Search (147 results, page 1 of 8)

  • × theme_ss:"Visualisierung"
  1. Trunk, D.: Semantische Netze in Informationssystemen : Verbesserung der Suche durch Interaktion und Visualisierung (2005) 0.07
    0.07478131 = product of:
      0.11217197 = sum of:
        0.017470727 = weight(_text_:information in 2500) [ClassicSimilarity], result of:
          0.017470727 = score(doc=2500,freq=4.0), product of:
            0.09099081 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0518325 = queryNorm
            0.1920054 = fieldWeight in 2500, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2500)
        0.094701245 = sum of:
          0.045543127 = weight(_text_:management in 2500) [ClassicSimilarity], result of:
            0.045543127 = score(doc=2500,freq=2.0), product of:
              0.17470726 = queryWeight, product of:
                3.3706124 = idf(docFreq=4130, maxDocs=44218)
                0.0518325 = queryNorm
              0.2606825 = fieldWeight in 2500, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.3706124 = idf(docFreq=4130, maxDocs=44218)
                0.0546875 = fieldNorm(doc=2500)
          0.04915812 = weight(_text_:22 in 2500) [ClassicSimilarity], result of:
            0.04915812 = score(doc=2500,freq=2.0), product of:
              0.18150859 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0518325 = queryNorm
              0.2708308 = fieldWeight in 2500, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0546875 = fieldNorm(doc=2500)
      0.6666667 = coord(2/3)
    
    Abstract
    Semantische Netze unterstützen den Suchvorgang im Information Retrieval. Sie bestehen aus relationierten Begriffen und helfen dem Nutzer das richtige Vokabular zur Fragebildung zu finden. Eine leicht und intuitiv erfassbare Darstellung und eine interaktive Bedienungsmöglichkeit optimieren den Suchprozess mit der Begriffsstruktur. Als Interaktionsform bietet sich Hy-pertext mit dem etablierte Point- und Klickverfahren an. Eine Visualisierung zur Unterstützung kognitiver Fähigkeiten kann durch eine Darstellung der Informationen mit Hilfe von Punkten und Linien erfolgen. Vorgestellt wer-den die Anwendungsbeispiele Wissensnetz im Brockhaus multimedial, WordSurfer der Firma BiblioMondo, SpiderSearch der Firma BOND und Topic Maps Visualization in dandelon.com und im Portal Informationswis-senschaft der Firma AGI - Information Management Consultants.
    Date
    30. 1.2007 18:22:41
  2. Wu, K.-C.; Hsieh, T.-Y.: Affective choosing of clustering and categorization representations in e-book interfaces (2016) 0.06
    0.05528497 = product of:
      0.08292745 = sum of:
        0.015283704 = weight(_text_:information in 3070) [ClassicSimilarity], result of:
          0.015283704 = score(doc=3070,freq=6.0), product of:
            0.09099081 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0518325 = queryNorm
            0.16796975 = fieldWeight in 3070, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3070)
        0.06764375 = sum of:
          0.032530803 = weight(_text_:management in 3070) [ClassicSimilarity], result of:
            0.032530803 = score(doc=3070,freq=2.0), product of:
              0.17470726 = queryWeight, product of:
                3.3706124 = idf(docFreq=4130, maxDocs=44218)
                0.0518325 = queryNorm
              0.18620178 = fieldWeight in 3070, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.3706124 = idf(docFreq=4130, maxDocs=44218)
                0.0390625 = fieldNorm(doc=3070)
          0.035112944 = weight(_text_:22 in 3070) [ClassicSimilarity], result of:
            0.035112944 = score(doc=3070,freq=2.0), product of:
              0.18150859 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0518325 = queryNorm
              0.19345059 = fieldWeight in 3070, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=3070)
      0.6666667 = coord(2/3)
    
    Abstract
    Purpose - The purpose of this paper is to investigate user experiences with a touch-wall interface featuring both clustering and categorization representations of available e-books in a public library to understand human information interactions under work-focused and recreational contexts. Design/methodology/approach - Researchers collected questionnaires from 251 New Taipei City Library visitors who used the touch-wall interface to search for new titles. The authors applied structural equation modelling to examine relationships among hedonic/utilitarian needs, clustering and categorization representations, perceived ease of use (EU) and the extent to which users experienced anxiety and uncertainty (AU) while interacting with the interface. Findings - Utilitarian users who have an explicit idea of what they intend to find tend to prefer the categorization interface. A hedonic-oriented user tends to prefer clustering interfaces. Users reported EU regardless of which interface they engaged with. Results revealed that use of the clustering interface had a negative correlation with AU. Users that seek to satisfy utilitarian needs tended to emphasize the importance of perceived EU, whilst pleasure-seeking users were a little more tolerant of anxiety or uncertainty. Originality/value - The Online Public Access Catalogue (OPAC) encourages library visitors to borrow digital books through the implementation of an information visualization system. This situation poses an opportunity to validate uses and gratification theory. People with hedonic/utilitarian needs displayed different risk-control attitudes and affected uncertainty using the interface. Knowledge about user interaction with such interfaces is vital when launching the development of a new OPAC.
