_text_:united in 2782) [ClassicSimilarity], result of:
          0.09176904 = score(doc=2782,freq=2.0), product of:
            0.24675635 = queryWeight, product of:
              5.6101127 = idf(docFreq=439, maxDocs=44218)
              0.043984205 = queryNorm
            0.37190145 = fieldWeight in 2782, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.6101127 = idf(docFreq=439, maxDocs=44218)
              0.046875 = fieldNorm(doc=2782)
      0.33333334 = coord(2/6)
    
    Abstract
    Ein Konferenzereignis der besonderen Art fand am 18. und 19. November 2010 in Luxemburg statt. Initiiert durch das Amt für Veröffentlichungen der Europäischen Union (http://publications.europa.eu) waren Bibliothekare und Information Professionals eingeladen, um über die Zukunft mehrsprachiger kontrollierter Vokabulare in Informationssystemen und insbesondere deren Beitrag zum Semantic Web zu diskutieren. Organisiert wurde die Konferenz durch das EuroVoc-Team, das den Thesaurus der Europäischen Union bearbeitet. Die letzte EuroVoc-Konferenz fand im Jahr 2006 statt. In der Zwischenzeit ist EuroVoc zu einem ontologie-basierten Thesaurusmanagementsystem übergegangen und hat systematisch begonnen, Semantic-Web-Technologien für die Bearbeitung und Repräsentation einzusetzen und sich mit anderen Vokabularen zu vernetzen. Ein produktiver Austausch fand mit den Produzenten anderer europäischer und internationaler Vokabulare (z.B. United Nations oder FAO) sowie Vertretern aus Projekten, die an Themen über automatische Indexierung (hier insbesondere parlamentarische und rechtliche Dokumente) sowie Interoperabilitiät zwischen Vokabularen arbeiten, statt.
    Source
    Information - Wissenschaft und Praxis. 62(2011) H.2/3, S.125-126
  8. Euzenat, J.; Shvaiko, P.: Ontology matching (2010) 0.03
    0.032891046 = product of:
      0.06578209 = sum of:
        0.010375599 = weight(_text_:information in 168) [ClassicSimilarity], result of:
          0.010375599 = score(doc=168,freq=6.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.1343758 = fieldWeight in 168, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=168)
        0.04348799 = weight(_text_:networks in 168) [ClassicSimilarity], result of:
          0.04348799 = score(doc=168,freq=2.0), product of:
            0.20804176 = queryWeight, product of:
              4.72992 = idf(docFreq=1060, maxDocs=44218)
              0.043984205 = queryNorm
            0.2090349 = fieldWeight in 168, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.72992 = idf(docFreq=1060, maxDocs=44218)
              0.03125 = fieldNorm(doc=168)
        0.011918506 = product of:
          0.023837011 = sum of:
            0.023837011 = weight(_text_:22 in 168) [ClassicSimilarity], result of:
              0.023837011 = score(doc=168,freq=2.0), product of:
                0.1540252 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043984205 = queryNorm
                0.15476047 = fieldWeight in 168, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=168)
          0.5 = coord(1/2)
      0.5 = coord(3/6)
    
