Search (23 results, page 1 of 2)

  • × theme_ss:"Visualisierung"
  1. Hearst, M.A.: Search user interfaces (2009) 0.03
    0.025223238 = product of:
      0.050446477 = sum of:
        0.050446477 = product of:
          0.10089295 = sum of:
            0.10089295 = weight(_text_:engines in 4029) [ClassicSimilarity], result of:
              0.10089295 = score(doc=4029,freq=6.0), product of:
                0.25941864 = queryWeight, product of:
                  5.080822 = idf(docFreq=746, maxDocs=44218)
                  0.051058397 = queryNorm
                0.38891944 = fieldWeight in 4029, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  5.080822 = idf(docFreq=746, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4029)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    This book outlines the human side of the information seeking process, and focuses on the aspects of this process that can best be supported by the user interface. It describes the methods behind user interface design generally, and search interface design in particular, with an emphasis on how best to evaluate search interfaces. It discusses research results and current practices surrounding user interfaces for query specification, display of retrieval results, grouping retrieval results, navigation of information collections, query reformulation, search personalization, and the broader tasks of sensemaking and text analysis. Much of the discussion pertains to Web search engines, but the book also covers the special considerations surrounding search of other information collections.
    LCSH
    Web search engines
    Subject
    Web search engines
  2. Chowdhury, S.; Chowdhury, G.G.: Using DDC to create a visual knowledge map as an aid to online information retrieval (2004) 0.02
    0.020594686 = product of:
      0.041189373 = sum of:
        0.041189373 = product of:
          0.082378745 = sum of:
            0.082378745 = weight(_text_:engines in 2643) [ClassicSimilarity], result of:
              0.082378745 = score(doc=2643,freq=4.0), product of:
                0.25941864 = queryWeight, product of:
                  5.080822 = idf(docFreq=746, maxDocs=44218)
                  0.051058397 = queryNorm
                0.31755137 = fieldWeight in 2643, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  5.080822 = idf(docFreq=746, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2643)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Content
    1. Introduction Web search engines and digital libraries usually expect the users to use search terms that most accurately represent their information needs. Finding the most appropriate search terms to represent an information need is an age old problem in information retrieval. Keyword or phrase search may produce good search results as long as the search terms or phrase(s) match those used by the authors and have been chosen for indexing by the concerned information retrieval system. Since this does not always happen, a large number of false drops are produced by information retrieval systems. The retrieval results become worse in very large systems that deal with millions of records, such as the Web search engines and digital libraries. Vocabulary control tools are used to improve the performance of text retrieval systems. Thesauri, the most common type of vocabulary control tool used in information retrieval, appeared in the late fifties, designed for use with the emerging post-coordinate indexing systems of that time. They are used to exert terminology control in indexing, and to aid in searching by allowing the searcher to select appropriate search terms. A large volume of literature exists describing the design features, and experiments with the use, of thesauri in various types of information retrieval systems (see for example, Furnas et.al., 1987; Bates, 1986, 1998; Milstead, 1997, and Shiri et al., 2002).
  3. Hoeber, O.; Yang, X.D.: HotMap : supporting visual exploration of Web search results (2009) 0.02
    0.018203301 = product of:
      0.036406603 = sum of:
        0.036406603 = product of:
          0.072813205 = sum of:
            0.072813205 = weight(_text_:engines in 2700) [ClassicSimilarity], result of:
              0.072813205 = score(doc=2700,freq=2.0), product of:
                0.25941864 = queryWeight, product of:
                  5.080822 = idf(docFreq=746, maxDocs=44218)
                  0.051058397 = queryNorm
                0.2806784 = fieldWeight in 2700, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.080822 = idf(docFreq=746, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2700)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Although information retrieval techniques used by Web search engines have improved substantially over the years, the results of Web searches have continued to be represented in simple list-based formats. Although the list-based representation makes it easy to evaluate a single document for relevance, it does not support the users in the broader tasks of manipulating or exploring the search results as they attempt to find a collection of relevant documents. HotMap is a meta-search system that provides a compact visual representation of Web search results at two levels of detail, and it supports interactive exploration via nested sorting of Web search results based on query term frequencies. An evaluation of the search results for a set of vague queries has shown that the re-sorted search results can provide a higher portion of relevant documents among the top search results. User studies show an increase in speed and effectiveness and a reduction in missed documents when comparing HotMap to the list-based representation used by Google. Subjective measures were positive, and users showed a preference for the HotMap interface. These results provide evidence for the utility of next-generation Web search results interfaces that promote interactive search results exploration.
