Search (23 results, page 1 of 2)

  • × author_ss:"Chen, H."
  1. Chen, H.; Fan, H.; Chau, M.; Zeng, D.: MetaSpider : meta-searching and categorization on the Web (2001) 0.10
    0.10465382 = product of:
      0.15698072 = sum of:
        0.09489272 = weight(_text_:search in 6849) [ClassicSimilarity], result of:
          0.09489272 = score(doc=6849,freq=16.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.54307455 = fieldWeight in 6849, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=6849)
        0.062088005 = product of:
          0.12417601 = sum of:
            0.12417601 = weight(_text_:engines in 6849) [ClassicSimilarity], result of:
              0.12417601 = score(doc=6849,freq=6.0), product of:
                0.25542772 = queryWeight, product of:
                  5.080822 = idf(docFreq=746, maxDocs=44218)
                  0.05027291 = queryNorm
                0.4861493 = fieldWeight in 6849, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  5.080822 = idf(docFreq=746, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=6849)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    It has become increasingly difficult to locate relevant information on the Web, even with the help of Web search engines. Two approaches to addressing the low precision and poor presentation of search results of current search tools are studied: meta-search and document categorization. Meta-search engines improve precision by selecting and integrating search results from generic or domain-specific Web search engines or other resources. Document categorization promises better organization and presentation of retrieved results. This article introduces MetaSpider, a meta-search engine that has real-time indexing and categorizing functions. We report in this paper the major components of MetaSpider and discuss related technical approaches. Initial results of a user evaluation study comparing Meta-Spider, NorthernLight, and MetaCrawler in terms of clustering performance and of time and effort expended show that MetaSpider performed best in precision rate, but disclose no statistically significant differences in recall rate and time requirements. Our experimental study also reveals that MetaSpider exhibited a higher level of automation than the other two systems and facilitated efficient searching by providing the user with an organized, comprehensive view of the retrieved documents.
  2. Chung, W.; Zhang, Y.; Huang, Z.; Wang, G.; Ong, T.-H.; Chen, H.: Internet searching and browsing in a multilingual world : an experiment an the Chinese Business Intelligence Portal (CBizPort) (2004) 0.10
    0.1025817 = product of:
      0.15387255 = sum of:
        0.08217951 = weight(_text_:search in 2393) [ClassicSimilarity], result of:
          0.08217951 = score(doc=2393,freq=12.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.47031635 = fieldWeight in 2393, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2393)
        0.07169304 = product of:
          0.14338608 = sum of:
            0.14338608 = weight(_text_:engines in 2393) [ClassicSimilarity], result of:
              0.14338608 = score(doc=2393,freq=8.0), product of:
                0.25542772 = queryWeight, product of:
                  5.080822 = idf(docFreq=746, maxDocs=44218)
                  0.05027291 = queryNorm
                0.5613568 = fieldWeight in 2393, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  5.080822 = idf(docFreq=746, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2393)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    The rapid growth of the non-English-speaking Internet population has created a need for better searching and browsing capabilities in languages other than English. However, existing search engines may not serve the needs of many non-English-speaking Internet users. In this paper, we propose a generic and integrated approach to searching and browsing the Internet in a multilingual world. Based an this approach, we have developed the Chinese Business Intelligence Portal (CBizPort), a meta-search engine that searches for business information of mainland China, Taiwan, and Hong Kong. Additional functions provided by CBizPort include encoding conversion (between Simplified Chinese and Traditional Chinese), summarization, and categorization. Experimental results of our user evaluation study show that the searching and browsing performance of CBizPort was comparable to that of regional Chinese search engines, and CBizPort could significantly augment these search engines. Subjects' verbal comments indicate that CBizPort performed best in terms of analysis functions, cross-regional searching, and user-friendliness, whereas regional search engines were more efficient and more popular. Subjects especially liked CBizPort's summarizer and categorizer, which helped in understanding search results. These encouraging results suggest a promising future of our approach to Internet searching and browsing in a multilingual world.