    Date
    20. 1.2015 18:30:22
    Source
    Aslib journal of information management. 68(2016) no.3, S.265-285
  3. Zhang, J.: TOFIR: A tool of facilitating information retrieval : introduce a visual retrieval model (2001) 0.05
    0.05365639 = product of:
      0.080484584 = sum of:
        0.034941453 = weight(_text_:information in 7711) [ClassicSimilarity], result of:
          0.034941453 = score(doc=7711,freq=4.0), product of:
            0.09099081 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0518325 = queryNorm
            0.3840108 = fieldWeight in 7711, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.109375 = fieldNorm(doc=7711)
        0.045543127 = product of:
          0.09108625 = sum of:
            0.09108625 = weight(_text_:management in 7711) [ClassicSimilarity], result of:
              0.09108625 = score(doc=7711,freq=2.0), product of:
                0.17470726 = queryWeight, product of:
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.0518325 = queryNorm
                0.521365 = fieldWeight in 7711, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.109375 = fieldNorm(doc=7711)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Source
    Information processing and management. 37(2001) no.4, S.639-657
  4. Information visualization in data mining and knowledge discovery (2002) 0.03
    0.030436005 = product of:
      0.045654006 = sum of:
        0.013206628 = weight(_text_:information in 1789) [ClassicSimilarity], result of:
          0.013206628 = score(doc=1789,freq=28.0), product of:
            0.09099081 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0518325 = queryNorm
            0.14514244 = fieldWeight in 1789, product of:
              5.2915025 = tf(freq=28.0), with freq of:
                28.0 = termFreq=28.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.015625 = fieldNorm(doc=1789)
        0.03244738 = sum of:
          0.018402202 = weight(_text_:management in 1789) [ClassicSimilarity], result of:
            0.018402202 = score(doc=1789,freq=4.0), product of:
              0.17470726 = queryWeight, product of:
                3.3706124 = idf(docFreq=4130, maxDocs=44218)
                0.0518325 = queryNorm
              0.10533164 = fieldWeight in 1789, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                3.3706124 = idf(docFreq=4130, maxDocs=44218)
                0.015625 = fieldNorm(doc=1789)
          0.014045177 = weight(_text_:22 in 1789) [ClassicSimilarity], result of:
            0.014045177 = score(doc=1789,freq=2.0), product of:
              0.18150859 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0518325 = queryNorm
              0.07738023 = fieldWeight in 1789, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.015625 = fieldNorm(doc=1789)
      0.6666667 = coord(2/3)
    
    Date
    23. 3.2008 19:10:22
    Footnote
    Rez. in: JASIST 54(2003) no.9, S.905-906 (C.A. Badurek): "Visual approaches for knowledge discovery in very large databases are a prime research need for information scientists focused an extracting meaningful information from the ever growing stores of data from a variety of domains, including business, the geosciences, and satellite and medical imagery. This work presents a summary of research efforts in the fields of data mining, knowledge discovery, and data visualization with the goal of aiding the integration of research approaches and techniques from these major fields. The editors, leading computer scientists from academia and industry, present a collection of 32 papers from contributors who are incorporating visualization and data mining techniques through academic research as well application development in industry and government agencies. Information Visualization focuses upon techniques to enhance the natural abilities of humans to visually understand data, in particular, large-scale data sets. It is primarily concerned with developing interactive graphical representations to enable users to more intuitively make sense of multidimensional data as part of the data exploration process. It includes research from computer science, psychology, human-computer interaction, statistics, and information science. Knowledge Discovery in Databases (KDD) most often refers to the process of mining databases for previously unknown patterns and trends in data. Data mining refers to the particular computational methods or algorithms used in this process. The data mining research field is most related to computational advances in database theory, artificial intelligence and machine learning. This work compiles research summaries from these main research areas in order to provide "a reference work containing the collection of thoughts and ideas of noted researchers from the fields of data mining and data visualization" (p. 8). It addresses these areas in three main sections: the first an data visualization, the second an KDD and model visualization, and the last an using visualization in the knowledge discovery process. The seven chapters of Part One focus upon methodologies and successful techniques from the field of Data Visualization. Hoffman and Grinstein (Chapter 2) give a particularly good overview of the field of data visualization and its potential application to data mining. An introduction to the terminology of data visualization, relation to perceptual and cognitive science, and discussion of the major visualization display techniques are presented. Discussion and illustration explain the usefulness and proper context of such data visualization techniques as scatter plots, 2D and 3D isosurfaces, glyphs, parallel coordinates, and radial coordinate visualizations. Remaining chapters present the need for standardization of visualization methods, discussion of user requirements in the development of tools, and examples of using information visualization in addressing research problems.
    In 13 chapters, Part Two provides an introduction to KDD, an overview of data mining techniques, and examples of the usefulness of data model visualizations. The importance of visualization throughout the KDD process is stressed in many of the chapters. In particular, the need for measures of visualization effectiveness, benchmarking for identifying best practices, and the use of standardized sample data sets is convincingly presented. Many of the important data mining approaches are discussed in this complementary context. Cluster and outlier detection, classification techniques, and rule discovery algorithms are presented as the basic techniques common to the KDD process. The potential effectiveness of using visualization in the data modeling process are illustrated in chapters focused an using visualization for helping users understand the KDD process, ask questions and form hypotheses about their data, and evaluate the accuracy and veracity of their results. The 11 chapters of Part Three provide an overview of the KDD process and successful approaches to integrating KDD, data mining, and visualization in complementary domains. Rhodes (Chapter 21) begins this section with an excellent overview of the relation between the KDD process and data mining techniques. He states that the "primary goals of data mining are to describe the existing data and to predict the behavior or characteristics of future data of the same type" (p. 281). These goals are met by data mining tasks such as classification, regression, clustering, summarization, dependency modeling, and change or deviation detection. Subsequent chapters demonstrate how visualization can aid users in the interactive process of knowledge discovery by graphically representing the results from these iterative tasks. Finally, examples of the usefulness of integrating visualization and data mining tools in the domain of business, imagery and text mining, and massive data sets are provided. This text concludes with a thorough and useful 17-page index and lengthy yet integrating 17-page summary of the academic and industrial backgrounds of the contributing authors. A 16-page set of color inserts provide a better representation of the visualizations discussed, and a URL provided suggests that readers may view all the book's figures in color on-line, although as of this submission date it only provides access to a summary of the book and its contents. The overall contribution of this work is its focus an bridging two distinct areas of research, making it a valuable addition to the Morgan Kaufmann Series in Database Management Systems. The editors of this text have met their main goal of providing the first textbook integrating knowledge discovery, data mining, and visualization. Although it contributes greatly to our under- standing of the development and current state of the field, a major weakness of this text is that there is no concluding chapter to discuss the contributions of the sum of these contributed papers or give direction to possible future areas of research. "Integration of expertise between two different disciplines is a difficult process of communication and reeducation. Integrating data mining and visualization is particularly complex because each of these fields in itself must draw an a wide range of research experience" (p. 300). Although this work contributes to the crossdisciplinary communication needed to advance visualization in KDD, a more formal call for an interdisciplinary research agenda in a concluding chapter would have provided a more satisfying conclusion to a very good introductory text.
