Search (30 results, page 1 of 2)

  • × author_ss:"Gnoli, C."
  1. Gnoli, C.; Bosch, M.; Mazzocchi, F.: ¬A new relationship for multidisciplinary knowledge organization systems : dependence (2007) 0.04
    0.037442096 = product of:
      0.07488419 = sum of:
        0.064335 = weight(_text_:interfaces in 1095) [ClassicSimilarity], result of:
          0.064335 = score(doc=1095,freq=2.0), product of:
            0.22349821 = queryWeight, product of:
              5.2107263 = idf(docFreq=655, maxDocs=44218)
              0.04289195 = queryNorm
            0.28785467 = fieldWeight in 1095, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.2107263 = idf(docFreq=655, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1095)
        0.010549186 = product of:
          0.031647556 = sum of:
            0.031647556 = weight(_text_:systems in 1095) [ClassicSimilarity], result of:
              0.031647556 = score(doc=1095,freq=4.0), product of:
                0.13181444 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.04289195 = queryNorm
                0.24009174 = fieldWeight in 1095, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1095)
          0.33333334 = coord(1/3)
      0.5 = coord(2/4)
    
    Abstract
    Most existing knowledge organization systems (KOS) are based on disciplines. However, as research is increasingly multidisciplinary, scholars need tools allowing them to explore relations between phenomena throughout the whole spectrum of knowledge. We focus on the dependence relationship, holding between one phenomenon and those at lower integrative levels on which it depends for its existence, like alpinism on mountains, and mountains on rocks. This relationship was first described by D.J. Foskett in the context of CRG's work towards a non-disciplinary scheme. We discuss its possible status and representation in three kinds of KOS: thesauri, classification schemes, and ontologies. In thesaural structures, dependence could be one of the subtypes of associative relationships (RT) which have been wished to enrich their semantic functions. In classification, it could act together with hierarchy as a structuring principle, providing a way of connecting and sorting main classes based on integrative levels. In ontologies, it could be defined as a dependsOn direct slot, expressing the fact that through it a class does not inherit all properties of the other class on which it depends. We argue that providing search interfaces with cross-disciplinary links of this kind can give users more adequate tools to examine the recorded knowledge through creative paths overcoming some limitations of its canonical segmentation into disciplines.
  2. Gnoli, C.; Merli, G.; Pavan, G.; Bernuzzi, E.; Priano, M.: Freely faceted classification for a Web-based bibliographic archive : the BioAcoustic Reference Database (2010) 0.04
    0.037010223 = product of:
      0.074020445 = sum of:
        0.064335 = weight(_text_:interfaces in 3739) [ClassicSimilarity], result of:
          0.064335 = score(doc=3739,freq=2.0), product of:
            0.22349821 = queryWeight, product of:
              5.2107263 = idf(docFreq=655, maxDocs=44218)
              0.04289195 = queryNorm
            0.28785467 = fieldWeight in 3739, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.2107263 = idf(docFreq=655, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3739)
        0.009685446 = product of:
          0.029056335 = sum of:
            0.029056335 = weight(_text_:22 in 3739) [ClassicSimilarity], result of:
              0.029056335 = score(doc=3739,freq=2.0), product of:
                0.15020029 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04289195 = queryNorm
                0.19345059 = fieldWeight in 3739, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3739)
          0.33333334 = coord(1/3)
      0.5 = coord(2/4)
    