    Abstract
    Ontologies are viewed as the silver bullet for many applications, but in open or evolving systems, different parties can adopt different ontologies. This increases heterogeneity problems rather than reducing heterogeneity. This book proposes ontology matching as a solution to the problem of semantic heterogeneity, offering researchers and practitioners a uniform framework of reference to currently available work. The techniques presented apply to database schema matching, catalog integration, XML schema matching and more. Ontologies tend to be found everywhere. They are viewed as the silver bullet for many applications, such as database integration, peer-to-peer systems, e-commerce, semantic web services, or social networks. However, in open or evolving systems, such as the semantic web, different parties would, in general, adopt different ontologies. Thus, merely using ontologies, like using XML, does not reduce heterogeneity: it just raises heterogeneity problems to a higher level. Euzenat and Shvaiko's book is devoted to ontology matching as a solution to the semantic heterogeneity problem faced by computer systems. Ontology matching aims at finding correspondences between semantically related entities of different ontologies. These correspondences may stand for equivalence as well as other relations, such as consequence, subsumption, or disjointness, between ontology entities. Many different matching solutions have been proposed so far from various viewpoints, e.g., databases, information systems, artificial intelligence. With Ontology Matching, researchers and practitioners will find a reference book which presents currently available work in a uniform framework. In particular, the work and the techniques presented in this book can equally be applied to database schema matching, catalog integration, XML schema matching and other related problems. The objectives of the book include presenting (i) the state of the art and (ii) the latest research results in ontology matching by providing a detailed account of matching techniques and matching systems in a systematic way from theoretical, practical and application perspectives.
    Date
    20. 6.2012 19:08:22
    LCSH
    Ontologies (Information retrieval)
    Subject
    Ontologies (Information retrieval)
  9. Boteram, F.: "Content architecture" : semantic interoperability in an international comprehensive knowledge organisation system (2010) 0.02
    0.023851654 = product of:
      0.07155496 = sum of:
        0.010375599 = weight(_text_:information in 647) [ClassicSimilarity], result of:
          0.010375599 = score(doc=647,freq=6.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.1343758 = fieldWeight in 647, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=647)
        0.061179362 = weight(_text_:united in 647) [ClassicSimilarity], result of:
          0.061179362 = score(doc=647,freq=2.0), product of:
            0.24675635 = queryWeight, product of:
              5.6101127 = idf(docFreq=439, maxDocs=44218)
              0.043984205 = queryNorm
            0.2479343 = fieldWeight in 647, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.6101127 = idf(docFreq=439, maxDocs=44218)
              0.03125 = fieldNorm(doc=647)
      0.33333334 = coord(2/6)
    
    Abstract
    Purpose - This paper seeks to develop a specified typology of various levels of semantic interoperability, designed to provide semantically expressive and functional means to interconnect typologically different sub-systems in an international comprehensive knowledge organization system, supporting advanced information retrieval and exploration strategies. Design/methodology/approach - Taking the analysis of rudimentary forms of a functional interoperability based on simple pattern matching as a starting-point, more refined strategies to provide semantic interoperability, which is actually reaching the conceptual and even thematic level, are being developed. The paper also examines the potential benefits and perspectives of the selective transfer of modelling strategies from the field of semantic technologies for the refinement of relational structures of inter-system and inter-concept relations as a requirement for expressive and functional indexing languages supporting advanced types of semantic interoperability. Findings - As the principles and strategies of advanced information retrieval systems largely depend on semantic information, new concepts and strategies to achieve semantic interoperability have to be developed. Research limitations/implications - The approach has been developed in the functional and structural context of an international comprehensive system integrating several heterogeneous knowledge organization systems and indexing languages by interconnecting them to a central conceptual structure operating as a spine in an overall system designed to support retrieval and exploration of bibliographic records representing complex conceptual entities. Originality/value - Research and development aimed at providing technical and structural interoperability has to be complemented by a thorough and precise reflection and definition of various degrees and types of interoperability on the semantic level as well. The approach specifies these levels and reflects the implications and their potential for advanced strategies of retrieval and exploration.
    Footnote
    Beitrag in einem Special Issue: Content architecture: exploiting and managing diverse resources: proceedings of the first national conference of the United Kingdom chapter of the International Society for Knowedge Organization (ISKO).
  10. Mayr, P.; Mutschke, P.; Petras, V.: Reducing semantic complexity in distributed digital libraries : Treatment of term vagueness and document re-ranking (2008) 0.02
    0.02244316 = product of:
      0.06732948 = sum of:
        0.0129694985 = weight(_text_:information in 1909) [ClassicSimilarity], result of:
          0.0129694985 = score(doc=1909,freq=6.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.16796975 = fieldWeight in 1909, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1909)
        0.054359984 = weight(_text_:networks in 1909) [ClassicSimilarity], result of:
          0.054359984 = score(doc=1909,freq=2.0), product of:
            0.20804176 = queryWeight, product of:
              4.72992 = idf(docFreq=1060, maxDocs=44218)
              0.043984205 = queryNorm
            0.26129362 = fieldWeight in 1909, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.72992 = idf(docFreq=1060, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1909)
      0.33333334 = coord(2/6)
    