  3. Chau, M.; Wong, C.H.; Zhou, Y.; Qin, J.; Chen, H.: Evaluating the use of search engine development tools in IT education (2010) 0.08
    0.08380928 = product of:
      0.12571391 = sum of:
        0.07501928 = weight(_text_:search in 3325) [ClassicSimilarity], result of:
          0.07501928 = score(doc=3325,freq=10.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.4293381 = fieldWeight in 3325, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3325)
        0.05069464 = product of:
          0.10138928 = sum of:
            0.10138928 = weight(_text_:engines in 3325) [ClassicSimilarity], result of:
              0.10138928 = score(doc=3325,freq=4.0), product of:
                0.25542772 = queryWeight, product of:
                  5.080822 = idf(docFreq=746, maxDocs=44218)
                  0.05027291 = queryNorm
                0.39693922 = fieldWeight in 3325, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  5.080822 = idf(docFreq=746, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=3325)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    It is important for education in computer science and information systems to keep up to date with the latest development in technology. With the rapid development of the Internet and the Web, many schools have included Internet-related technologies, such as Web search engines and e-commerce, as part of their curricula. Previous research has shown that it is effective to use search engine development tools to facilitate students' learning. However, the effectiveness of these tools in the classroom has not been evaluated. In this article, we review the design of three search engine development tools, SpidersRUs, Greenstone, and Alkaline, followed by an evaluation study that compared the three tools in the classroom. In the study, 33 students were divided into 13 groups and each group used the three tools to develop three independent search engines in a class project. Our evaluation results showed that SpidersRUs performed better than the two other tools in overall satisfaction and the level of knowledge gained in their learning experience when using the tools for a class project on Internet applications development.
  4. Chau, M.; Shiu, B.; Chan, M.; Chen, H.: Redips: backlink search and analysis on the Web for business intelligence analysis (2007) 0.08
    0.07852928 = product of:
      0.11779392 = sum of:
        0.06709928 = weight(_text_:search in 142) [ClassicSimilarity], result of:
          0.06709928 = score(doc=142,freq=8.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.3840117 = fieldWeight in 142, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=142)
        0.05069464 = product of:
          0.10138928 = sum of:
            0.10138928 = weight(_text_:engines in 142) [ClassicSimilarity], result of:
              0.10138928 = score(doc=142,freq=4.0), product of:
                0.25542772 = queryWeight, product of:
                  5.080822 = idf(docFreq=746, maxDocs=44218)
                  0.05027291 = queryNorm
                0.39693922 = fieldWeight in 142, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  5.080822 = idf(docFreq=746, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=142)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    The World Wide Web presents significant opportunities for business intelligence analysis as it can provide information about a company's external environment and its stakeholders. Traditional business intelligence analysis on the Web has focused on simple keyword searching. Recently, it has been suggested that the incoming links, or backlinks, of a company's Web site (i.e., other Web pages that have a hyperlink pointing to the company of Interest) can provide important insights about the company's "online communities." Although analysis of these communities can provide useful signals for a company and information about its stakeholder groups, the manual analysis process can be very time-consuming for business analysts and consultants. In this article, we present a tool called Redips that automatically integrates backlink meta-searching and text-mining techniques to facilitate users in performing such business intelligence analysis on the Web. The architectural design and implementation of the tool are presented in the article. To evaluate the effectiveness, efficiency, and user satisfaction of Redips, an experiment was conducted to compare the tool with two popular business Intelligence analysis methods-using backlink search engines and manual browsing. The experiment results showed that Redips was statistically more effective than both benchmark methods (in terms of Recall and F-measure) but required more time in search tasks. In terms of user satisfaction, Redips scored statistically higher than backlink search engines in all five measures used, and also statistically higher than manual browsing in three measures.
  5. Chen, H.: Semantic research for digital libraries (1999) 0.06
    0.05551693 = product of:
      0.08327539 = sum of:
        0.04025957 = weight(_text_:search in 1247) [ClassicSimilarity], result of:
          0.04025957 = score(doc=1247,freq=2.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.230407 = fieldWeight in 1247, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.046875 = fieldNorm(doc=1247)
        0.043015826 = product of:
          0.08603165 = sum of:
            0.08603165 = weight(_text_:engines in 1247) [ClassicSimilarity], result of:
              0.08603165 = score(doc=1247,freq=2.0), product of:
                0.25542772 = queryWeight, product of:
                  5.080822 = idf(docFreq=746, maxDocs=44218)
                  0.05027291 = queryNorm
                0.33681408 = fieldWeight in 1247, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.080822 = idf(docFreq=746, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1247)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    In this era of the Internet and distributed, multimedia computing, new and emerging classes of information systems applications have swept into the lives of office workers and people in general. From digital libraries, multimedia systems, geographic information systems, and collaborative computing to electronic commerce, virtual reality, and electronic video arts and games, these applications have created tremendous opportunities for information and computer science researchers and practitioners. As applications become more pervasive, pressing, and diverse, several well-known information retrieval (IR) problems have become even more urgent. Information overload, a result of the ease of information creation and transmission via the Internet and WWW, has become more troublesome (e.g., even stockbrokers and elementary school students, heavily exposed to various WWW search engines, are versed in such IR terminology as recall and precision). Significant variations in database formats and structures, the richness of information media (text, audio, and video), and an abundance of multilingual information content also have created severe information interoperability problems -- structural interoperability, media interoperability, and multilingual interoperability.