    Abstract
    The Integrative Level Classification (ILC) research project is experimenting with a knowledge organization system based on phenomena rather than disciplines. Each phenomenon has a constant notation, which can be combined with that of any other phenomenon in a freely faceted structure. Citation order can express differential focality of the facets. Very specific subjects can have long classmarks, although their complexity is reduced by various devices. Freely faceted classification is being tested by indexing a corpus of about 3300 papers in the interdisciplinary domain of bioacoustics. The subjects of these papers often include phenomena from a wide variety of integrative levels (mechanical waves, animals, behaviour, vessels, fishing, law, ...) as well as information about the methods of study, as predicted in the León Manifesto. The archive is recorded in a MySQL database, and can be fed and searched through PHP Web interfaces. Indexer's work is made easier by mechanisms that suggest possible classes on the basis of matching title words with terms in the ILC schedules, and synthesize automatically the verbal caption corresponding to the classmark being edited. Users can search the archive by selecting and combining values in each facet. Search refinement should be improved, especially for the cases where no record, or too many records, match the faceted query. However, experience is being gained progressively, showing that freely faceted classification by phenomena, theories, and methods is feasible and successfully working.
    Source
    Wissensspeicher in digitalen Räumen: Nachhaltigkeit - Verfügbarkeit - semantische Interoperabilität. Proceedings der 11. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation, Konstanz, 20. bis 22. Februar 2008. Hrsg.: J. Sieglerschmidt u. H.P.Ohly
  3. Gnoli, C.: Metadata about what? : distinguishing between ontic, epistemic, and documental dimensions in knowledge organization (2012) 0.04
    0.035897203 = product of:
      0.071794406 = sum of:
        0.064335 = weight(_text_:interfaces in 323) [ClassicSimilarity], result of:
          0.064335 = score(doc=323,freq=2.0), product of:
            0.22349821 = queryWeight, product of:
              5.2107263 = idf(docFreq=655, maxDocs=44218)
              0.04289195 = queryNorm
            0.28785467 = fieldWeight in 323, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.2107263 = idf(docFreq=655, maxDocs=44218)
              0.0390625 = fieldNorm(doc=323)
        0.007459401 = product of:
          0.022378203 = sum of:
            0.022378203 = weight(_text_:systems in 323) [ClassicSimilarity], result of:
              0.022378203 = score(doc=323,freq=2.0), product of:
                0.13181444 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.04289195 = queryNorm
                0.1697705 = fieldWeight in 323, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=323)
          0.33333334 = coord(1/3)
      0.5 = coord(2/4)
    
    Abstract
    The spread of many new media and formats is changing the scenario faced by knowledge organizers: as printed monographs are not the only standard form of knowledge carrier anymore, the traditional kind of knowledge organization (KO) systems based on academic disciplines is put into question. A sounder foundation can be provided by an analysis of the different dimensions concurring to form the content of any knowledge item-what Brian Vickery described as the steps "from the world to the classifier." The ultimate referents of documents are the phenomena of the real world, that can be ordered by ontology, the study of what exists. Phenomena coexist in subjects with the perspectives by which they are considered, pertaining to epistemology, and with the formal features of knowledge carriers, adding a further, pragmatic layer. All these dimensions can be accounted for in metadata, but are often done so in mixed ways, making indexes less rigorous and interoperable. For example, while facet analysis was originally developed for subject indexing, many "faceted" interfaces today mix subject facets with form facets, and schemes presented as "ontologies" for the "semantic Web" also code for non-semantic information. In bibliographic classifications, phenomena are often confused with the disciplines dealing with them, the latter being assumed to be the most useful starting point, for users will have either one or another perspective. A general citation order of dimensions- phenomena, perspective, carrier-is recommended, helping to concentrate most relevant information at the beginning of headings.
  4. Gnoli, C.: ¬The meaning of facets in non-disciplinary classifications (2006) 0.02
    0.01608375 = product of:
      0.064335 = sum of:
        0.064335 = weight(_text_:interfaces in 2291) [ClassicSimilarity], result of:
          0.064335 = score(doc=2291,freq=2.0), product of:
            0.22349821 = queryWeight, product of:
              5.2107263 = idf(docFreq=655, maxDocs=44218)
              0.04289195 = queryNorm
            0.28785467 = fieldWeight in 2291, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.2107263 = idf(docFreq=655, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2291)
      0.25 = coord(1/4)
    