  4. Haller, S.H.M.: Mappingverfahren zur Wissensorganisation (2002) 0.02
    0.01729427 = product of:
      0.03458854 = sum of:
        0.03458854 = product of:
          0.06917708 = sum of:
            0.06917708 = weight(_text_:22 in 3406) [ClassicSimilarity], result of:
              0.06917708 = score(doc=3406,freq=2.0), product of:
                0.17879781 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051058397 = queryNorm
                0.38690117 = fieldWeight in 3406, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=3406)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    30. 5.2010 16:22:35
  5. Platis, N. et al.: Visualization of uncertainty in tag clouds (2016) 0.02
    0.01729427 = product of:
      0.03458854 = sum of:
        0.03458854 = product of:
          0.06917708 = sum of:
            0.06917708 = weight(_text_:22 in 2755) [ClassicSimilarity], result of:
              0.06917708 = score(doc=2755,freq=2.0), product of:
                0.17879781 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051058397 = queryNorm
                0.38690117 = fieldWeight in 2755, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=2755)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    1. 2.2016 18:25:22
  6. Börner, K.: Atlas of knowledge : anyone can map (2015) 0.01
    0.014674676 = product of:
      0.029349351 = sum of:
        0.029349351 = product of:
          0.058698703 = sum of:
            0.058698703 = weight(_text_:22 in 3355) [ClassicSimilarity], result of:
              0.058698703 = score(doc=3355,freq=4.0), product of:
                0.17879781 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051058397 = queryNorm
                0.32829654 = fieldWeight in 3355, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3355)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 1.2017 16:54:03
    22. 1.2017 17:10:56
  7. Singh, A.; Sinha, U.; Sharma, D.k.: Semantic Web and data visualization (2020) 0.01
    0.014562641 = product of:
      0.029125283 = sum of:
        0.029125283 = product of:
          0.058250565 = sum of:
            0.058250565 = weight(_text_:engines in 79) [ClassicSimilarity], result of:
              0.058250565 = score(doc=79,freq=2.0), product of:
                0.25941864 = queryWeight, product of:
                  5.080822 = idf(docFreq=746, maxDocs=44218)
                  0.051058397 = queryNorm
                0.22454272 = fieldWeight in 79, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.080822 = idf(docFreq=746, maxDocs=44218)
                  0.03125 = fieldNorm(doc=79)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    With the terrific growth of data volume and data being produced every second on millions of devices across the globe, there is a desperate need to manage the unstructured data available on web pages efficiently. Semantic Web or also known as Web of Trust structures the scattered data on the Internet according to the needs of the user. It is an extension of the World Wide Web (WWW) which focuses on manipulating web data on behalf of Humans. Due to the ability of the Semantic Web to integrate data from disparate sources and hence makes it more user-friendly, it is an emerging trend. Tim Berners-Lee first introduced the term Semantic Web and since then it has come a long way to become a more intelligent and intuitive web. Data Visualization plays an essential role in explaining complex concepts in a universal manner through pictorial representation, and the Semantic Web helps in broadening the potential of Data Visualization and thus making it an appropriate combination. The objective of this chapter is to provide fundamental insights concerning the semantic web technologies and in addition to that it also elucidates the issues as well as the solutions regarding the semantic web. The purpose of this chapter is to highlight the semantic web architecture in detail while also comparing it with the traditional search system. It classifies the semantic web architecture into three major pillars i.e. RDF, Ontology, and XML. Moreover, it describes different semantic web tools used in the framework and technology. It attempts to illustrate different approaches of the semantic web search engines. Besides stating numerous challenges faced by the semantic web it also illustrates the solutions.