    With contributors almost exclusively from the computer science field, the intended audience of this work is heavily slanted towards a computer science perspective. However, it is highly readable and provides introductory material that would be useful to information scientists from a variety of domains. Yet, much interesting work in information visualization from other fields could have been included giving the work more of an interdisciplinary perspective to complement their goals of integrating work in this area. Unfortunately, many of the application chapters are these, shallow, and lack complementary illustrations of visualization techniques or user interfaces used. However, they do provide insight into the many applications being developed in this rapidly expanding field. The authors have successfully put together a highly useful reference text for the data mining and information visualization communities. Those interested in a good introduction and overview of complementary research areas in these fields will be satisfied with this collection of papers. The focus upon integrating data visualization with data mining complements texts in each of these fields, such as Advances in Knowledge Discovery and Data Mining (Fayyad et al., MIT Press) and Readings in Information Visualization: Using Vision to Think (Card et. al., Morgan Kauffman). This unique work is a good starting point for future interaction between researchers in the fields of data visualization and data mining and makes a good accompaniment for a course focused an integrating these areas or to the main reference texts in these fields."
    LCSH
    Information visualization
    RSWK
    Information Retrieval (BVB)
    Series
    Morgan Kaufmann series in data management systems
    Subject
    Information Retrieval (BVB)
    Information visualization
  5. Börner, K.: Atlas of knowledge : anyone can map (2015) 0.03
    0.029846152 = product of:
      0.044769228 = sum of:
        0.014974909 = weight(_text_:information in 3355) [ClassicSimilarity], result of:
          0.014974909 = score(doc=3355,freq=4.0), product of:
            0.09099081 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0518325 = queryNorm
            0.16457605 = fieldWeight in 3355, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=3355)
        0.02979432 = product of:
          0.05958864 = sum of:
            0.05958864 = weight(_text_:22 in 3355) [ClassicSimilarity], result of:
              0.05958864 = score(doc=3355,freq=4.0), product of:
                0.18150859 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0518325 = queryNorm
                0.32829654 = fieldWeight in 3355, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3355)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Date
    22. 1.2017 16:54:03
    22. 1.2017 17:10:56
    LCSH
    Information visualization
    Subject
    Information visualization
  6. Zhang, J.; Nguyen, T.: WebStar: a visualization model for hyperlink structures (2005) 0.03
    0.027130803 = product of:
      0.040696204 = sum of:
        0.02117772 = weight(_text_:information in 1056) [ClassicSimilarity], result of:
          0.02117772 = score(doc=1056,freq=8.0), product of:
            0.09099081 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0518325 = queryNorm
            0.23274569 = fieldWeight in 1056, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=1056)
        0.019518482 = product of:
          0.039036963 = sum of:
            0.039036963 = weight(_text_:management in 1056) [ClassicSimilarity], result of:
              0.039036963 = score(doc=1056,freq=2.0), product of:
                0.17470726 = queryWeight, product of:
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.0518325 = queryNorm
                0.22344214 = fieldWeight in 1056, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1056)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    The authors introduce an information visualization model, WebStar, for hyperlink-based information systems. Hyperlinks within a hyperlink-based document can be visualized in a two-dimensional visual space. All links are projected within a display sphere in the visual space. The relationship between a specified central document and its hyperlinked documents is visually presented in the visual space. In addition, users are able to define a group of subjects and to observe relevance between each subject and all hyperlinked documents via movement of that subject around the display sphere center. WebStar allows users to dynamically change an interest center during navigation. A retrieval mechanism is developed to control retrieved results in the visual space. Impact of movement of a subject on the visual document distribution is analyzed. An ambiguity problem caused by projection is discussed. Potential applications of this visualization model in information retrieval are included. Future research directions on the topic are addressed.