    Abstract
    Disciplines are felt by many to be a constraint in classification, though they are a structuring principle of most bibliographic classification schemes. A non-disciplinary approach has been explored by the Classification Research Group, and research in this direction has been resumed recently by the Integrative Level Classification project. This paper focuses on the role and the definition of facets in non-disciplinary schemes. A generalized definition of facets is suggested with reference to predicate logic, allowing for having facets of phenomena as well as facets of disciplines. The general categories under which facets are often subsumed can be related ontologically to the evolutionary sequence of integrative levels. As a facet can be semantically connected with phenomena from any other part of a general scheme, its values can belong to three types, here called extra-defined foci (either special or general), and context-defined foci. Non-disciplinary freely faceted classification is being tested by applying it to little bibliographic samples stored in a MySQL database, and developing Web search interfaces to demonstrate possible uses of the described techniques.
  5. Gnoli, C.: Fundamentos ontológicos de la organización del conocimiento : la teoría de los niveles integrativos aplicada al orden de cita (2011) 0.01
    0.010581235 = product of:
      0.04232494 = sum of:
        0.04232494 = product of:
          0.06348741 = sum of:
            0.040031344 = weight(_text_:systems in 2659) [ClassicSimilarity], result of:
              0.040031344 = score(doc=2659,freq=10.0), product of:
                0.13181444 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.04289195 = queryNorm
                0.3036947 = fieldWeight in 2659, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2659)
            0.02345607 = weight(_text_:29 in 2659) [ClassicSimilarity], result of:
              0.02345607 = score(doc=2659,freq=2.0), product of:
                0.15088047 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.04289195 = queryNorm
                0.15546128 = fieldWeight in 2659, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2659)
          0.6666667 = coord(2/3)
      0.25 = coord(1/4)
    
    Abstract
    The field of knowledge organization (KO) can be described as composed of the four distinct but connected layers of theory, systems, representation, and application. This paper focuses on the relations between KO theory and KO systems. It is acknowledged how the structure of KO systems is the product of a mixture of ontological, epistemological, and pragmatical factors. However, different systems give different priorities to each factor. A more ontologically-oriented approach, though not offering quick solutions for any particular group of users, will produce systems of wide and long-lasting application as they are based on general, shareable principles. I take the case of the ontological theory of integrative levels, which has been considered as a useful source for general classifications for several decades, and is currently implemented in the Integrative Levels Classification system. The theory produces a sequence of main classes modelling a natural order between phenomena. This order has interesting effects also on other features of the system, like the citation order of concepts within compounds. As it has been shown by facet analytical theory, it is useful that citation order follow a principle of inversion, as compared to the order of the same concepts in the schedules. In the light of integrative levels theory, this principle also acquires an ontological meaning: phenomena of lower level should be cited first, as most often they act as specifications of higher-level ones. This ontological principle should be complemented by consideration of the epistemological treatment of phenomena: in case a lower-level phenomenon is the main theme, it can be promoted to the leading position in the compound subject heading. The integration of these principles is believed to produce optimal results in the ordering of knowledge contents.
    Source
    Scire. 17(2011) no.1, S.29-34
  6. Santis, R. de; Gnoli, C.: Expressing dependence relationships in the Integrative Levels Classification using OWL (2016) 0.00
    0.0039093453 = product of:
      0.015637381 = sum of:
        0.015637381 = product of:
          0.04691214 = sum of:
            0.04691214 = weight(_text_:29 in 4931) [ClassicSimilarity], result of:
              0.04691214 = score(doc=4931,freq=2.0), product of:
                0.15088047 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.04289195 = queryNorm
                0.31092256 = fieldWeight in 4931, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4931)
          0.33333334 = coord(1/3)
      0.25 = coord(1/4)
    
