Search (70 results, page 1 of 4)

  • × theme_ss:"Citation indexing"
  1. Van der Veer Martens, B.; Goodrum, G.: ¬The diffusion of theories : a functional approach (2006) 0.02
    0.023574159 = product of:
      0.070722476 = sum of:
        0.052210055 = product of:
          0.10442011 = sum of:
            0.10442011 = weight(_text_:theory in 5269) [ClassicSimilarity], result of:
              0.10442011 = score(doc=5269,freq=8.0), product of:
                0.16234003 = queryWeight, product of:
                  4.1583924 = idf(docFreq=1878, maxDocs=44218)
                  0.03903913 = queryNorm
                0.6432185 = fieldWeight in 5269, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  4.1583924 = idf(docFreq=1878, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=5269)
          0.5 = coord(1/2)
        0.018512422 = product of:
          0.037024844 = sum of:
            0.037024844 = weight(_text_:22 in 5269) [ClassicSimilarity], result of:
              0.037024844 = score(doc=5269,freq=2.0), product of:
                0.1367084 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03903913 = queryNorm
                0.2708308 = fieldWeight in 5269, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=5269)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Abstract
    This comparative case study of the diffusion and nondiffusion over time of eight theories in the social sciences uses citation analysis, citation context analysis, content analysis, surveys of editorial review boards, and personal interviews with theorists to develop a model of the theory functions that facilitate theory diffusion throughout specific intellectual communities. Unlike previous work on the diffusion of theories as innovations, this theory functions model differs in several important respects from the findings of previous studies that employed Everett Rogers's classic typology of innovation characteristics that promote diffusion. The model is also presented as a contribution to a more integrated theory of citation.
    Date
    22. 7.2006 15:20:01
  2. Bensman, S.J.: Eugene Garfield, Francis Narin, and PageRank : the theoretical bases of the Google search engine (2013) 0.02
    0.021116383 = product of:
      0.06334915 = sum of:
        0.042192098 = product of:
          0.084384196 = sum of:
            0.084384196 = weight(_text_:theory in 1149) [ClassicSimilarity], result of:
              0.084384196 = score(doc=1149,freq=4.0), product of:
                0.16234003 = queryWeight, product of:
                  4.1583924 = idf(docFreq=1878, maxDocs=44218)
                  0.03903913 = queryNorm
                0.51979905 = fieldWeight in 1149, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.1583924 = idf(docFreq=1878, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1149)
          0.5 = coord(1/2)
        0.021157054 = product of:
          0.04231411 = sum of:
            0.04231411 = weight(_text_:22 in 1149) [ClassicSimilarity], result of:
              0.04231411 = score(doc=1149,freq=2.0), product of:
                0.1367084 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03903913 = queryNorm
                0.30952093 = fieldWeight in 1149, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1149)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Abstract
    This paper presents a test of the validity of using Google Scholar to evaluate the publications of researchers by comparing the premises on which its search engine, PageRank, is based, to those of Garfield's theory of citation indexing. It finds that the premises are identical and that PageRank and Garfield's theory of citation indexing validate each other.
    Date
    17.12.2013 11:02:22
  3. Garfield, E.: Citation indexing : its theory and application in science, technology, and humanities (1979) 0.01
    0.012795856 = product of:
      0.07677513 = sum of:
        0.07677513 = sum of:
          0.044751476 = weight(_text_:theory in 348) [ClassicSimilarity], result of:
            0.044751476 = score(doc=348,freq=2.0), product of:
              0.16234003 = queryWeight, product of:
                4.1583924 = idf(docFreq=1878, maxDocs=44218)
                0.03903913 = queryNorm
              0.27566507 = fieldWeight in 348, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                4.1583924 = idf(docFreq=1878, maxDocs=44218)
                0.046875 = fieldNorm(doc=348)
          0.032023653 = weight(_text_:29 in 348) [ClassicSimilarity], result of:
            0.032023653 = score(doc=348,freq=2.0), product of:
              0.13732746 = queryWeight, product of:
                3.5176873 = idf(docFreq=3565, maxDocs=44218)
                0.03903913 = queryNorm
              0.23319192 = fieldWeight in 348, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5176873 = idf(docFreq=3565, maxDocs=44218)
                0.046875 = fieldNorm(doc=348)
      0.16666667 = coord(1/6)
    