  8. Zhu, B.; Chen, H.: Information visualization (2004) 0.01
    0.012742312 = product of:
      0.025484623 = sum of:
        0.025484623 = product of:
          0.050969247 = sum of:
            0.050969247 = weight(_text_:engines in 4276) [ClassicSimilarity], result of:
              0.050969247 = score(doc=4276,freq=2.0), product of:
                0.25941864 = queryWeight, product of:
                  5.080822 = idf(docFreq=746, maxDocs=44218)
                  0.051058397 = queryNorm
                0.19647488 = fieldWeight in 4276, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.080822 = idf(docFreq=746, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=4276)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    Advanced technology has resulted in the generation of about one million terabytes of information every year. Ninety-reine percent of this is available in digital format (Keim, 2001). More information will be generated in the next three years than was created during all of previous human history (Keim, 2001). Collecting information is no longer a problem, but extracting value from information collections has become progressively more difficult. Various search engines have been developed to make it easier to locate information of interest, but these work well only for a person who has a specific goal and who understands what and how information is stored. This usually is not the Gase. Visualization was commonly thought of in terms of representing human mental processes (MacEachren, 1991; Miller, 1984). The concept is now associated with the amplification of these mental processes (Card, Mackinlay, & Shneiderman, 1999). Human eyes can process visual cues rapidly, whereas advanced information analysis techniques transform the computer into a powerful means of managing digitized information. Visualization offers a link between these two potent systems, the human eye and the computer (Gershon, Eick, & Card, 1998), helping to identify patterns and to extract insights from large amounts of information. The identification of patterns is important because it may lead to a scientific discovery, an interpretation of clues to solve a crime, the prediction of catastrophic weather, a successful financial investment, or a better understanding of human behavior in a computermediated environment. Visualization technology shows considerable promise for increasing the value of large-scale collections of information, as evidenced by several commercial applications of TreeMap (e.g., http://www.smartmoney.com) and Hyperbolic tree (e.g., http://www.inxight.com) to visualize large-scale hierarchical structures. Although the proliferation of visualization technologies dates from the 1990s where sophisticated hardware and software made increasingly faster generation of graphical objects possible, the role of visual aids in facilitating the construction of mental images has a long history. Visualization has been used to communicate ideas, to monitor trends implicit in data, and to explore large volumes of data for hypothesis generation. Imagine traveling to a strange place without a map, having to memorize physical and chemical properties of an element without Mendeleyev's periodic table, trying to understand the stock market without statistical diagrams, or browsing a collection of documents without interactive visual aids. A collection of information can lose its value simply because of the effort required for exhaustive exploration. Such frustrations can be overcome by visualization.