    Source
    Knowledge organization for a sustainable world: challenges and perspectives for cultural, scientific, and technological sharing in a connected society : proceedings of the Fourteenth International ISKO Conference 27-29 September 2016, Rio de Janeiro, Brazil / organized by International Society for Knowledge Organization (ISKO), ISKO-Brazil, São Paulo State University ; edited by José Augusto Chaves Guimarães, Suellen Oliveira Milani, Vera Dodebei
  7. Gnoli, C.: Workshop on Levels of reality as a KO paradigm : levels, types, facets: three structural principles for KO (2010) 0.00
    0.0038760183 = product of:
      0.015504073 = sum of:
        0.015504073 = product of:
          0.04651222 = sum of:
            0.04651222 = weight(_text_:systems in 3524) [ClassicSimilarity], result of:
              0.04651222 = score(doc=3524,freq=6.0), product of:
                0.13181444 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.04289195 = queryNorm
                0.35286134 = fieldWeight in 3524, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3524)
          0.33333334 = coord(1/3)
      0.25 = coord(1/4)
    
    Abstract
    Three major principles in the structure of knowledge organization systems are identified and discussed: hierarchical trees of types, sets of facets conforming to general categories, and series of levels of reality. Each principle can be present at various degrees in different systems. The three principles can interact between them in various ways, depending on priority choices in system construction. Examples are reviewed of different priority options adopted in classifications and thesauri, both special and general, and their effects are critically examined. It is found that levels of reality, although less often explicitly acknowledged than other principles, contribute an important tool for knowledge organization.
    Source
    Paradigms and conceptual systems in knowledge organization: Proceedings of the Eleventh International ISKO Conference, 23-26 February 2010 Rome, Italy. Edited by Claudio Gnoli and Fulvio Mazzocchi
  8. Gnoli, C.: Notation (2018) 0.00
    0.0038760183 = product of:
      0.015504073 = sum of:
        0.015504073 = product of:
          0.04651222 = sum of:
            0.04651222 = weight(_text_:systems in 4650) [ClassicSimilarity], result of:
              0.04651222 = score(doc=4650,freq=6.0), product of:
                0.13181444 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.04289195 = queryNorm
                0.35286134 = fieldWeight in 4650, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4650)
          0.33333334 = coord(1/3)
      0.25 = coord(1/4)
    
    Abstract
    Notations are systems of symbols that can be combined according to syntactical rules to represent meanings in a specialized domain. In knowledge organization, they are systems of numerals, letters and punctuation marks associated to a concept that mechanically produce helpful sequences of them for arranging books on shelves, browsing subjects in directories and displaying items in catalogues. Most bibliographic classification systems, like Dewey Decimal Classification, use a positional notation allowing for expression of increasingly specific subjects by additional digits. However, some notations like that of Bliss Bibliographic Classification are purely ordinal and do not reflect the hierarchical degree of a subject. Notations can also be expressive of the syntactical structure of compound subjects (common auxiliaries, facets etc.) in various ways. In the digital media, notation can be recorded and managed in databases and exploited to provide appropriate search and display functionalities.
  9. Gnoli, C.: ISKO News (2007) 0.00
    0.0032300155 = product of:
      0.012920062 = sum of:
        0.012920062 = product of:
          0.038760185 = sum of:
            0.038760185 = weight(_text_:systems in 1092) [ClassicSimilarity], result of:
              0.038760185 = score(doc=1092,freq=6.0), product of:
                0.13181444 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.04289195 = queryNorm
                0.29405114 = fieldWeight in 1092, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1092)
          0.33333334 = coord(1/3)
      0.25 = coord(1/4)
    