    Date
    29. 5.2007 12:50:08
  4. Aksnes, D.W.: Citation rates and perceptions of scientific contribution (2006) 0.01
    0.012309102 = product of:
      0.036927305 = sum of:
        0.016011827 = product of:
          0.032023653 = sum of:
            0.032023653 = weight(_text_:29 in 4925) [ClassicSimilarity], result of:
              0.032023653 = score(doc=4925,freq=2.0), product of:
                0.13732746 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.03903913 = queryNorm
                0.23319192 = fieldWeight in 4925, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4925)
          0.5 = coord(1/2)
        0.020915478 = product of:
          0.041830957 = sum of:
            0.041830957 = weight(_text_:methods in 4925) [ClassicSimilarity], result of:
              0.041830957 = score(doc=4925,freq=2.0), product of:
                0.15695344 = queryWeight, product of:
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.03903913 = queryNorm
                0.26651827 = fieldWeight in 4925, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4925)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Abstract
    In this study scientists were asked about their own publication history and their citation counts. The study shows that the citation counts of the publications correspond reasonably well with the authors' own assessments of scientific contribution. Generally, citations proved to have the highest accuracy in identifying either major or minor contributions. Nevertheless, according to these judgments, citations are not a reliable indicator of scientific contribution at the level of the individual article. In the construction of relative citation indicators, the average citation rate of the subfield appears to be slightly more appropriate as a reference standard than the journal citation rate. The study confirms that review articles are cited more frequently than other publication types. Compared to the significance authors attach to these articles they appear to be considerably "overcited." However, there were only marginal differences in the citation rates between empirical, methods, and theoretical contributions.
    Date
    11. 2.2006 17:52:29
  5. Frohlich, C.; Resler, L.: Analysis of publications and citations from a geophysics research institute (2001) 0.01
    0.011608556 = product of:
      0.034825668 = sum of:
        0.010674552 = product of:
          0.021349104 = sum of:
            0.021349104 = weight(_text_:29 in 5797) [ClassicSimilarity], result of:
              0.021349104 = score(doc=5797,freq=2.0), product of:
                0.13732746 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.03903913 = queryNorm
                0.15546128 = fieldWeight in 5797, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.03125 = fieldNorm(doc=5797)
          0.5 = coord(1/2)
        0.024151117 = product of:
          0.048302233 = sum of:
            0.048302233 = weight(_text_:methods in 5797) [ClassicSimilarity], result of:
              0.048302233 = score(doc=5797,freq=6.0), product of:
                0.15695344 = queryWeight, product of:
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.03903913 = queryNorm
                0.3077488 = fieldWeight in 5797, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.03125 = fieldNorm(doc=5797)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Abstract
    We here perform an analysis of all 1128 publications produced by scientists during their employment at the University of Texas Institute for Geophysics, a geophysical research laboratory founded in 1972 that currently employs 23 Ph.D.-level scientists. We thus assess research performance using as bibliometric indicators such statistics as publications per year, citations per paper, and cited half-lives. To characterize the research style of individual scientists and to obtain insight into the origin of certain publication-counting discrepancies, we classified the 1128 publications into four categories that differed significantly with respect to statistics such as lifetime citation rates, fraction of papers never-cited after 10 years, and cited half-life. The categories were: mainstream (prestige journal) publications -32.6 lifetime cit/pap, 2.4% never cited, and 6.9 year half-life; archival (other refereed)-12.0 lifetime cit/pap. 21.5% never cited, and 9.5 years half-life; articles published as proceedings of conferences-5.4 lifetime cit/pap, 26.6% never cited, and 5.4 years half-life; and "other" publications (news articles, book reviews, etc.)-4.2 lifetime cit/pap, 57.1% never cited, and 1.9 years half-life. Because determining cited half-lives is highly similar to a well-studied phenomenon in earthquake seismology, which was familiar to us, we thoroughly evaluate five different methods for determining the cited half-life and discuss the robustness and limitations of the various methods. Unfortunately, even when data are numerous the various methods often obtain very different values for the half-life. Our preferred method determines halflife from the ratio of citations appearing in back-to-back 5-year periods. We also evaluate the reliability of the citation count data used for these kinds of analysis and conclude that citation count data are often imprecise. All observations suggest that reported differences in cited half-lives must be quite large to be significant
    Date
    29. 9.2001 14:01:26
  6. Garfield, E.: Citation indexes for science (1985) 0.01
    0.009620271 = product of:
      0.028860811 = sum of:
        0.014917159 = product of:
          0.029834319 = sum of:
            0.029834319 = weight(_text_:theory in 3632) [ClassicSimilarity], result of:
              0.029834319 = score(doc=3632,freq=2.0), product of:
                0.16234003 = queryWeight, product of:
                  4.1583924 = idf(docFreq=1878, maxDocs=44218)
                  0.03903913 = queryNorm
                0.18377672 = fieldWeight in 3632, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.1583924 = idf(docFreq=1878, maxDocs=44218)
                  0.03125 = fieldNorm(doc=3632)
          0.5 = coord(1/2)
        0.013943653 = product of:
          0.027887305 = sum of:
            0.027887305 = weight(_text_:methods in 3632) [ClassicSimilarity], result of:
              0.027887305 = score(doc=3632,freq=2.0), product of:
                0.15695344 = queryWeight, product of:
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.03903913 = queryNorm
                0.17767884 = fieldWeight in 3632, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.03125 = fieldNorm(doc=3632)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Abstract
    Indexes in general seek to provide a "key" to a body of literature intending to help the user in identifying, verifying, and/or locating individual or related items. The most common devices for collocation in indexes are authors' names and subjects. A different approach to collocating related items in an index is provided by a method called "citation indexing." Citation indexes attempt to link items through citations or references, in other works, by bringing together items cited in a particular work and the works citing a particular item. Citation indexing is based an the concept that there is a significant intellectual link between a document and each bibliographic item cited in it and that this link is useful to the scholar because an author's references to earlier writings identify relevant information to the subject of his current work. One of the major differences between the citation index and the traditional subject index is that the former, while listing current literature, also provides a retrospec tive view of past literature. While each issue of a traditional index is normally concerned only with the current literature, the citation index brings back retrospective literature in the form of cited references, thereby linking current scholarly works with earlier works. The advantages of the citation index have been considered to be its value as a tool for tracing the history of ideas or discoveries, for associating ideas between current and past work, and for evaluating works of individual authors or library collections. The concept of citation indexing is not new. It has been applied to legal literature since 1873 in a legal reference tool called Shepard's Citations. In the 1950s Eugene Garfield, a documentation consultant and founder and President of the Institute for Scientific Information (Philadelphia), developed the technique of citation indexing for scientific literature. This new application was facilitated by the availability of computer technology, resulting in a series of services: Science Citation Index (1955- ), Social Sciences Citation Index (1966- ), and the Arts & Humanities Index (1976- ). All three appear in printed versions and as machine-readable databases. In the following essay, the first in a series of articles and books elucidating the citation indexing system, Garfield traces the origin and beginning of this idea, its advantages, and the methods of preparing such indexes.
    Source
    Theory of subject analysis: a sourcebook. Ed.: L.M. Chan, et al
  7. Haridasan, S.; Kulshrestha, V.K.: Citation analysis of scholarly communication in the journal Knowledge Organization (2007) 0.01
    0.009620271 = product of:
      0.028860811 = sum of:
        0.014917159 = product of:
          0.029834319 = sum of:
            0.029834319 = weight(_text_:theory in 863) [ClassicSimilarity], result of:
              0.029834319 = score(doc=863,freq=2.0), product of:
                0.16234003 = queryWeight, product of:
                  4.1583924 = idf(docFreq=1878, maxDocs=44218)
                  0.03903913 = queryNorm
                0.18377672 = fieldWeight in 863, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.1583924 = idf(docFreq=1878, maxDocs=44218)
                  0.03125 = fieldNorm(doc=863)
          0.5 = coord(1/2)
        0.013943653 = product of:
          0.027887305 = sum of:
            0.027887305 = weight(_text_:methods in 863) [ClassicSimilarity], result of:
              0.027887305 = score(doc=863,freq=2.0), product of:
                0.15695344 = queryWeight, product of:
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.03903913 = queryNorm
                0.17767884 = fieldWeight in 863, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.03125 = fieldNorm(doc=863)
          0.5 = coord(1/2)
      0.33333334 = coord(2/6)
    