    Abstract
    Purpose - The general science portal "vascoda" merges structured, high-quality information collections from more than 40 providers on the basis of search engine technology (FAST) and a concept which treats semantic heterogeneity between different controlled vocabularies. First experiences with the portal show some weaknesses of this approach which come out in most metadata-driven Digital Libraries (DLs) or subject specific portals. The purpose of the paper is to propose models to reduce the semantic complexity in heterogeneous DLs. The aim is to introduce value-added services (treatment of term vagueness and document re-ranking) that gain a certain quality in DLs if they are combined with heterogeneity components established in the project "Competence Center Modeling and Treatment of Semantic Heterogeneity". Design/methodology/approach - Two methods, which are derived from scientometrics and network analysis, will be implemented with the objective to re-rank result sets by the following structural properties: the ranking of the results by core journals (so-called Bradfordizing) and ranking by centrality of authors in co-authorship networks. Findings - The methods, which will be implemented, focus on the query and on the result side of a search and are designed to positively influence each other. Conceptually, they will improve the search quality and guarantee that the most relevant documents in result sets will be ranked higher. Originality/value - The central impact of the paper focuses on the integration of three structural value-adding methods, which aim at reducing the semantic complexity represented in distributed DLs at several stages in the information retrieval process: query construction, search and ranking and re-ranking.
    Theme
    Information Gateway
  11. Baker, T.; Sutton, S.A.: Linked data and the charm of weak semantics : Introduction: the strengths of weak semantics (2015) 0.02
    0.021649845 = product of:
      0.064949535 = sum of:
        0.01058955 = weight(_text_:information in 2022) [ClassicSimilarity], result of:
          0.01058955 = score(doc=2022,freq=4.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.13714671 = fieldWeight in 2022, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2022)
        0.054359984 = weight(_text_:networks in 2022) [ClassicSimilarity], result of:
          0.054359984 = score(doc=2022,freq=2.0), product of:
            0.20804176 = queryWeight, product of:
              4.72992 = idf(docFreq=1060, maxDocs=44218)
              0.043984205 = queryNorm
            0.26129362 = fieldWeight in 2022, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.72992 = idf(docFreq=1060, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2022)
      0.33333334 = coord(2/6)
    
    Abstract
    Logic and precision are fundamental to ontologies underlying the semantic web and, by extension, to linked data. This special section focuses on the interaction of semantics, ontologies and linked data. The discussion presents the Simple Knowledge Organization Scheme (SKOS) as a less formal strategy for expressing concept hierarchies and associations and questions the value of deep domain ontologies in favor of simpler vocabularies that are more open to reuse, albeit risking illogical outcomes. RDF ontologies harbor another unexpected drawback. While structurally sound, they leave validation gaps permitting illogical uses, a problem being addressed by a W3C Working Group. Data models based on RDF graphs and properties may replace traditional library catalog models geared to predefined entities, with relationships between RDF classes providing the semantic connections. The BIBFRAME Initiative takes a different and streamlined approach to linking data, building rich networks of information resources rather than relying on a strict underlying structure and vocabulary. Taken together, the articles illustrate the trend toward a pragmatic approach to a Semantic Web, sacrificing some specificity for greater flexibility and partial interoperability.
    Source
    Bulletin of the Association for Information Science and Technology. 41(2015) no.4, S.10-12
  12. Leiva-Mederos, A.; Senso, J.A.; Hidalgo-Delgado, Y.; Hipola, P.: Working framework of semantic interoperability for CRIS with heterogeneous data sources (2017) 0.02
    0.018960943 = product of:
      0.05688283 = sum of:
        0.01339484 = weight(_text_:information in 3706) [ClassicSimilarity], result of:
          0.01339484 = score(doc=3706,freq=10.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.1734784 = fieldWeight in 3706, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=3706)
        0.04348799 = weight(_text_:networks in 3706) [ClassicSimilarity], result of:
          0.04348799 = score(doc=3706,freq=2.0), product of:
            0.20804176 = queryWeight, product of:
              4.72992 = idf(docFreq=1060, maxDocs=44218)
              0.043984205 = queryNorm
            0.2090349 = fieldWeight in 3706, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.72992 = idf(docFreq=1060, maxDocs=44218)
              0.03125 = fieldNorm(doc=3706)
      0.33333334 = coord(2/6)
    