    Abstract
    Bericht über: Levels of Reality, Seminar, Bolzano (Bozen) Italy, 26-28 September 2007: Ontologies, the knowledge organization systems now widely used in knowledge management applications, take their name from a branch of philosophy. Philosophical ontology deals with the kinds and the properties of what exists, and with how they can be described by categories like entity, attribute, or process. Readers familiar with facet analysis will notice some analogy with the "fundamental categories" of faceted classifications, and this resemblance is not accidental. Indeed, knowledge organization systems use conceptual structures that can be variously reconnected with the categories of ontology. Though having more practical purposes, the ontologies and classifications of information science can benefit of those of philosophy.
    Darin: "However, John Sowa (Vivomind, USA) argued in his speech that the formalized approach, already undertaken by the pioneering project Cyc now having run for 23 years, is not the best way to analyze complex systems. People don't really use axioms in their cognitive processes (even mathematicians first get an idea intuitively, then work on axioms and proofs only at the moment of writing papers). To map between different ontologies, the Vivomind Analogy Engine throws axioms out, and searches instead for analogies in their structures. Analogy is a pragmatic human faculty using a combination of the three logical procedures of deduction, induction, and abduction. Guarino comments that people can communicate without need of axioms as they share a common context, but in order to teach computers how to operate, the requirements are different: he would not trust an airport control system working by analogy."
  10. Simoes, G.; Machado, L.; Gnoli, C.; Souza, R.: Can an ontologically-oriented KO do without concepts? (2020) 0.00
    0.0031647556 = product of:
      0.012659023 = sum of:
        0.012659023 = product of:
          0.037977066 = sum of:
            0.037977066 = weight(_text_:systems in 4964) [ClassicSimilarity], result of:
              0.037977066 = score(doc=4964,freq=4.0), product of:
                0.13181444 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.04289195 = queryNorm
                0.28811008 = fieldWeight in 4964, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4964)
          0.33333334 = coord(1/3)
      0.25 = coord(1/4)
    
    Abstract
    The ontological approach in the development of KOS is an attempt to overcome the limitations of the traditional epistemological approach. Questions raise about the representation and organization of ontologically-oriented KO units, such as BFO universals or ILC phenomena. The study aims to compare the ontological approaches of BFO and ILC using a hermeneutic approach. We found that the differences between the units of the two systems are primarily due to the formal level of abstraction of BFO and the different organizations, namely the grouping of phenomena into ILC classes that represent complex compounds of entities in the BFO approach. In both systems the use of concepts is considered instrumental, although in the ILC they constitute the intersubjective component of the phenomena whereas in BFO they serve to access the entities of reality but are not part of them.
  11. Gnoli, C.: Naturalism vs pragmatism in knowledge organization (2004) 0.00
    0.002932009 = product of:
      0.011728036 = sum of:
        0.011728036 = product of:
          0.035184108 = sum of:
            0.035184108 = weight(_text_:29 in 2663) [ClassicSimilarity], result of:
              0.035184108 = score(doc=2663,freq=2.0), product of:
                0.15088047 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.04289195 = queryNorm
                0.23319192 = fieldWeight in 2663, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2663)
          0.33333334 = coord(1/3)
      0.25 = coord(1/4)
    
    Date
    29. 8.2004 17:33:13
  12. Gnoli, C.: Phylogenetic classification (2006) 0.00
    0.002932009 = product of:
      0.011728036 = sum of:
        0.011728036 = product of:
          0.035184108 = sum of:
            0.035184108 = weight(_text_:29 in 164) [ClassicSimilarity], result of:
              0.035184108 = score(doc=164,freq=2.0), product of:
                0.15088047 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.04289195 = queryNorm
                0.23319192 = fieldWeight in 164, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.046875 = fieldNorm(doc=164)
          0.33333334 = coord(1/3)
      0.25 = coord(1/4)
    
    Date
    11. 3.2007 14:19:29
  13. Gnoli, C.: Boundaries and overlaps of disciplines in Bloch's methodology of historical knowledge (2014) 0.00
    0.0029056333 = product of:
      0.011622533 = sum of:
        0.011622533 = product of:
          0.0348676 = sum of:
            0.0348676 = weight(_text_:22 in 1414) [ClassicSimilarity], result of:
              0.0348676 = score(doc=1414,freq=2.0), product of:
                0.15020029 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04289195 = queryNorm
                0.23214069 = fieldWeight in 1414, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1414)
          0.33333334 = coord(1/3)
      0.25 = coord(1/4)
    