    Abstract
    Purpose - Citation analysis is one of the popular methods employed for identification of core documents and complex relationship between citing and cited documents for a particular scholarly community in a geographical proximity. The present citation study is to understand the information needs, use pattern and use behaviour of library and information science researchers particularly engaged in the field of knowledge organization. Design/methodology/approach - The data relating to all the references appended to the articles during the period under study were collected and tabulated. Findings - Citation analysis of the journal for the period under study reveals that the average number of citations is around 21 per article. The major source of information is books and documents published during the later half of the century (1982-91). Authors from the USA, UK and Germany are the major contributors to the journal. India is ranked seventh in terms of contributions. Research limitations/implications - The study undertaken is limited to nine years, i.e. 1993-2001. The model citation index of the journal is analyzed using the first seven core authors. Practical implications - Ranking of periodicals helps to identify the core periodicals cited in the journal Knowledge Organization. Ranking of authors is done to know the eminent personalities in the subject, whose work is used by the authors to refine their ideas on the subject or topic. Originality/value - Model Citation Index for the first seven most cited authors was worked out and it reveals the historical relationship of cited and citing documents. This model citation index can be used to identify, the most cited authors as researchers currently working on special problems, to determine whether a paper has been cited, whether there has been a review of a subject, whether a concept has been applied, a theory confirmed or a method improved.
  8. White, H.D.: Authors as citers over time (2001) 0.01
    0.008530571 = product of:
      0.051183425 = sum of:
        0.051183425 = sum of:
          0.029834319 = weight(_text_:theory in 5581) [ClassicSimilarity], result of:
            0.029834319 = score(doc=5581,freq=2.0), product of:
              0.16234003 = queryWeight, product of:
                4.1583924 = idf(docFreq=1878, maxDocs=44218)
                0.03903913 = queryNorm
              0.18377672 = fieldWeight in 5581, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                4.1583924 = idf(docFreq=1878, maxDocs=44218)
                0.03125 = fieldNorm(doc=5581)
          0.021349104 = weight(_text_:29 in 5581) [ClassicSimilarity], result of:
            0.021349104 = score(doc=5581,freq=2.0), product of:
              0.13732746 = queryWeight, product of:
                3.5176873 = idf(docFreq=3565, maxDocs=44218)
                0.03903913 = queryNorm
              0.15546128 = fieldWeight in 5581, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5176873 = idf(docFreq=3565, maxDocs=44218)
                0.03125 = fieldNorm(doc=5581)
      0.16666667 = coord(1/6)
    