    Abstract
    Purpose Information from Current Research Information Systems (CRIS) is stored in different formats, in platforms that are not compatible, or even in independent networks. It would be helpful to have a well-defined methodology to allow for management data processing from a single site, so as to take advantage of the capacity to link disperse data found in different systems, platforms, sources and/or formats. Based on functionalities and materials of the VLIR project, the purpose of this paper is to present a model that provides for interoperability by means of semantic alignment techniques and metadata crosswalks, and facilitates the fusion of information stored in diverse sources. Design/methodology/approach After reviewing the state of the art regarding the diverse mechanisms for achieving semantic interoperability, the paper analyzes the following: the specific coverage of the data sets (type of data, thematic coverage and geographic coverage); the technical specifications needed to retrieve and analyze a distribution of the data set (format, protocol, etc.); the conditions of re-utilization (copyright and licenses); and the "dimensions" included in the data set as well as the semantics of these dimensions (the syntax and the taxonomies of reference). The semantic interoperability framework here presented implements semantic alignment and metadata crosswalk to convert information from three different systems (ABCD, Moodle and DSpace) to integrate all the databases in a single RDF file. Findings The paper also includes an evaluation based on the comparison - by means of calculations of recall and precision - of the proposed model and identical consultations made on Open Archives Initiative and SQL, in order to estimate its efficiency. The results have been satisfactory enough, due to the fact that the semantic interoperability facilitates the exact retrieval of information. Originality/value The proposed model enhances management of the syntactic and semantic interoperability of the CRIS system designed. In a real setting of use it achieves very positive results.
  13. Wang, S.; Isaac, A.; Schopman, B.; Schlobach, S.; Meij, L. van der: Matching multilingual subject vocabularies (2009) 0.02
    0.015294841 = product of:
      0.09176904 = sum of:
        0.09176904 = weight(_text_:united in 3035) [ClassicSimilarity], result of:
          0.09176904 = score(doc=3035,freq=2.0), product of:
            0.24675635 = queryWeight, product of:
              5.6101127 = idf(docFreq=439, maxDocs=44218)
              0.043984205 = queryNorm
            0.37190145 = fieldWeight in 3035, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.6101127 = idf(docFreq=439, maxDocs=44218)
              0.046875 = fieldNorm(doc=3035)
      0.16666667 = coord(1/6)
    