    Source
    Information processing and management. 41(2005) no.4, S.1003-1018
  7. Trunk, D.: Inhaltliche Semantische Netze in Informationssystemen : Verbesserung der Suche durch Interaktion und Visualisierung (2005) 0.03
    0.026828196 = product of:
      0.040242292 = sum of:
        0.017470727 = weight(_text_:information in 790) [ClassicSimilarity], result of:
          0.017470727 = score(doc=790,freq=4.0), product of:
            0.09099081 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0518325 = queryNorm
            0.1920054 = fieldWeight in 790, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0546875 = fieldNorm(doc=790)
        0.022771563 = product of:
          0.045543127 = sum of:
            0.045543127 = weight(_text_:management in 790) [ClassicSimilarity], result of:
              0.045543127 = score(doc=790,freq=2.0), product of:
                0.17470726 = queryWeight, product of:
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.0518325 = queryNorm
                0.2606825 = fieldWeight in 790, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=790)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Semantische Netze unterstützen den Suchvorgang im Information Retrieval. Sie bestehen aus relationierten Begriffen und helfen dem Nutzer, das richtige Vokabular zur Fragebildung zu finden. Eine leicht und intuitiv erfassbare Darstellung und eine interaktive Bedienungsmöglichkeit optimieren den Suchprozess mit der Begriffsstruktur. Als Interaktionsform bietet sich Hypertext mit seinem Point- und Klickverfahren an. Die Visualisierung erfolgt als Netzstruktur aus Punkten und Linien. Es werden die Anwendungsbeispiele Wissensnetz im Brockhaus multimedial, WordSurfer der Firma BiblioMondo, SpiderSearch der Firma BOND und Topic Maps Visualization in dandelon.com und im Portal Informationswissenschaft der Firma AGI - Information Management Consultants vorgestellt.
  8. Ahn, J.-w.; Brusilovsky, P.: Adaptive visualization for exploratory information retrieval (2013) 0.03
    0.026407761 = product of:
      0.03961164 = sum of:
        0.02334624 = weight(_text_:information in 2717) [ClassicSimilarity], result of:
          0.02334624 = score(doc=2717,freq=14.0), product of:
            0.09099081 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0518325 = queryNorm
            0.256578 = fieldWeight in 2717, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2717)
        0.016265402 = product of:
          0.032530803 = sum of:
            0.032530803 = weight(_text_:management in 2717) [ClassicSimilarity], result of:
              0.032530803 = score(doc=2717,freq=2.0), product of:
                0.17470726 = queryWeight, product of:
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.0518325 = queryNorm
                0.18620178 = fieldWeight in 2717, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2717)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    As the volume and breadth of online information is rapidly increasing, ad hoc search systems become less and less efficient to answer information needs of modern users. To support the growing complexity of search tasks, researchers in the field of information developed and explored a range of approaches that extend the traditional ad hoc retrieval paradigm. Among these approaches, personalized search systems and exploratory search systems attracted many followers. Personalized search explored the power of artificial intelligence techniques to provide tailored search results according to different user interests, contexts, and tasks. In contrast, exploratory search capitalized on the power of human intelligence by providing users with more powerful interfaces to support the search process. As these approaches are not contradictory, we believe that they can re-enforce each other. We argue that the effectiveness of personalized search systems may be increased by allowing users to interact with the system and learn/investigate the problem in order to reach the final goal. We also suggest that an interactive visualization approach could offer a good ground to combine the strong sides of personalized and exploratory search approaches. This paper proposes a specific way to integrate interactive visualization and personalized search and introduces an adaptive visualization based search system Adaptive VIBE that implements it. We tested the effectiveness of Adaptive VIBE and investigated its strengths and weaknesses by conducting a full-scale user study. The results show that Adaptive VIBE can improve the precision and the productivity of the personalized search system while helping users to discover more diverse sets of information.
    Footnote
    Beitrag im Rahmen einer Special section on Human-computer Information Retrieval.
    Source
    Information processing and management. 49(2013) no.5, S.1139-1164
  9. Palm, F.: QVIZ : Query and context based visualization of time-spatial cultural dynamics (2007) 0.03
    0.026272139 = product of:
      0.039408207 = sum of:
        0.018340444 = weight(_text_:information in 1289) [ClassicSimilarity], result of:
          0.018340444 = score(doc=1289,freq=6.0), product of:
            0.09099081 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0518325 = queryNorm
            0.20156369 = fieldWeight in 1289, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=1289)
        0.021067765 = product of:
          0.04213553 = sum of:
            0.04213553 = weight(_text_:22 in 1289) [ClassicSimilarity], result of:
              0.04213553 = score(doc=1289,freq=2.0), product of:
                0.18150859 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0518325 = queryNorm
                0.23214069 = fieldWeight in 1289, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1289)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    QVIZ will research and create a framework for visualizing and querying archival resources by a time-space interface based on maps and emergent knowledge structures. The framework will also integrate social software, such as wikis, in order to utilize knowledge in existing and new communities of practice. QVIZ will lead to improved information sharing and knowledge creation, easier access to information in a user-adapted context and innovative ways of exploring and visualizing materials over time, between countries and other administrative units. The common European framework for sharing and accessing archival information provided by the QVIZ project will open a considerably larger commercial market based on archival materials as well as a richer understanding of European history.
    Content
    Vortrag anlässlich des Workshops: "Extending the multilingual capacity of The European Library in the EDL project Stockholm, Swedish National Library, 22-23 November 2007".
  10. Thissen, F.: Screen-Design-Manual : Communicating Effectively Through Multimedia (2003) 0.03
    0.026113927 = product of:
      0.03917089 = sum of:
        0.02161442 = weight(_text_:information in 1397) [ClassicSimilarity], result of:
          0.02161442 = score(doc=1397,freq=12.0), product of:
            0.09099081 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0518325 = queryNorm
            0.23754507 = fieldWeight in 1397, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1397)
        0.017556472 = product of:
          0.035112944 = sum of:
            0.035112944 = weight(_text_:22 in 1397) [ClassicSimilarity], result of:
              0.035112944 = score(doc=1397,freq=2.0), product of:
                0.18150859 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0518325 = queryNorm
                0.19345059 = fieldWeight in 1397, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1397)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    The "Screen Design Manual" provides designers of interactive media with a practical working guide for preparing and presenting information that is suitable for both their target groups and the media they are using. It describes background information and relationships, clarifies them with the help of examples, and encourages further development of the language of digital media. In addition to the basics of the psychology of perception and learning, ergonomics, communication theory, imagery research, and aesthetics, the book also explores the design of navigation and orientation elements. Guidelines and checklists, along with the unique presentation of the book, support the application of information in practice.