    Abstract
    This study explores the tendency of authors to recite themselves and others in multiple works over time, using the insights gained to build citation theory. The set of all authors whom an author cites is defined as that author's citation identity. The study explains how to retrieve citation identities from the Institute for Scientific Information's files on Dialog and how to deal with idiosyncrasies of these files. As the author's oeuvre grows, the identity takes the form of a core-and-scatter distribution that may be divided into authors cited only once (unicitations) and authors cited at least twice (recitations). The latter group, especially those recited most frequently, are interpretable as symbols of a citer's main substantive concerns. As illustrated by the top recitees of eight information scientists, identities are intelligible, individualized, and wide-ranging. They are ego-centered without being egotistical. They are often affected by social ties between citers and citees, but the universal motivator seems to be the perceived relevance of the citees' works. Citing styles in identities differ: "scientific-paper style" authors recite heavily, adding to core; "bibliographic-essay style" authors are heavy on unicitations, adding to scatter; "literature-review style" authors do both at once. Identities distill aspects of citers' intellectual lives, such as orienting figures, interdisciplinary interests, bidisciplinary careers, and conduct in controversies. They can also be related to past schemes for classifying citations in categories such as positive-negative and perfunctory- organic; indeed, one author's frequent recitation of another, whether positive or negative, may be the readiest indicator of an organic relation between them. The shape of the core-and-scatter distribution of names in identities can be explained by the principle of least effort. Citers economize on effort by frequently reciting only a relatively small core of names in their identities. They also economize by frequent use of perfunctory citations, which require relatively little context, and infrequent use of negative citations, which require contexts more laborious to set
    Date
    29. 9.2001 13:58:38
  9. Nicolaisen, J.: Citation analysis (2007) 0.01
    0.0070523517 = product of:
      0.04231411 = sum of:
        0.04231411 = product of:
          0.08462822 = sum of:
            0.08462822 = weight(_text_:22 in 6091) [ClassicSimilarity], result of:
              0.08462822 = score(doc=6091,freq=2.0), product of:
                0.1367084 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03903913 = queryNorm
                0.61904186 = fieldWeight in 6091, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.125 = fieldNorm(doc=6091)
          0.5 = coord(1/2)
      0.16666667 = coord(1/6)
    