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  14. Lardera, M.; Gnoli, C.; Rolandi, C.; Trzmielewski, M.: Developing SciGator, a DDC-based library browsing tool (2017) 0.00
    0.0029056333 = product of:
      0.011622533 = sum of:
        0.011622533 = product of:
          0.0348676 = sum of:
            0.0348676 = weight(_text_:22 in 4144) [ClassicSimilarity], result of:
              0.0348676 = score(doc=4144,freq=2.0), product of:
                0.15020029 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04289195 = queryNorm
                0.23214069 = fieldWeight in 4144, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4144)
          0.33333334 = coord(1/3)
      0.25 = coord(1/4)
    
    Content
    Beitrag eines Special Issue: ISKO-Italy: 8' Incontro ISKO Italia, Università di Bologna, 22 maggio 2017, Bologna, Italia.
  15. Gnoli, C.: Classifying phenomena : part 4: themes and rhemes (2018) 0.00
    0.0029056333 = product of:
      0.011622533 = sum of:
        0.011622533 = product of:
          0.0348676 = sum of:
            0.0348676 = weight(_text_:22 in 4152) [ClassicSimilarity], result of:
              0.0348676 = score(doc=4152,freq=2.0), product of:
                0.15020029 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04289195 = queryNorm
                0.23214069 = fieldWeight in 4152, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4152)
          0.33333334 = coord(1/3)
      0.25 = coord(1/4)
    
    Date
    17. 2.2018 18:22:25
  16. Szostak, R.; Gnoli, C.; López-Huertas, M.: Interdisciplinary knowledge organization 0.00
    0.0025840122 = product of:
      0.010336049 = sum of:
        0.010336049 = product of:
          0.031008147 = sum of:
            0.031008147 = weight(_text_:systems in 3804) [ClassicSimilarity], result of:
              0.031008147 = score(doc=3804,freq=6.0), product of:
                0.13181444 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.04289195 = queryNorm
                0.2352409 = fieldWeight in 3804, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.03125 = fieldNorm(doc=3804)
          0.33333334 = coord(1/3)
      0.25 = coord(1/4)
    
    Abstract
    -Existing classification systems serve interdisciplinary research and teaching poorly. -A novel approach to classification, grounded in the phenomena studied rather than disciplines, would serve interdisciplinary scholarship much better. It would also have advantages for disciplinary scholarship. The productivity of scholarship would thus be increased. -This novel approach is entirely feasible. Various concerns that might be raised can each be addressed. The broad outlines of what a new classification would look like are developed. -This new approach might serve as a complement to or a substitute for existing classification systems. -Domain analysis can and should be employed in the pursuit of a general classification. This will be particularly important with respect to interdisciplinary domains. -Though the impetus for this novel approach comes from interdisciplinarity, it is also better suited to the needs of the Semantic Web, and a digital environment more generally. Though the primary focus of the book is on classification systems, most chapters also address how the analysis could be extended to thesauri and ontologies. The possibility of a universal thesaurus is explored. The classification proposed has many of the advantages sought in ontologies for the Semantic Web. The book is therefore of interest to scholars working in these areas as well.
  17. Gnoli, C.: Progress in synthetic classification : towards unique definition of concepts (2007) 0.00
    0.002443341 = product of:
      0.009773364 = sum of:
        0.009773364 = product of:
          0.029320091 = sum of:
            0.029320091 = weight(_text_:29 in 2527) [ClassicSimilarity], result of:
              0.029320091 = score(doc=2527,freq=2.0), product of:
                0.15088047 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.04289195 = queryNorm
                0.19432661 = fieldWeight in 2527, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2527)
          0.33333334 = coord(1/3)
      0.25 = coord(1/4)
    