  9. Trunk, D.: Semantische Netze in Informationssystemen : Verbesserung der Suche durch Interaktion und Visualisierung (2005) 0.01
    0.012105989 = product of:
      0.024211979 = sum of:
        0.024211979 = product of:
          0.048423957 = sum of:
            0.048423957 = weight(_text_:22 in 2500) [ClassicSimilarity], result of:
              0.048423957 = score(doc=2500,freq=2.0), product of:
                0.17879781 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051058397 = queryNorm
                0.2708308 = fieldWeight in 2500, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2500)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    30. 1.2007 18:22:41
  10. Dushay, N.: Visualizing bibliographic metadata : a virtual (book) spine viewer (2004) 0.01
    0.010921981 = product of:
      0.021843962 = sum of:
        0.021843962 = product of:
          0.043687925 = sum of:
            0.043687925 = weight(_text_:engines in 1197) [ClassicSimilarity], result of:
              0.043687925 = score(doc=1197,freq=2.0), product of:
                0.25941864 = queryWeight, product of:
                  5.080822 = idf(docFreq=746, maxDocs=44218)
                  0.051058397 = queryNorm
                0.16840704 = fieldWeight in 1197, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.080822 = idf(docFreq=746, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=1197)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Abstract
    User interfaces for digital information discovery often require users to click around and read a lot of text in order to find the text they want to read-a process that is often frustrating and tedious. This is exacerbated because of the limited amount of text that can be displayed on a computer screen. To improve the user experience of computer mediated information discovery, information visualization techniques are applied to the digital library context, while retaining traditional information organization concepts. In this article, the "virtual (book) spine" and the virtual spine viewer are introduced. The virtual spine viewer is an application which allows users to visually explore large information spaces or collections while also allowing users to hone in on individual resources of interest. The virtual spine viewer introduced here is an alpha prototype, presented to promote discussion and further work. Information discovery changed radically with the introduction of computerized library access catalogs, the World Wide Web and its search engines, and online bookstores. Yet few instances of these technologies provide a user experience analogous to walking among well-organized, well-stocked bookshelves-which many people find useful as well as pleasurable. To put it another way, many of us have heard or voiced complaints about the paucity of "online browsing"-but what does this really mean? In traditional information spaces such as libraries, often we can move freely among the books and other resources. When we walk among organized, labeled bookshelves, we get a sense of the information space-we take in clues, perhaps unconsciously, as to the scope of the collection, the currency of resources, the frequency of their use, etc. We also enjoy unexpected discoveries such as finding an interesting resource because library staff deliberately located it near similar resources, or because it was miss-shelved, or because we saw it on a bookshelf on the way to the water fountain.
  11. Palm, F.: QVIZ : Query and context based visualization of time-spatial cultural dynamics (2007) 0.01
    0.010376561 = product of:
      0.020753123 = sum of:
        0.020753123 = product of:
          0.041506246 = sum of:
            0.041506246 = weight(_text_:22 in 1289) [ClassicSimilarity], result of:
              0.041506246 = score(doc=1289,freq=2.0), product of:
                0.17879781 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051058397 = queryNorm
                0.23214069 = fieldWeight in 1289, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1289)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Content
    Vortrag anlässlich des Workshops: "Extending the multilingual capacity of The European Library in the EDL project Stockholm, Swedish National Library, 22-23 November 2007".
  12. Thissen, F.: Screen-Design-Handbuch : Effektiv informieren und kommunizieren mit Multimedia (2001) 0.01
    0.010376561 = product of:
      0.020753123 = sum of:
        0.020753123 = product of:
          0.041506246 = sum of:
            0.041506246 = weight(_text_:22 in 1781) [ClassicSimilarity], result of:
              0.041506246 = score(doc=1781,freq=2.0), product of:
                0.17879781 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051058397 = queryNorm
                0.23214069 = fieldWeight in 1781, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1781)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 3.2008 14:35:21
  13. Osinska, V.; Bala, P.: New methods for visualization and improvement of classification schemes : the case of computer science (2010) 0.01
    0.010376561 = product of:
      0.020753123 = sum of:
        0.020753123 = product of:
          0.041506246 = sum of:
            0.041506246 = weight(_text_:22 in 3693) [ClassicSimilarity], result of:
              0.041506246 = score(doc=3693,freq=2.0), product of:
                0.17879781 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051058397 = queryNorm
                0.23214069 = fieldWeight in 3693, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3693)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 7.2010 19:36:46
  14. Jäger-Dengler-Harles, I.: Informationsvisualisierung und Retrieval im Fokus der Infromationspraxis (2013) 0.01
    0.010376561 = product of:
      0.020753123 = sum of:
        0.020753123 = product of:
          0.041506246 = sum of:
            0.041506246 = weight(_text_:22 in 1709) [ClassicSimilarity], result of:
              0.041506246 = score(doc=1709,freq=2.0), product of:
                0.17879781 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051058397 = queryNorm
                0.23214069 = fieldWeight in 1709, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1709)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    4. 2.2015 9:22:39
  15. Thissen, F.: Screen-Design-Manual : Communicating Effectively Through Multimedia (2003) 0.01
    0.008647135 = product of:
      0.01729427 = sum of:
        0.01729427 = product of:
          0.03458854 = sum of:
            0.03458854 = weight(_text_:22 in 1397) [ClassicSimilarity], result of:
              0.03458854 = score(doc=1397,freq=2.0), product of:
                0.17879781 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051058397 = queryNorm
                0.19345059 = fieldWeight in 1397, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1397)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 3.2008 14:29:25
  16. Chen, C.: CiteSpace II : detecting and visualizing emerging trends and transient patterns in scientific literature (2006) 0.01
    0.008647135 = product of:
      0.01729427 = sum of:
        0.01729427 = product of:
          0.03458854 = sum of:
            0.03458854 = weight(_text_:22 in 5272) [ClassicSimilarity], result of:
              0.03458854 = score(doc=5272,freq=2.0), product of:
                0.17879781 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051058397 = queryNorm
                0.19345059 = fieldWeight in 5272, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5272)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    22. 7.2006 16:11:05
  17. Wu, K.-C.; Hsieh, T.-Y.: Affective choosing of clustering and categorization representations in e-book interfaces (2016) 0.01
    0.008647135 = product of:
      0.01729427 = sum of:
        0.01729427 = product of:
          0.03458854 = sum of:
            0.03458854 = weight(_text_:22 in 3070) [ClassicSimilarity], result of:
              0.03458854 = score(doc=3070,freq=2.0), product of:
                0.17879781 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051058397 = queryNorm
                0.19345059 = fieldWeight in 3070, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3070)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    20. 1.2015 18:30:22
  18. Wu, I.-C.; Vakkari, P.: Effects of subject-oriented visualization tools on search by novices and intermediates (2018) 0.01
    0.008647135 = product of:
      0.01729427 = sum of:
        0.01729427 = product of:
          0.03458854 = sum of:
            0.03458854 = weight(_text_:22 in 4573) [ClassicSimilarity], result of:
              0.03458854 = score(doc=4573,freq=2.0), product of:
                0.17879781 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051058397 = queryNorm
                0.19345059 = fieldWeight in 4573, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4573)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    9.12.2018 16:22:25
  19. Osinska, V.; Kowalska, M.; Osinski, Z.: ¬The role of visualization in the shaping and exploration of the individual information space : part 1 (2018) 0.01
    0.008647135 = product of:
      0.01729427 = sum of:
        0.01729427 = product of:
          0.03458854 = sum of:
            0.03458854 = weight(_text_:22 in 4641) [ClassicSimilarity], result of:
              0.03458854 = score(doc=4641,freq=2.0), product of:
                0.17879781 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051058397 = queryNorm
                0.19345059 = fieldWeight in 4641, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4641)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Date
    21.12.2018 17:22:13
  20. Spero, S.: LCSH is to thesaurus as doorbell is to mammal : visualizing structural problems in the Library of Congress Subject Headings (2008) 0.01
    0.006917708 = product of:
      0.013835416 = sum of:
        0.013835416 = product of:
          0.027670832 = sum of:
            0.027670832 = weight(_text_:22 in 2659) [ClassicSimilarity], result of:
              0.027670832 = score(doc=2659,freq=2.0), product of:
                0.17879781 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.051058397 = queryNorm
                0.15476047 = fieldWeight in 2659, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2659)
          0.5 = coord(1/2)
      0.5 = coord(1/2)
    
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas

Languages

Types