    Content
    From the contents:.- Basics of screen design.- Navigation and orientation.- Information.- Screen layout.Interaction.- Motivation.- Innovative prospects.- Appendix.Glossary.- Literature.- Index
    Date
    22. 3.2008 14:29:25
    LCSH
    Information display systems / Formatting
    Subject
    Information display systems / Formatting
  11. Catarci, T.; Spaccapietra, S.: Visual information querying (2002) 0.02
    0.024846604 = product of:
      0.037269905 = sum of:
        0.027510663 = weight(_text_:information in 4268) [ClassicSimilarity], result of:
          0.027510663 = score(doc=4268,freq=54.0), product of:
            0.09099081 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0518325 = queryNorm
            0.3023455 = fieldWeight in 4268, product of:
              7.3484693 = tf(freq=54.0), with freq of:
                54.0 = termFreq=54.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0234375 = fieldNorm(doc=4268)
        0.009759241 = product of:
          0.019518482 = sum of:
            0.019518482 = weight(_text_:management in 4268) [ClassicSimilarity], result of:
              0.019518482 = score(doc=4268,freq=2.0), product of:
                0.17470726 = queryWeight, product of:
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.0518325 = queryNorm
                0.11172107 = fieldWeight in 4268, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=4268)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Computers have become our companions in many of the activities we pursue in our life. They assist us, in particular, in searching relevant information that is needed to perform a variety of tasks, from professional usage to personal entertainment. They hold this information in a huge number of heterogeneous sources, either dedicated to a specific user community (e.g., enterprise databases) or maintained for the general public (e.g., websites and digital libraries). Whereas progress in basic information technology is nowadays capable of guaranteeing effective information management, information retrieval and dissemination has become a core issue that needs further accomplishments to achieve user satisfaction. The research communities in databases, information retrieval, information visualization, and human-computer interaction have already largely investigated these domains. However, the technical environment has so dramatically evolved in recent years, inducing a parallel and very significant evolution in user habits and expectations, that new approaches are definitely needed to meet current demand. One of the most evident and significant changes is the human-computer interaction paradigm. Traditional interactions relayed an programming to express user information requirements in formal code and an textual output to convey to users the information extracted by the system. Except for professional data-intensive application frameworks, still in the hands of computer speciahsts, we have basically moved away from this pattern both in terms of expressing information requests and conveying results. The new goal is direct interaction with the final user (the person who is looking for information and is not necessarily familiar with computer technology). The key motto to achieve this is "go visual." The well-known high bandwidth of the human-vision channel allows both recognition and understanding of large quantities of information in no more than a few seconds. Thus, for instance, if the result of an information request can be organized as a visual display, or a sequence of visual displays, the information throughput is immensely superior to the one that can be achieved using textual support. User interaction becomes an iterative query-answer game that very rapidly leads to the desired final result. Conversely, the system can provide efficient visual support for easy query formulation. Displaying a visual representation of the information space, for instance, lets users directly point at the information they are looking for, without any need to be trained into the complex syntax of current query languages. Alternatively, users can navigate in the information space, following visible paths that will lead them to the targeted items. Again, thanks to the visual support, users are able to easily understand how to formulate queries and they are likely to achieve the task more rapidly and less prone to errors than with traditional textual interaction modes.
    The two facets of "going visual" are usually referred to as visual query systems, for query formulation, and information visualization, for result display. Visual Query Systems (VQSs) are defined as systems for querying databases that use a visual representation to depict the domain of interest and express related requests. VQSs provide both a language to express the queries in a visual format and a variety of functionalities to facilitate user-system interaction. As such, they are oriented toward a wide spectrum of users, especially novices who have limited computer expertise and generally ignore the inner structure of the accessed database. Information visualization, an increasingly important subdiscipline within the field of Human-Computer Interaction (HCI), focuses an visual mechanisms designed to communicate clearly to the user the structure of information and improve an the cost of accessing large data repositories. In printed form, information visualization has included the display of numerical data (e.g., bar charts, plot charts, pie charts), combinatorial relations (e.g., drawings of graphs), and geographic data (e.g., encoded maps). In addition to these "static" displays, computer-based systems, such as the Information Visualizer and Dynamic Queries, have coupled powerful visualization techniques (e.g., 3D, animation) with near real-time interactivity (i.e., the ability of the system to respond quickly to the user's direct manipulation commands). Information visualization is tightly combined with querying capabilities in some recent database-centered approaches. More opportunities for information visualization in a database environment may be found today in data mining and data warehousing applications, which typically access large data repositories. The enormous quantity of information sources an the World-Wide Web (WWW) available to users with diverse capabilities also calls for visualization techniques. In this article, we survey the main features and main proposals for visual query systems and touch upon the visualization of results mainly discussing traditional visualization forms. A discussion of modern database visualization techniques may be found elsewhere. Many related articles by Daniel Keim are available at http://www. informatik.uni-halle.de/dbs/publications.html.