    Abstract
    Most libraries and other cultural heritage institutions use controlled knowledge organisation systems, such as thesauri, to describe their collections. Unfortunately, as most of these institutions use different such systems, united access to heterogeneous collections is difficult. Things are even worse in an international context when concepts have labels in different languages. In order to overcome the multilingual interoperability problem between European Libraries, extensive work has been done to manually map concepts from different knowledge organisation systems, which is a tedious and expensive process. Within the TELplus project, we developed and evaluated methods to automatically discover these mappings, using different ontology matching techniques. In experiments on major French, English and German subject heading lists Rameau, LCSH and SWD, we show that we can automatically produce mappings of surprisingly good quality, even when using relatively naive translation and matching methods.
  14. Celli, F. et al.: Enabling multilingual search through controlled vocabularies : the AGRIS approach (2016) 0.01
    0.014924051 = product of:
      0.04477215 = sum of:
        0.014975886 = weight(_text_:information in 3278) [ClassicSimilarity], result of:
          0.014975886 = score(doc=3278,freq=2.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.19395474 = fieldWeight in 3278, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.078125 = fieldNorm(doc=3278)
        0.029796265 = product of:
          0.05959253 = sum of:
            0.05959253 = weight(_text_:22 in 3278) [ClassicSimilarity], result of:
              0.05959253 = score(doc=3278,freq=2.0), product of:
                0.1540252 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043984205 = queryNorm
                0.38690117 = fieldWeight in 3278, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=3278)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Series
    Communications in computer and information science; 672
    Source
    Metadata and semantics research: 10th International Conference, MTSR 2016, Göttingen, Germany, November 22-25, 2016, Proceedings. Eds.: E. Garoufallou
  15. Wake, S.; Nicholson, D.: HILT: High-Level Thesaurus Project : building consensus for interoperable subject access across communities (2001) 0.01
    0.013282189 = product of:
      0.039846566 = sum of:
        0.010375599 = weight(_text_:information in 1224) [ClassicSimilarity], result of:
          0.010375599 = score(doc=1224,freq=6.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.1343758 = fieldWeight in 1224, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=1224)
        0.029470965 = product of:
          0.05894193 = sum of:
            0.05894193 = weight(_text_:states in 1224) [ClassicSimilarity], result of:
              0.05894193 = score(doc=1224,freq=2.0), product of:
                0.24220218 = queryWeight, product of:
                  5.506572 = idf(docFreq=487, maxDocs=44218)
                  0.043984205 = queryNorm
                0.24335839 = fieldWeight in 1224, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.506572 = idf(docFreq=487, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1224)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Abstract
    This article provides an overview of the work carried out by the HILT Project <http://hilt.cdlr.strath.ac.uk> in making recommendations towards interoperable subject access, or cross-searching and browsing distributed services amongst the archives, libraries, museums and electronic services sectors. The article details consensus achieved at the 19 June 2001 HILT Workshop and discusses the HILT Stakeholder Survey. In 1999 Péter Jascó wrote that "savvy searchers" are asking for direction. Three years later the scenario he describes, that of searchers cross-searching databases where the subject vocabulary used in each case is different, still rings true. Jascó states that, in many cases, databases do not offer the necessary aids required to use the "preferred terms of the subject-controlled vocabulary". The databases to which Jascó refers are Dialog and DataStar. However, the situation he describes applies as well to the area that HILT is researching: that of cross-searching and browsing by subject across databases and catalogues in archives, libraries, museums and online information services. So how does a user access information on a particular subject when it is indexed across a multitude of services under different, but quite often similar, subject terms? Also, if experienced searchers are having problems, what about novice searchers? As information professionals, it is our role to investigate such problems and recommend solutions. Although there is no hard empirical evidence one way or another, HILT participants agree that the problem for users attempting to search across databases is real. There is a strong likelihood that users are disadvantaged by the use of different subject terminology combined with a multitude of different practices taking place within the archive, library, museums and online communities. Arguably, failure to address this problem of interoperability undermines the value of cross-searching and browsing facilities, and wastes public money because relevant resources are 'hidden' from searchers. HILT is charged with analysing this broad problem through qualitative methods, with the main aim of presenting a set of recommendations on how to make it easier to cross-search and browse distributed services. Because this is a very large problem composed of many strands, HILT recognizes that any proposed solutions must address a host of issues. Recommended solutions must be affordable, sustainable, politically acceptable, useful, future-proof and international in scope. It also became clear to the HILT team that progress toward finding solutions to the interoperability problem could only be achieved through direct dialogue with other parties keen to solve this problem, and that the problem was as much about consensus building as it was about finding a solution. This article describes how HILT approached the cross-searching problem; how it investigated the nature of the problem, detailing results from the HILT Stakeholder Survey; and how it achieved consensus through the recent HILT Workshop.
  16. Metadata and semantics research : 10th International Conference, MTSR 2016, Göttingen, Germany, November 22-25, 2016, Proceedings (2016) 0.01
    0.013004894 = product of:
      0.039014682 = sum of:
        0.018157298 = weight(_text_:information in 3283) [ClassicSimilarity], result of:
          0.018157298 = score(doc=3283,freq=6.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.23515764 = fieldWeight in 3283, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3283)
        0.020857384 = product of:
          0.04171477 = sum of:
            0.04171477 = weight(_text_:22 in 3283) [ClassicSimilarity], result of:
              0.04171477 = score(doc=3283,freq=2.0), product of:
                0.1540252 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043984205 = queryNorm
                0.2708308 = fieldWeight in 3283, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3283)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Abstract
    This book constitutes the refereed proceedings of the 10th Metadata and Semantics Research Conference, MTSR 2016, held in Göttingen, Germany, in November 2016. The 26 full papers and 6 short papers presented were carefully reviewed and selected from 67 submissions. The papers are organized in several sessions and tracks: Digital Libraries, Information Retrieval, Linked and Social Data, Metadata and Semantics for Open Repositories, Research Information Systems and Data Infrastructures, Metadata and Semantics for Agriculture, Food and Environment, Metadata and Semantics for Cultural Collections and Applications, European and National Projects.
    Series
    Communications in computer and information science; 672
  17. Si, L.E.; O'Brien, A.; Probets, S.: Integration of distributed terminology resources to facilitate subject cross-browsing for library portal systems (2010) 0.01
    0.0127457 = product of:
      0.0764742 = sum of:
        0.0764742 = weight(_text_:united in 3944) [ClassicSimilarity], result of:
          0.0764742 = score(doc=3944,freq=2.0), product of:
            0.24675635 = queryWeight, product of:
              5.6101127 = idf(docFreq=439, maxDocs=44218)
              0.043984205 = queryNorm
            0.30991787 = fieldWeight in 3944, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.6101127 = idf(docFreq=439, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3944)
      0.16666667 = coord(1/6)
    