    Date
    13. 7.2008 19:53:22
  10. Døsen, K.: One more reference on self-reference (1992) 0.01
    0.0070523517 = product of:
      0.04231411 = sum of:
        0.04231411 = product of:
          0.08462822 = sum of:
            0.08462822 = weight(_text_:22 in 4604) [ClassicSimilarity], result of:
              0.08462822 = score(doc=4604,freq=2.0), product of:
                0.1367084 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03903913 = queryNorm
                0.61904186 = fieldWeight in 4604, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.125 = fieldNorm(doc=4604)
          0.5 = coord(1/2)
      0.16666667 = coord(1/6)
    
    Date
    7. 2.2005 14:10:22
  11. Garfield, E.: Random thoughts on citationology : Its theory and practice (1998) 0.01
    0.0070320163 = product of:
      0.042192098 = sum of:
        0.042192098 = product of:
          0.084384196 = sum of:
            0.084384196 = weight(_text_:theory in 5128) [ClassicSimilarity], result of:
              0.084384196 = score(doc=5128,freq=4.0), product of:
                0.16234003 = queryWeight, product of:
                  4.1583924 = idf(docFreq=1878, maxDocs=44218)
                  0.03903913 = queryNorm
                0.51979905 = fieldWeight in 5128, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.1583924 = idf(docFreq=1878, maxDocs=44218)
                  0.0625 = fieldNorm(doc=5128)
          0.5 = coord(1/2)
      0.16666667 = coord(1/6)
    
    Abstract
    Theories of citation are as elusive as theories of information science, which have been debated for decade. Gives an overview of some of these theories, and as a basis for discussion offers the term citationology as the theory and practice of citation, including its derivative disciplines citation analysis and bibliometrics
  12. Fujigaki, Y.: ¬The citation system : citation networks as repeatedly focusing on difference, continuous re-evaluation, and as persistent knowledge accumulation (1998) 0.01
    0.0070320163 = product of:
      0.042192098 = sum of:
        0.042192098 = product of:
          0.084384196 = sum of:
            0.084384196 = weight(_text_:theory in 5129) [ClassicSimilarity], result of:
              0.084384196 = score(doc=5129,freq=4.0), product of:
                0.16234003 = queryWeight, product of:
                  4.1583924 = idf(docFreq=1878, maxDocs=44218)
                  0.03903913 = queryNorm
                0.51979905 = fieldWeight in 5129, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.1583924 = idf(docFreq=1878, maxDocs=44218)
                  0.0625 = fieldNorm(doc=5129)
          0.5 = coord(1/2)
      0.16666667 = coord(1/6)
    
    Abstract
    States that it can be shown that claims of a lack of theories of citation are also indicative of a great need for a theory which links science dynamics and measurement. There is a wide gap between qualitative (science dynamics) and quantitative (measurement) approaches. To link them, proposes the use of the citation system, that potentially bridges a gap between measurement and epistemology, by applying system theory to the publication system
  13. Riviera, E.: Scientific communities as autopoietic systems : the reproductive function of citations (2013) 0.01
    0.0064593195 = product of:
      0.038755916 = sum of:
        0.038755916 = product of:
          0.07751183 = sum of:
            0.07751183 = weight(_text_:theory in 970) [ClassicSimilarity], result of:
              0.07751183 = score(doc=970,freq=6.0), product of:
                0.16234003 = queryWeight, product of:
                  4.1583924 = idf(docFreq=1878, maxDocs=44218)
                  0.03903913 = queryNorm
                0.47746593 = fieldWeight in 970, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  4.1583924 = idf(docFreq=1878, maxDocs=44218)
                  0.046875 = fieldNorm(doc=970)
          0.5 = coord(1/2)
      0.16666667 = coord(1/6)
    