    Source
    Encyclopedia of library and information science. Vol.72, [=Suppl.35]
  12. Osinska, V.; Bala, P.: New methods for visualization and improvement of classification schemes : the case of computer science (2010) 0.02
    0.02402845 = product of:
      0.036042675 = sum of:
        0.014974909 = weight(_text_:information in 3693) [ClassicSimilarity], result of:
          0.014974909 = score(doc=3693,freq=4.0), product of:
            0.09099081 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0518325 = queryNorm
            0.16457605 = fieldWeight in 3693, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=3693)
        0.021067765 = product of:
          0.04213553 = sum of:
            0.04213553 = weight(_text_:22 in 3693) [ClassicSimilarity], result of:
              0.04213553 = score(doc=3693,freq=2.0), product of:
                0.18150859 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0518325 = queryNorm
                0.23214069 = fieldWeight in 3693, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3693)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Generally, Computer Science (CS) classifications are inconsistent in taxonomy strategies. t is necessary to develop CS taxonomy research to combine its historical perspective, its current knowledge and its predicted future trends - including all breakthroughs in information and communication technology. In this paper we have analyzed the ACM Computing Classification System (CCS) by means of visualization maps. The important achievement of current work is an effective visualization of classified documents from the ACM Digital Library. From the technical point of view, the innovation lies in the parallel use of analysis units: (sub)classes and keywords as well as a spherical 3D information surface. We have compared both the thematic and semantic maps of classified documents and results presented in Table 1. Furthermore, the proposed new method is used for content-related evaluation of the original scheme. Summing up: we improved an original ACM classification in the Computer Science domain by means of visualization.
    Date
    22. 7.2010 19:36:46
  13. Batorowska, H.; Kaminska-Czubala, B.: Information retrieval support : visualisation of the information space of a document (2014) 0.02
    0.023481932 = product of:
      0.035222895 = sum of:
        0.021177718 = weight(_text_:information in 1444) [ClassicSimilarity], result of:
          0.021177718 = score(doc=1444,freq=18.0), product of:
            0.09099081 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0518325 = queryNorm
            0.23274568 = fieldWeight in 1444, product of:
              4.2426405 = tf(freq=18.0), with freq of:
                18.0 = termFreq=18.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.03125 = fieldNorm(doc=1444)
        0.014045177 = product of:
          0.028090354 = sum of:
            0.028090354 = weight(_text_:22 in 1444) [ClassicSimilarity], result of:
              0.028090354 = score(doc=1444,freq=2.0), product of:
                0.18150859 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0518325 = queryNorm
                0.15476047 = fieldWeight in 1444, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=1444)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Acquiring knowledge in any field involves information retrieval, i.e. searching the available documents to identify answers to the queries concerning the selected objects. Knowing the keywords which are names of the objects will enable situating the user's query in the information space organized as a thesaurus or faceted classification. Objectives: Identification the areas in the information space which correspond to gaps in the user's personal knowledge or in the domain knowledge might become useful in theory or practice. The aim of this paper is to present a realistic information-space model of a self-authored full-text document on information culture, indexed by the author of this article. Methodology: Having established the relations between the terms, particular modules (sets of terms connected by relations used in facet classification) are situated on a plain, similarly to a communication map. Conclusions drawn from the "journey" on the map, which is a visualization of the knowledge contained in the analysed document, are the crucial part of this paper. Results: The direct result of the research is the created model of information space visualization of a given document (book, article, website). The proposed procedure can practically be used as a new form of representation in order to map the contents of academic books and articles, beside the traditional index form, especially as an e-book auxiliary tool. In teaching, visualization of the information space of a document can be used to help students understand the issues of: classification, categorization and representation of new knowledge emerging in human mind.
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  14. Wu, I.-C.; Vakkari, P.: Effects of subject-oriented visualization tools on search by novices and intermediates (2018) 0.02
    0.023469714 = product of:
      0.03520457 = sum of:
        0.017648099 = weight(_text_:information in 4573) [ClassicSimilarity], result of:
          0.017648099 = score(doc=4573,freq=8.0), product of:
            0.09099081 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0518325 = queryNorm
            0.19395474 = fieldWeight in 4573, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4573)
        0.017556472 = product of:
          0.035112944 = sum of:
            0.035112944 = weight(_text_:22 in 4573) [ClassicSimilarity], result of:
              0.035112944 = score(doc=4573,freq=2.0), product of:
                0.18150859 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0518325 = queryNorm
                0.19345059 = fieldWeight in 4573, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4573)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    This study explores how user subject knowledge influences search task processes and outcomes, as well as how search behavior is influenced by subject-oriented information visualization (IV) tools. To enable integrated searches, the proposed WikiMap + integrates search functions and IV tools (i.e., a topic network and hierarchical topic tree) and gathers information from Wikipedia pages and Google Search results. To evaluate the effectiveness of the proposed interfaces, we design subject-oriented tasks and adopt extended evaluation measures. We recruited 48 novices and 48 knowledgeable users, that is, intermediates, for the evaluation. Our results show that novices using the proposed interface demonstrate better search performance than intermediates using Wikipedia. We therefore conclude that our tools help close the gap between novices and intermediates in information searches. The results also show that intermediates can take advantage of the search tool by leveraging the IV tools to browse subtopics, and formulate better queries with less effort. We conclude that embedding the IV and the search tools in the interface can result in different search behavior but improved task performance. We provide implications to design search systems to include IV features adapted to user levels of subject knowledge to help them achieve better task performance.