  6. Carmel, E.; Crawford, S.; Chen, H.: Browsing in hypertext : a cognitive study (1992) 0.04
    0.04298305 = product of:
      0.064474575 = sum of:
        0.04744636 = weight(_text_:search in 7469) [ClassicSimilarity], result of:
          0.04744636 = score(doc=7469,freq=4.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.27153727 = fieldWeight in 7469, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=7469)
        0.017028214 = product of:
          0.03405643 = sum of:
            0.03405643 = weight(_text_:22 in 7469) [ClassicSimilarity], result of:
              0.03405643 = score(doc=7469,freq=2.0), product of:
                0.17604718 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05027291 = queryNorm
                0.19345059 = fieldWeight in 7469, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=7469)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    With the growth of hypertext and multimedia applications that support and encourage browsing it is time to take a penetrating look at browsing behaviour. Several dimensions of browsing are exemined, to find out: first, what is browsing and what cognitive processes are associated with it: second, is there a browsing strategy, and if so, are there any differences between how subject-area experts and novices browse; and finally, how can this knowledge be applied to improve the design of hypertext systems. Two groups of students, subject-area experts and novices, were studied while browsing a Macintosh HyperCard application on the subject The Vietnam War. A protocol analysis technique was used to gather and analyze data. Components of the GOMS model were used to describe the goals, operators, methods, and selection rules observed: Three browsing strategies were identified: (1) search-oriented browse, scanning and and reviewing information relevant to a fixed task; (2) review-browse, scanning and reviewing intersting information in the presence of transient browse goals that represent changing tasks, and (3) scan-browse, scanning for interesting information (without review). Most subjects primarily used review-browse interspersed with search-oriented browse. Within this strategy, comparisons between subject-area experts and novices revealed differences in tactics: experts browsed in more depth, seldom used referential links, selected different kinds of topics, and viewed information differently thatn did novices. Based on these findings, suggestions are made to hypertext developers
    Source
    IEEE transactions on systems, man and cybernetics. 22(1992) no.5, S.865-884
  7. Zhu, B.; Chen, H.: Information visualization (2004) 0.03
    0.03238488 = product of:
      0.048577316 = sum of:
        0.02348475 = weight(_text_:search in 4276) [ClassicSimilarity], result of:
          0.02348475 = score(doc=4276,freq=2.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.1344041 = fieldWeight in 4276, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.02734375 = fieldNorm(doc=4276)
        0.025092565 = product of:
          0.05018513 = sum of:
            0.05018513 = weight(_text_:engines in 4276) [ClassicSimilarity], result of:
              0.05018513 = score(doc=4276,freq=2.0), product of:
                0.25542772 = queryWeight, product of:
                  5.080822 = idf(docFreq=746, maxDocs=44218)
                  0.05027291 = queryNorm
                0.19647488 = fieldWeight in 4276, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.080822 = idf(docFreq=746, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=4276)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Advanced technology has resulted in the generation of about one million terabytes of information every year. Ninety-reine percent of this is available in digital format (Keim, 2001). More information will be generated in the next three years than was created during all of previous human history (Keim, 2001). Collecting information is no longer a problem, but extracting value from information collections has become progressively more difficult. Various search engines have been developed to make it easier to locate information of interest, but these work well only for a person who has a specific goal and who understands what and how information is stored. This usually is not the Gase. Visualization was commonly thought of in terms of representing human mental processes (MacEachren, 1991; Miller, 1984). The concept is now associated with the amplification of these mental processes (Card, Mackinlay, & Shneiderman, 1999). Human eyes can process visual cues rapidly, whereas advanced information analysis techniques transform the computer into a powerful means of managing digitized information. Visualization offers a link between these two potent systems, the human eye and the computer (Gershon, Eick, & Card, 1998), helping to identify patterns and to extract insights from large amounts of information. The identification of patterns is important because it may lead to a scientific discovery, an interpretation of clues to solve a crime, the prediction of catastrophic weather, a successful financial investment, or a better understanding of human behavior in a computermediated environment. Visualization technology shows considerable promise for increasing the value of large-scale collections of information, as evidenced by several commercial applications of TreeMap (e.g., http://www.smartmoney.com) and Hyperbolic tree (e.g., http://www.inxight.com) to visualize large-scale hierarchical structures. Although the proliferation of visualization technologies dates from the 1990s where sophisticated hardware and software made increasingly faster generation of graphical objects possible, the role of visual aids in facilitating the construction of mental images has a long history. Visualization has been used to communicate ideas, to monitor trends implicit in data, and to explore large volumes of data for hypothesis generation. Imagine traveling to a strange place without a map, having to memorize physical and chemical properties of an element without Mendeleyev's periodic table, trying to understand the stock market without statistical diagrams, or browsing a collection of documents without interactive visual aids. A collection of information can lose its value simply because of the effort required for exhaustive exploration. Such frustrations can be overcome by visualization.