    Abstract
    The increasing employment of bibliometric measures for assessing, describing, and mapping science inevitably leads to the increasing need for a citation theory constituting a theoretical frame for both citation analysis and the description of citers' behavior. In this article a theoretical model, encompassing both normative and constructivist approaches, is suggested. The conceptualization of scientific communities as autopoietic systems, the components of which are communicative events, allows us to observe the reproductive function of citations conceived as codes and media of scientific communication. Citations, thanks to their constraining and enabling properties, constitute the engine of the structuration process ensuring the reproduction of scientific communities. By referring to Giddens' structuration theory, Luhmann's theory about social systems as communicative networks, Merton's "sociology of science" and his conceptualizations about the functions of citations, as well as Small's proposal about citations as concept-symbols, a sociologically integrated approach to scientometrics is proposed.
  14. Van der Veer Martens, B.: Do citation systems represent theories of truth? (2001) 0.01
    0.006233457 = product of:
      0.03740074 = sum of:
        0.03740074 = product of:
          0.07480148 = sum of:
            0.07480148 = weight(_text_:22 in 3925) [ClassicSimilarity], result of:
              0.07480148 = score(doc=3925,freq=4.0), product of:
                0.1367084 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03903913 = queryNorm
                0.54716086 = fieldWeight in 3925, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=3925)
          0.5 = coord(1/2)
      0.16666667 = coord(1/6)
    
    Date
    22. 7.2006 15:22:28
  15. Williams, R.M.: ISI search network research front specialities (1983) 0.01
    0.006226822 = product of:
      0.03736093 = sum of:
        0.03736093 = product of:
          0.07472186 = sum of:
            0.07472186 = weight(_text_:29 in 445) [ClassicSimilarity], result of:
              0.07472186 = score(doc=445,freq=2.0), product of:
                0.13732746 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.03903913 = queryNorm
                0.5441145 = fieldWeight in 445, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.109375 = fieldNorm(doc=445)
          0.5 = coord(1/2)
      0.16666667 = coord(1/6)
    
    Source
    Deutscher Dokumentartag 1982, Lübeck-Travemünde, 29.-30.9.1982: Fachinformation im Zeitalter der Informationsindustrie. Bearb.: H. Strohl-Goebel
  16. Remler, A.: Lässt sich wissenschaftliche Leistung messen? : Wer zitiert wird, liegt vorne - in den USA berechnet man Forschungsleistung nach einem Zitat-Index (2000) 0.01
    0.006226822 = product of:
      0.03736093 = sum of:
        0.03736093 = product of:
          0.07472186 = sum of:
            0.07472186 = weight(_text_:29 in 5392) [ClassicSimilarity], result of:
              0.07472186 = score(doc=5392,freq=2.0), product of:
                0.13732746 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.03903913 = queryNorm
                0.5441145 = fieldWeight in 5392, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.109375 = fieldNorm(doc=5392)
          0.5 = coord(1/2)
      0.16666667 = coord(1/6)
    
    Date
    30.10.2000 17:47:29
  17. Pair, C.I.: Formal evaluation methods : their utility and limitations (1995) 0.01
    0.005751464 = product of:
      0.034508783 = sum of:
        0.034508783 = product of:
          0.06901757 = sum of:
            0.06901757 = weight(_text_:methods in 4259) [ClassicSimilarity], result of:
              0.06901757 = score(doc=4259,freq=4.0), product of:
                0.15695344 = queryWeight, product of:
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.03903913 = queryNorm
                0.43973273 = fieldWeight in 4259, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4259)
          0.5 = coord(1/2)
      0.16666667 = coord(1/6)
    
