Search (12 results, page 1 of 1)

  • × language_ss:"e"
  • × type_ss:"x"
  1. Geisriegler, E.: Enriching electronic texts with semantic metadata : a use case for the historical Newspaper Collection ANNO (Austrian Newspapers Online) of the Austrian National Libraryhek (2012) 0.04
    0.039587595 = product of:
      0.059381388 = sum of:
        0.042380195 = weight(_text_:electronic in 595) [ClassicSimilarity], result of:
          0.042380195 = score(doc=595,freq=2.0), product of:
            0.19623034 = queryWeight, product of:
              3.9095051 = idf(docFreq=2409, maxDocs=44218)
              0.05019314 = queryNorm
            0.21597168 = fieldWeight in 595, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9095051 = idf(docFreq=2409, maxDocs=44218)
              0.0390625 = fieldNorm(doc=595)
        0.017001195 = product of:
          0.03400239 = sum of:
            0.03400239 = weight(_text_:22 in 595) [ClassicSimilarity], result of:
              0.03400239 = score(doc=595,freq=2.0), product of:
                0.17576782 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05019314 = queryNorm
                0.19345059 = fieldWeight in 595, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=595)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Date
    3. 2.2013 18:00:22
  2. Baier Benninger, P.: Model requirements for the management of electronic records (MoReq2) : Anleitung zur Umsetzung (2011) 0.02
    0.02397386 = product of:
      0.07192158 = sum of:
        0.07192158 = weight(_text_:electronic in 4343) [ClassicSimilarity], result of:
          0.07192158 = score(doc=4343,freq=4.0), product of:
            0.19623034 = queryWeight, product of:
              3.9095051 = idf(docFreq=2409, maxDocs=44218)
              0.05019314 = queryNorm
            0.3665161 = fieldWeight in 4343, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.9095051 = idf(docFreq=2409, maxDocs=44218)
              0.046875 = fieldNorm(doc=4343)
      0.33333334 = coord(1/3)
    
    Abstract
    Viele auch kleinere Unternehmen, Verwaltungen und Organisationen sind angesichts eines wachsenden Berges von digitalen Informationen mit dem Ordnen und Strukturieren ihrer Ablagen beschäftigt. In den meisten Organisationen besteht ein Konzept der Dokumentenlenkung. Records Management verfolgt vor allem in zwei Punkten einen weiterführenden Ansatz. Zum einen stellt es über den Geschäftsalltag hinaus den Kontext und den Entstehungszusammenhang ins Zentrum und zum anderen gibt es Regeln vor, wie mit ungenutzten oder inaktiven Dokumenten zu verfahren ist. Mit den «Model Requirements for the Management of Electronic Records» - MoReq - wurde von der europäischen Kommission ein Standard geschaffen, der alle Kernbereiche des Records Managements und damit den gesamten Entstehungs-, Nutzungs-, Archivierungsund Aussonderungsbereich von Dokumenten abdeckt. In der «Anleitung zur Umsetzung» wird die umfangreiche Anforderungsliste von MoReq2 (August 2008) zusammengefasst und durch erklärende Abschnitte ergänzt, mit dem Ziel, als griffiges Instrument bei der Einführung eines Record Management Systems zu dienen.
  3. Farazi, M.: Faceted lightweight ontologies : a formalization and some experiments (2010) 0.02
    0.022144448 = product of:
      0.06643334 = sum of:
        0.06643334 = product of:
          0.19930002 = sum of:
            0.19930002 = weight(_text_:3a in 4997) [ClassicSimilarity], result of:
              0.19930002 = score(doc=4997,freq=2.0), product of:
                0.42553797 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.05019314 = queryNorm
                0.46834838 = fieldWeight in 4997, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4997)
          0.33333334 = coord(1/3)
      0.33333334 = coord(1/3)
    
    Content
    PhD Dissertation at International Doctorate School in Information and Communication Technology. Vgl.: https%3A%2F%2Fcore.ac.uk%2Fdownload%2Fpdf%2F150083013.pdf&usg=AOvVaw2n-qisNagpyT0lli_6QbAQ.
  4. Seidlmayer, E.: ¬An ontology of digital objects in philosophy : an approach for practical use in research (2018) 0.02
    0.019777425 = product of:
      0.059332274 = sum of:
        0.059332274 = weight(_text_:electronic in 5496) [ClassicSimilarity], result of:
          0.059332274 = score(doc=5496,freq=2.0), product of:
            0.19623034 = queryWeight, product of:
              3.9095051 = idf(docFreq=2409, maxDocs=44218)
              0.05019314 = queryNorm
            0.30236036 = fieldWeight in 5496, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9095051 = idf(docFreq=2409, maxDocs=44218)
              0.0546875 = fieldNorm(doc=5496)
      0.33333334 = coord(1/3)
    