    Date
    9.12.2018 16:22:25
    Source
    Journal of the Association for Information Science and Technology. 69(2018) no.12, S.1428-1445
  15. Rohner, M.: Betrachtung der Data Visualization Literacy in der angestrebten Schweizer Informationsgesellschaft (2018) 0.02
    0.022995595 = product of:
      0.03449339 = sum of:
        0.014974909 = weight(_text_:information in 4585) [ClassicSimilarity], result of:
          0.014974909 = score(doc=4585,freq=4.0), product of:
            0.09099081 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0518325 = queryNorm
            0.16457605 = fieldWeight in 4585, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=4585)
        0.019518482 = product of:
          0.039036963 = sum of:
            0.039036963 = weight(_text_:management in 4585) [ClassicSimilarity], result of:
              0.039036963 = score(doc=4585,freq=2.0), product of:
                0.17470726 = queryWeight, product of:
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.0518325 = queryNorm
                0.22344214 = fieldWeight in 4585, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4585)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Datenvisualisierungen sind ein wichtiges Werkzeug, um Inhalte und Muster in Datensätzen zu erkennen und ermöglichen so auch Laien den Zugang zu der Information, die in Datensätzen steckt. Data Visualization Literacy ist die Kompetenz, Datenvisualisierungen zu lesen, zu verstehen, zu hinterfragen und herzustellen. Data Visulaization Literacy ist daher eine wichtige Kompetenz der Informationsgesellschaft. Im Auftrag des Bundesrates hat das Bundesamt für Kommunikation BAKOM die Strategie "Digitale Schweiz" entwickelt. Die Strategie zeigt auf, wie die fortschreitende Digitalisierung genutzt und die Schweiz zu einer Informationsgesellschaft entwickelt werden soll. In der vorliegenden Arbeit wird untersucht, inwiefern die Strategie "Digitale Schweiz" die Förderung von Data Visualization Literacy in der Bevölkerung unterstützt. Dazu werden die Kompetenzen der Data Visualization Literacy ermittelt, Kompetenzstellen innerhalb des Bildungssystems benannt und die Massnahmen der Strategie in Bezug auf Data Visualization Literacy überprüft.
    Content
    Diese Publikation entstand im Rahmen einer Thesis zum Master of Science FHO in Business Administration, Major Information and Data Management.
  16. Leide, J.E.; Large, A.; Beheshti, J.; Brooks, M.; Cole, C.: Visualization schemes for domain novices exploring a topic space : the navigation classification scheme (2003) 0.02
    0.022609001 = product of:
      0.0339135 = sum of:
        0.017648099 = weight(_text_:information in 1078) [ClassicSimilarity], result of:
          0.017648099 = score(doc=1078,freq=8.0), product of:
            0.09099081 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0518325 = queryNorm
            0.19395474 = fieldWeight in 1078, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1078)
        0.016265402 = product of:
          0.032530803 = sum of:
            0.032530803 = weight(_text_:management in 1078) [ClassicSimilarity], result of:
              0.032530803 = score(doc=1078,freq=2.0), product of:
                0.17470726 = queryWeight, product of:
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.0518325 = queryNorm
                0.18620178 = fieldWeight in 1078, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1078)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    In this article and two other articles which conceptualize a future stage of the research program (Leide, Cole, Large, & Beheshti, submitted for publication; Cole, Leide, Large, Beheshti, & Brooks, in preparation), we map-out a domain novice user's encounter with an IR system from beginning to end so that appropriate classification-based visualization schemes can be inserted into the encounter process. This article describes the visualization of a navigation classification scheme only. The navigation classification scheme uses the metaphor of a ship and ship's navigator traveling through charted (but unknown to the user) waters, guided by a series of lighthouses. The lighthouses contain mediation interfaces linking the user to the information store through agents created for each. The user's agent is the cognitive model the user has of the information space, which the system encourages to evolve via interaction with the system's agent. The system's agent is an evolving classification scheme created by professional indexers to represent the structure of the information store. We propose a more systematic, multidimensional approach to creating evolving classification/indexing schemes, based on where the user is and what she is trying to do at that moment during the search session.
    Source
    Information processing and management. 39(2003) no.6, S.923-940
  17. Xiaoyue M.; Cahier, J.-P.: Iconic categorization with knowledge-based "icon systems" can improve collaborative KM (2011) 0.02
    0.021217868 = product of:
      0.0318268 = sum of:
        0.0088240495 = weight(_text_:information in 4837) [ClassicSimilarity], result of:
          0.0088240495 = score(doc=4837,freq=2.0), product of:
            0.09099081 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0518325 = queryNorm
            0.09697737 = fieldWeight in 4837, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4837)
        0.023002753 = product of:
          0.046005506 = sum of:
            0.046005506 = weight(_text_:management in 4837) [ClassicSimilarity], result of:
              0.046005506 = score(doc=4837,freq=4.0), product of:
                0.17470726 = queryWeight, product of:
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.0518325 = queryNorm
                0.2633291 = fieldWeight in 4837, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4837)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Icon system could represent an efficient solution for collective iconic categorization of knowledge by providing graphical interpretation. Their pictorial characters assist visualizing the structure of text to become more understandable beyond vocabulary obstacle. In this paper we are proposing a Knowledge Engineering (KM) based iconic representation approach. We assume that these systematic icons improve collective knowledge management. Meanwhile, text (constructed under our knowledge management model - Hypertopic) helps to reduce the diversity of graphical understanding belonging to different users. This "position paper" also prepares to demonstrate our hypothesis by an "iconic social tagging" experiment which is to be accomplished in 2011 with UTT students. We describe the "socio semantic web" information portal involved in this project, and a part of the icons already designed for this experiment in Sustainability field. We have reviewed existing theoretical works on icons from various origins, which can be used to lay the foundation of robust "icons systems".