    Abstract
    Discusses evaluation techniques as an integral part of science with the emphasis on evalution for policy purposes. Outlines early attempts to validate the use of biliometric indicators. Concludes that: best results are obtained by applying a variety of methods simultaneously; reliable results can be obtained from citation analysis for purely scientific subfields such as physics; and citation analysis tends to give unreliable results for technological subjects. Concludes that bibliometrics as a technique for determining policy should never be used on its own. Describes an evaluation method used for selecting research projects for financial support, as applied by STW, the technology branch of the Netherlands' research council, NWO
  18. De Bellis, N.: Bibliometrics and citation analysis : from the Science citation index to cybermetrics (2008) 0.01
    0.0056924727 = product of:
      0.034154836 = sum of:
        0.034154836 = product of:
          0.06830967 = sum of:
            0.06830967 = weight(_text_:methods in 3585) [ClassicSimilarity], result of:
              0.06830967 = score(doc=3585,freq=12.0), product of:
                0.15695344 = queryWeight, product of:
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.03903913 = queryNorm
                0.4352225 = fieldWeight in 3585, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.03125 = fieldNorm(doc=3585)
          0.5 = coord(1/2)
      0.16666667 = coord(1/6)
    
    LCSH
    Information science / Statistical methods
    Scientific literature / Statistical methods
    Technical literature / Statistical methods
    Subject
    Information science / Statistical methods
    Scientific literature / Statistical methods
    Technical literature / Statistical methods
  19. Wilson, C.S.; Tenopir, C.: Local citation analysis, publishing and reading patterns : using multiple methods to evaluate faculty use of an academic library's research collection (2008) 0.01
    0.0050314823 = product of:
      0.030188894 = sum of:
        0.030188894 = product of:
          0.060377788 = sum of:
            0.060377788 = weight(_text_:methods in 1960) [ClassicSimilarity], result of:
              0.060377788 = score(doc=1960,freq=6.0), product of:
                0.15695344 = queryWeight, product of:
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.03903913 = queryNorm
                0.384686 = fieldWeight in 1960, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  4.0204134 = idf(docFreq=2156, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1960)
          0.5 = coord(1/2)
      0.16666667 = coord(1/6)
    
    Abstract
    This study assessed the intermix of local citation analysis and survey of journal use and reading patterns for evaluating an academic library's research collection. Journal articles and their cited references from faculties at the University of New South Wales were downloaded from the Web of Science (WoS) and journal impact factors from the Journal Citation Reports. The survey of the University of New South Wales (UNSW) academic staff asked both reader-related and reading-related questions. Both methods showed that academics in medicine published more and had more coauthors per paper than academics in the other faculties; however, when correlated with the number of students and academic staff, science published more and engineering published in higher impact journals. When recalled numbers of articles published were compared to actual numbers, all faculties over-estimated their productivity by nearly two-fold. The distribution of cited serial references was highly skewed with over half of the titles cited only once. The survey results corresponded with U.S. university surveys with one exception: Engineering academics reported the highest number of article readings and read mostly for research related activities. Citation analysis data showed that the UNSW library provided the majority of journals in which researchers published and cited, mostly in electronic formats. However, the availability of non-journal cited sources was low. The joint methods provided both confirmatory and contradictory results and proved useful in evaluating library research collections.
  20. Alvarez, P.; Pulgarin, A.: ¬The Rasch model : measuring the impact of scientific journals: analytical chemistry (1996) 0.00
    0.0049723866 = product of:
      0.029834319 = sum of:
        0.029834319 = product of:
          0.059668638 = sum of:
            0.059668638 = weight(_text_:theory in 8505) [ClassicSimilarity], result of:
              0.059668638 = score(doc=8505,freq=2.0), product of:
                0.16234003 = queryWeight, product of:
                  4.1583924 = idf(docFreq=1878, maxDocs=44218)
                  0.03903913 = queryNorm
                0.36755344 = fieldWeight in 8505, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.1583924 = idf(docFreq=1878, maxDocs=44218)
                  0.0625 = fieldNorm(doc=8505)
          0.5 = coord(1/2)
      0.16666667 = coord(1/6)
    
    Abstract
    Focuses on a way to determine a ranking of science journals according to the number of citations-to and items-published data used by Science Citation Insitute of Citation Reports of the Institute for Science Information to determine journal ranking by impact factor. Applies latent traits theory to bibliometrics

Languages

  • e 61
  • d 8
  • chi 1
  • More… Less…

Types

  • a 64
  • el 4
  • m 4
  • r 1
  • More… Less…