    Source
    Extensions and corrections to the UDC. 29(2007), S.167-182
  18. Gnoli, C.; Santis, R. de; Pusterla, L.: Commerce, see also Rhetoric : cross-discipline relationships as authority data for enhanced retrieval (2015) 0.00
    0.002443341 = product of:
      0.009773364 = sum of:
        0.009773364 = product of:
          0.029320091 = sum of:
            0.029320091 = weight(_text_:29 in 2299) [ClassicSimilarity], result of:
              0.029320091 = score(doc=2299,freq=2.0), product of:
                0.15088047 = queryWeight, product of:
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.04289195 = queryNorm
                0.19432661 = fieldWeight in 2299, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5176873 = idf(docFreq=3565, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2299)
          0.33333334 = coord(1/3)
      0.25 = coord(1/4)
    
    Source
    Classification and authority control: expanding resource discovery: proceedings of the International UDC Seminar 2015, 29-30 October 2015, Lisbon, Portugal. Eds.: Slavic, A. u. M.I. Cordeiro
  19. Gnoli, C.: Classification transcends library business : the case of BiblioPhil (2010) 0.00
    0.0024213614 = product of:
      0.009685446 = sum of:
        0.009685446 = product of:
          0.029056335 = sum of:
            0.029056335 = weight(_text_:22 in 3698) [ClassicSimilarity], result of:
              0.029056335 = score(doc=3698,freq=2.0), product of:
                0.15020029 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04289195 = queryNorm
                0.19345059 = fieldWeight in 3698, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3698)
          0.33333334 = coord(1/3)
      0.25 = coord(1/4)
    
    Date
    22. 7.2010 20:40:08
  20. Gnoli, C.: Knowledge organization in Italy (2004) 0.00
    0.0022610107 = product of:
      0.009044043 = sum of:
        0.009044043 = product of:
          0.027132127 = sum of:
            0.027132127 = weight(_text_:systems in 3750) [ClassicSimilarity], result of:
              0.027132127 = score(doc=3750,freq=6.0), product of:
                0.13181444 = queryWeight, product of:
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.04289195 = queryNorm
                0.20583579 = fieldWeight in 3750, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.0731742 = idf(docFreq=5561, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=3750)
          0.33333334 = coord(1/3)
      0.25 = coord(1/4)
    
    Abstract
    As an Italian chapter of ISKO has recently been reorganized, I was kindly invited to Write a short report an current KO activities in our country. So, in the following, I will briefly illustrate the local situation of the various kinds of knowledge organization systems, as well as related developments and activities. I am grateful to Paola Capitani, Emanuela Casson, Michele Santoro, and Lorena Zuccolo for providing useful information to be included here.
    Content
    Terminology and thesauri BNCF is also involved in a working group collecting information an online terminological resources <http://wwwindire.it/websemantico>. The group is headed by Paola Capitani, and has organized several roundtables an terminology in special domains, such as economy, fashion, law, and education. Thesauri are generally poorly known and used in Italy, although there are significant exceptions: among faceted systems we can mention the "Thesauro italiano di sociologia," published in 1999, and the "Thesaurus regionale toscano," as well as specialized an social sciences including a general outline, available both in print (1996) and online <http:// www regione.toscana.it/ius/ns-thesaurus/>. Classification systems The Dewey Decimal Classification (DDC) is by far the most widespread classification scheme in Italian libraries. A working group, coordinated by Luigi Crocetti, regularly translates the new editions of DDC manuals, and gives refresher courses an it for librarians. BNCF makes DDC numbers for bibliographical records both of its own catalogue, and of the national bibliography (= Bibliografia nazionale italiana: BNI), which is available for other libraries in a CD-ROM edition. A very large number of public libraries use DDC for their shelfmarks, so that users are accustomed to it. This situation is different from other European countries, e.g., Spain where UDC is widespread."