  8. Marshall, B.; McDonald, D.; Chen, H.; Chung, W.: EBizPort: collecting and analyzing business intelligence information (2004) 0.03
    0.029588005 = product of:
      0.08876401 = sum of:
        0.08876401 = weight(_text_:search in 2505) [ClassicSimilarity], result of:
          0.08876401 = score(doc=2505,freq=14.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.5079997 = fieldWeight in 2505, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2505)
      0.33333334 = coord(1/3)
    
    Abstract
    To make good decisions, businesses try to gather good intelligence information. Yet managing and processing a large amount of unstructured information and data stand in the way of greater business knowledge. An effective business intelligence tool must be able to access quality information from a variety of sources in a variety of forms, and it must support people as they search for and analyze that information. The EBizPort system was designed to address information needs for the business/IT community. EBizPort's collection-building process is designed to acquire credible, timely, and relevant information. The user interface provides access to collected and metasearched resources using innovative tools for summarization, categorization, and visualization. The effectiveness, efficiency, usability, and information quality of the EBizPort system were measured. EBizPort significantly outperformed Brint, a business search portal, in search effectiveness, information quality, user satisfaction, and usability. Users particularly liked EBizPort's clean and user-friendly interface. Results from our evaluation study suggest that the visualization function added value to the search and analysis process, that the generalizable collection-building technique can be useful for domain-specific information searching an the Web, and that the search interface was important for Web search and browse support.
    Footnote
    Beitrag innerhalb der special topic section des Heftes: "Document search interface design"
  9. Chen, H.; Ng, T.: ¬An algorithmic approach to concept exploration in a large knowledge network (automatic thesaurus consultation) : symbolic branch-and-bound search versus connectionist Hopfield Net Activation (1995) 0.03
    0.026839714 = product of:
      0.08051914 = sum of:
        0.08051914 = weight(_text_:search in 2203) [ClassicSimilarity], result of:
          0.08051914 = score(doc=2203,freq=8.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.460814 = fieldWeight in 2203, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.046875 = fieldNorm(doc=2203)
      0.33333334 = coord(1/3)
    
    Abstract
    Presents a framework for knowledge discovery and concept exploration. In order to enhance the concept exploration capability of knowledge based systems and to alleviate the limitation of the manual browsing approach, develops 2 spreading activation based algorithms for concept exploration in large, heterogeneous networks of concepts (eg multiple thesauri). One algorithm, which is based on the symbolic AI paradigma, performs a conventional branch-and-bound search on a semantic net representation to identify other highly relevant concepts (a serial, optimal search process). The 2nd algorithm, which is absed on the neural network approach, executes the Hopfield net parallel relaxation and convergence process to identify 'convergent' concepts for some initial queries (a parallel, heuristic search process). Tests these 2 algorithms on a large text-based knowledge network of about 13.000 nodes (terms) and 80.000 directed links in the area of computing technologies
  10. Chen, H.; Martinez, J.; Kirchhoff, A.; Ng, T.D.; Schatz, B.R.: Alleviating search uncertainty through concept associations : automatic indexing, co-occurence analysis, and parallel computing (1998) 0.03
    0.026839714 = product of:
      0.08051914 = sum of:
        0.08051914 = weight(_text_:search in 5202) [ClassicSimilarity], result of:
          0.08051914 = score(doc=5202,freq=8.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.460814 = fieldWeight in 5202, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.046875 = fieldNorm(doc=5202)
      0.33333334 = coord(1/3)
    
    Abstract