    Abstract
    The digitalization of research enables new scientific insights and methods, especially in the humanities. Nonetheless, electronic book editions, encyclopedias, mobile applications or web sites presenting research projects are not in broad use in academic philosophy. This is contradictory to the large amount of helpful tools facilitating research also bearing new scientific subjects and approaches. A possible solution to this dilemma is the systematization and promotion of these tools in order to improve their accessibility and fully exploit the potential of digitalization for philosophy.
  5. Stojanovic, N.: Ontology-based Information Retrieval : methods and tools for cooperative query answering (2005) 0.02
    0.017715558 = product of:
      0.05314667 = sum of:
        0.05314667 = product of:
          0.15944001 = sum of:
            0.15944001 = weight(_text_:3a in 701) [ClassicSimilarity], result of:
              0.15944001 = score(doc=701,freq=2.0), product of:
                0.42553797 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.05019314 = queryNorm
                0.3746787 = fieldWeight in 701, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.03125 = fieldNorm(doc=701)
          0.33333334 = coord(1/3)
      0.33333334 = coord(1/3)
    
    Content
    Vgl.: http%3A%2F%2Fdigbib.ubka.uni-karlsruhe.de%2Fvolltexte%2Fdocuments%2F1627&ei=tAtYUYrBNoHKtQb3l4GYBw&usg=AFQjCNHeaxKkKU3-u54LWxMNYGXaaDLCGw&sig2=8WykXWQoDKjDSdGtAakH2Q&bvm=bv.44442042,d.Yms.
  6. Xiong, C.: Knowledge based text representations for information retrieval (2016) 0.02
    0.017715558 = product of:
      0.05314667 = sum of:
        0.05314667 = product of:
          0.15944001 = sum of:
            0.15944001 = weight(_text_:3a in 5820) [ClassicSimilarity], result of:
              0.15944001 = score(doc=5820,freq=2.0), product of:
                0.42553797 = queryWeight, product of:
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.05019314 = queryNorm
                0.3746787 = fieldWeight in 5820, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  8.478011 = idf(docFreq=24, maxDocs=44218)
                  0.03125 = fieldNorm(doc=5820)
          0.33333334 = coord(1/3)
      0.33333334 = coord(1/3)
    
    Content
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Language and Information Technologies. Vgl.: https%3A%2F%2Fwww.cs.cmu.edu%2F~cx%2Fpapers%2Fknowledge_based_text_representation.pdf&usg=AOvVaw0SaTSvhWLTh__Uz_HtOtl3.
  7. Gordon, T.J.; Helmer-Hirschberg, O.: Report on a long-range forecasting study (1964) 0.01
    0.012823104 = product of:
      0.03846931 = sum of:
        0.03846931 = product of:
          0.07693862 = sum of:
            0.07693862 = weight(_text_:22 in 4204) [ClassicSimilarity], result of:
              0.07693862 = score(doc=4204,freq=4.0), product of:
                0.17576782 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05019314 = queryNorm
                0.4377287 = fieldWeight in 4204, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4204)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    22. 6.2018 13:24:08
    22. 6.2018 13:54:52
  8. Noy, N.F.: Knowledge representation for intelligent information retrieval in experimental sciences (1997) 0.01
    0.011301385 = product of:
      0.033904154 = sum of:
        0.033904154 = weight(_text_:electronic in 694) [ClassicSimilarity], result of:
          0.033904154 = score(doc=694,freq=2.0), product of:
            0.19623034 = queryWeight, product of:
              3.9095051 = idf(docFreq=2409, maxDocs=44218)
              0.05019314 = queryNorm
            0.17277734 = fieldWeight in 694, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.9095051 = idf(docFreq=2409, maxDocs=44218)
              0.03125 = fieldNorm(doc=694)
      0.33333334 = coord(1/3)
    