  18. Shiri, A.; Molberg, K.: Interfaces to knowledge organization systems in Canadian digital library collections (2005) 0.02
    0.021032736 = product of:
      0.031549104 = sum of:
        0.015283704 = weight(_text_:information in 2559) [ClassicSimilarity], result of:
          0.015283704 = score(doc=2559,freq=6.0), product of:
            0.09099081 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0518325 = queryNorm
            0.16796975 = fieldWeight in 2559, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2559)
        0.016265402 = product of:
          0.032530803 = sum of:
            0.032530803 = weight(_text_:management in 2559) [ClassicSimilarity], result of:
              0.032530803 = score(doc=2559,freq=2.0), product of:
                0.17470726 = queryWeight, product of:
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.0518325 = queryNorm
                0.18620178 = fieldWeight in 2559, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2559)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Purpose - The purpose of this paper is to report an investigation into the ways in which Canadian digital library collections have incorporated knowledge organization systems into their search interfaces. Design/methodology/approach - A combination of data-gathering techniques was used. These were as follows: a review of the literature related to the application of knowledge organization systems, deep scanning of Canadian governmental and academic institutions web sites on the web, identify and contact researchers in the area of knowledge organization, and identify and contact people in the governmental organizations who are involved in knowledge organization and information management. Findings - A total of 33 digital collections were identified that have made use of some type of knowledge organization system. Thesauri, subject heading lists and classification schemes were the widely used knowledge organization systems in the surveyed Canadian digital library collections. Research limitations/implications - The target population for this research was limited to governmental and academic digital library collections. Practical implications - An evaluation of the knowledge organization systems interfaces showed that searching, browsing and navigation facilities as well as bilingual features call for improvements. Originality/value - This research contributes to the following areas: digital libraries, knowledge organization systems and services and search interface design.
    Source
    Online information review. 29(2005) no.6, S.604-620
    Theme
    Information Gateway
  19. Rafols, I.; Porter, A.L.; Leydesdorff, L.: Science overlay maps : a new tool for research policy and library management (2010) 0.02
    0.020071562 = product of:
      0.030107342 = sum of:
        0.01058886 = weight(_text_:information in 3987) [ClassicSimilarity], result of:
          0.01058886 = score(doc=3987,freq=2.0), product of:
            0.09099081 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0518325 = queryNorm
            0.116372846 = fieldWeight in 3987, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.046875 = fieldNorm(doc=3987)
        0.019518482 = product of:
          0.039036963 = sum of:
            0.039036963 = weight(_text_:management in 3987) [ClassicSimilarity], result of:
              0.039036963 = score(doc=3987,freq=2.0), product of:
                0.17470726 = queryWeight, product of:
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.0518325 = queryNorm
                0.22344214 = fieldWeight in 3987, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.3706124 = idf(docFreq=4130, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3987)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Source
    Journal of the American Society for Information Science and Technology. 61(2010) no.9, S.1871-1887
  20. Chen, C.: CiteSpace II : detecting and visualizing emerging trends and transient patterns in scientific literature (2006) 0.02
    0.02002371 = product of:
      0.030035563 = sum of:
        0.01247909 = weight(_text_:information in 5272) [ClassicSimilarity], result of:
          0.01247909 = score(doc=5272,freq=4.0), product of:
            0.09099081 = queryWeight, product of:
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0518325 = queryNorm
            0.13714671 = fieldWeight in 5272, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.7554779 = idf(docFreq=20772, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5272)
        0.017556472 = product of:
          0.035112944 = sum of:
            0.035112944 = weight(_text_:22 in 5272) [ClassicSimilarity], result of:
              0.035112944 = score(doc=5272,freq=2.0), product of:
                0.18150859 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0518325 = queryNorm
                0.19345059 = fieldWeight in 5272, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5272)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    This article describes the latest development of a generic approach to detecting and visualizing emerging trends and transient patterns in scientific literature. The work makes substantial theoretical and methodological contributions to progressive knowledge domain visualization. A specialty is conceptualized and visualized as a time-variant duality between two fundamental concepts in information science: research fronts and intellectual bases. A research front is defined as an emergent and transient grouping of concepts and underlying research issues. The intellectual base of a research front is its citation and co-citation footprint in scientific literature - an evolving network of scientific publications cited by research-front concepts. Kleinberg's (2002) burst-detection algorithm is adapted to identify emergent research-front concepts. Freeman's (1979) betweenness centrality metric is used to highlight potential pivotal points of paradigm shift over time. Two complementary visualization views are designed and implemented: cluster views and time-zone views. The contributions of the approach are that (a) the nature of an intellectual base is algorithmically and temporally identified by emergent research-front terms, (b) the value of a co-citation cluster is explicitly interpreted in terms of research-front concepts, and (c) visually prominent and algorithmically detected pivotal points substantially reduce the complexity of a visualized network. The modeling and visualization process is implemented in CiteSpace II, a Java application, and applied to the analysis of two research fields: mass extinction (1981-2004) and terrorism (1990-2003). Prominent trends and pivotal points in visualized networks were verified in collaboration with domain experts, who are the authors of pivotal-point articles. Practical implications of the work are discussed. A number of challenges and opportunities for future studies are identified.
    Date
    22. 7.2006 16:11:05
    Source
    Journal of the American Society for Information Science and Technology. 57(2006) no.3, S.359-377

Years

Languages

  • e 118
  • d 28
  • a 1
  • More… Less…

Types

  • a 115
  • el 18
  • m 15
  • x 9
  • s 3
  • r 2
  • b 1
  • More… Less…

Subjects

Classifications