    Footnote
    Beitrag in einem Special Issue: Content architecture: exploiting and managing diverse resources: proceedings of the first national conference of the United Kingdom chapter of the International Society for Knowedge Organization (ISKO)
  18. Kempf, A.O.; Ritze, D.; Eckert, K.; Zapilko, B.: New ways of mapping knowledge organization systems : using a semi-automatic matching procedure for building up vocabulary crosswalks (2014) 0.01
    0.0127457 = product of:
      0.0764742 = sum of:
        0.0764742 = weight(_text_:united in 1371) [ClassicSimilarity], result of:
          0.0764742 = score(doc=1371,freq=2.0), product of:
            0.24675635 = queryWeight, product of:
              5.6101127 = idf(docFreq=439, maxDocs=44218)
              0.043984205 = queryNorm
            0.30991787 = fieldWeight in 1371, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.6101127 = idf(docFreq=439, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1371)
      0.16666667 = coord(1/6)
    
    Content
    Papers from the ISKO-UK Biennial Conference, "Knowledge Organization: Pushing the Boundaries," United Kingdom, 8-9 July, 2013, London.
  19. Bittner, T.; Donnelly, M.; Winter, S.: Ontology and semantic interoperability (2006) 0.01
    0.011949606 = product of:
      0.03584882 = sum of:
        0.017971063 = weight(_text_:information in 4820) [ClassicSimilarity], result of:
          0.017971063 = score(doc=4820,freq=8.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.23274569 = fieldWeight in 4820, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=4820)
        0.017877758 = product of:
          0.035755515 = sum of:
            0.035755515 = weight(_text_:22 in 4820) [ClassicSimilarity], result of:
              0.035755515 = score(doc=4820,freq=2.0), product of:
                0.1540252 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043984205 = queryNorm
                0.23214069 = fieldWeight in 4820, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4820)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Abstract
    One of the major problems facing systems for Computer Aided Design (CAD), Architecture Engineering and Construction (AEC) and Geographic Information Systems (GIS) applications today is the lack of interoperability among the various systems. When integrating software applications, substantial di culties can arise in translating information from one application to the other. In this paper, we focus on semantic di culties that arise in software integration. Applications may use di erent terminologies to describe the same domain. Even when appli-cations use the same terminology, they often associate di erent semantics with the terms. This obstructs information exchange among applications. To cir-cumvent this obstacle, we need some way of explicitly specifying the semantics for each terminology in an unambiguous fashion. Ontologies can provide such specification. It will be the task of this paper to explain what ontologies are and how they can be used to facilitate interoperability between software systems used in computer aided design, architecture engineering and construction, and geographic information processing.
    Date
    3.12.2016 18:39:22
  20. Haslhofer, B.: Uniform SPARQL access to interlinked (digital library) sources (2007) 0.01
    0.011939241 = product of:
      0.03581772 = sum of:
        0.011980709 = weight(_text_:information in 541) [ClassicSimilarity], result of:
          0.011980709 = score(doc=541,freq=2.0), product of:
            0.0772133 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.043984205 = queryNorm
            0.1551638 = fieldWeight in 541, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0625 = fieldNorm(doc=541)
        0.023837011 = product of:
          0.047674023 = sum of:
            0.047674023 = weight(_text_:22 in 541) [ClassicSimilarity], result of:
              0.047674023 = score(doc=541,freq=2.0), product of:
                0.1540252 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.043984205 = queryNorm
                0.30952093 = fieldWeight in 541, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=541)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Abstract
    In this presentation, we therefore focus on a solution for providing uniform access to Digital Libraries and other online services. In order to enable uniform query access to heterogeneous sources, we must provide metadata interoperability in a way that a query language - in this case SPARQL - can cope with the incompatibility of the metadata in various sources without changing their already existing information models.
    Date
    26.12.2011 13:22:46

Years

Languages

  • e 152
  • d 34

Types

  • a 133
  • el 46
  • m 14
  • x 8
  • s 7
  • n 2
  • r 2
  • p 1
  • More… Less…