    Abstract
    More and more information is available on-line every day. The greater the amount of on-line information, the greater the demand for tools that process and disseminate this information. Processing electronic information in the form of text and answering users' queries about that information intelligently is one of the great challenges in natural language processing and information retrieval. The research presented in this talk is centered on the latter of these two tasks: intelligent information retrieval. In order for information to be retrieved, it first needs to be formalized in a database or knowledge base. The ontology for this formalization and assumptions it is based on are crucial to successful intelligent information retrieval. We have concentrated our effort on developing an ontology for representing knowledge in the domains of experimental sciences, molecular biology in particular. We show that existing ontological models cannot be readily applied to represent this domain adequately. For example, the fundamental notion of ontology design that every "real" object is defined as an instance of a category seems incompatible with the universe where objects can change their category as a result of experimental procedures. Another important problem is representing complex structures such as DNA, mixtures, populations of molecules, etc., that are very common in molecular biology. We present extensions that need to be made to an ontology to cover these issues: the representation of transformations that change the structure and/or category of their participants, and the component relations and spatial structures of complex objects. We demonstrate examples of how the proposed representations can be used to improve the quality and completeness of answers to user queries; discuss techniques for evaluating ontologies and show a prototype of an Information Retrieval System that we developed.
  9. Slavic-Overfield, A.: Classification management and use in a networked environment : the case of the Universal Decimal Classification (2005) 0.01
    0.008824733 = product of:
      0.026474198 = sum of:
        0.026474198 = product of:
          0.052948397 = sum of:
            0.052948397 = weight(_text_:publishing in 2191) [ClassicSimilarity], result of:
              0.052948397 = score(doc=2191,freq=2.0), product of:
                0.24522576 = queryWeight, product of:
                  4.885643 = idf(docFreq=907, maxDocs=44218)
                  0.05019314 = queryNorm
                0.21591695 = fieldWeight in 2191, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.885643 = idf(docFreq=907, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2191)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    In the Internet information space, advanced information retrieval (IR) methods and automatic text processing are used in conjunction with traditional knowledge organization systems (KOS). New information technology provides a platform for better KOS publishing, exploitation and sharing both for human and machine use. Networked KOS services are now being planned and developed as powerful tools for resource discovery. They will enable automatic contextualisation, interpretation and query matching to different indexing languages. The Semantic Web promises to be an environment in which the quality of semantic relationships in bibliographic classification systems can be fully exploited. Their use in the networked environment is, however, limited by the fact that they are not prepared or made available for advanced machine processing. The UDC was chosen for this research because of its widespread use and its long-term presence in online information retrieval systems. It was also the first system to be used for the automatic classification of Internet resources, and the first to be made available as a classification tool on the Web. The objective of this research is to establish the advantages of using UDC for information retrieval in a networked environment, to highlight the problems of automation and classification exchange, and to offer possible solutions. The first research question was is there enough evidence of the use of classification on the Internet to justify further development with this particular environment in mind? The second question is what are the automation requirements for the full exploitation of UDC and its exchange? The third question is which areas are in need of improvement and what specific recommendations can be made for implementing the UDC in a networked environment? A summary of changes required in the management and development of the UDC to facilitate its full adaptation for future use is drawn from this analysis.
  10. Huo, W.: Automatic multi-word term extraction and its application to Web-page summarization (2012) 0.01
    0.0068004774 = product of:
      0.020401431 = sum of:
        0.020401431 = product of:
          0.040802862 = sum of:
            0.040802862 = weight(_text_:22 in 563) [ClassicSimilarity], result of:
              0.040802862 = score(doc=563,freq=2.0), product of:
                0.17576782 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05019314 = queryNorm
                0.23214069 = fieldWeight in 563, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=563)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    10. 1.2013 19:22:47
  11. Makewita, S.M.: Investigating the generic information-seeking function of organisational decision-makers : perspectives on improving organisational information systems (2002) 0.01
    0.0056670653 = product of:
      0.017001195 = sum of:
        0.017001195 = product of:
          0.03400239 = sum of:
            0.03400239 = weight(_text_:22 in 642) [ClassicSimilarity], result of:
              0.03400239 = score(doc=642,freq=2.0), product of:
                0.17576782 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05019314 = queryNorm
                0.19345059 = fieldWeight in 642, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=642)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    22. 7.2022 12:16:58
  12. Kiren, T.: ¬A clustering based indexing technique of modularized ontologies for information retrieval (2017) 0.00
    0.0045336518 = product of:
      0.013600955 = sum of:
        0.013600955 = product of:
          0.02720191 = sum of:
            0.02720191 = weight(_text_:22 in 4399) [ClassicSimilarity], result of:
              0.02720191 = score(doc=4399,freq=2.0), product of:
                0.17576782 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05019314 = queryNorm
                0.15476047 = fieldWeight in 4399, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4399)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    20. 1.2015 18:30:22