    In this article, we report research on an algorithmic approach to alleviating search uncertainty in a large information space. Grounded on object filtering, automatic indexing, and co-occurence analysis, we performed a large-scale experiment using a parallel supercomputer (SGI Power Challenge) to analyze 400.000+ abstracts in an INSPEC computer engineering collection. Two system-generated thesauri, one based on a combined object filtering and automatic indexing method, and the other based on automatic indexing only, were compaed with the human-generated INSPEC subject thesaurus. Our user evaluation revealed that the system-generated thesauri were better than the INSPEC thesaurus in 'concept recall', but in 'concept precision' the 3 thesauri were comparable. Our analysis also revealed that the terms suggested by the 3 thesauri were complementary and could be used to significantly increase 'variety' in search terms the thereby reduce search uncertainty
  11. Chen, H.; Chung, Y.-M.; Ramsey, M.; Yang, C.C.: ¬A smart itsy bitsy spider for the Web (1998) 0.03
    0.025006426 = product of:
      0.07501928 = sum of:
        0.07501928 = weight(_text_:search in 871) [ClassicSimilarity], result of:
          0.07501928 = score(doc=871,freq=10.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.4293381 = fieldWeight in 871, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=871)
      0.33333334 = coord(1/3)
    
    Abstract
    As part of the ongoing Illinois Digital Library Initiative project, this research proposes an intelligent agent approach to Web searching. In this experiment, we developed 2 Web personal spiders based on best first search and genetic algorithm techniques, respectively. These personal spiders can dynamically take a user's selected starting homepages and search for the most closely related homepages in the Web, based on the links and keyword indexing. A graphical, dynamic, Jav-based interface was developed and is available for Web access. A system architecture for implementing such an agent-spider is presented, followed by deteiled discussions of benchmark testing and user evaluation results. In benchmark testing, although the genetic algorithm spider did not outperform the best first search spider, we found both results to be comparable and complementary. In user evaluation, the genetic algorithm spider obtained significantly higher recall value than that of the best first search spider. However, their precision values were not statistically different. The mutation process introduced in genetic algorithms allows users to find other potential relevant homepages that cannot be explored via a conventional local search process. In addition, we found the Java-based interface to be a necessary component for design of a truly interactive and dynamic Web agent
  12. Dang, Y.; Zhang, Y.; Chen, H.; Hu, P.J.-H.; Brown, S.A.; Larson, C.: Arizona Literature Mapper : an integrated approach to monitor and analyze global bioterrorism research literature (2009) 0.02
    0.019369897 = product of:
      0.058109686 = sum of:
        0.058109686 = weight(_text_:search in 2943) [ClassicSimilarity], result of:
          0.058109686 = score(doc=2943,freq=6.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.33256388 = fieldWeight in 2943, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2943)
      0.33333334 = coord(1/3)
    
    Abstract
    Biomedical research is critical to biodefense, which is drawing increasing attention from governments globally as well as from various research communities. The U.S. government has been closely monitoring and regulating biomedical research activities, particularly those studying or involving bioterrorism agents or diseases. Effective surveillance requires comprehensive understanding of extant biomedical research and timely detection of new developments or emerging trends. The rapid knowledge expansion, technical breakthroughs, and spiraling collaboration networks demand greater support for literature search and sharing, which cannot be effectively supported by conventional literature search mechanisms or systems. In this study, we propose an integrated approach that integrates advanced techniques for content analysis, network analysis, and information visualization. We design and implement Arizona Literature Mapper, a Web-based portal that allows users to gain timely, comprehensive understanding of bioterrorism research, including leading scientists, research groups, institutions as well as insights about current mainstream interests or emerging trends. We conduct two user studies to evaluate Arizona Literature Mapper and include a well-known system for benchmarking purposes. According to our results, Arizona Literature Mapper is significantly more effective for supporting users' search of bioterrorism publications than PubMed. Users consider Arizona Literature Mapper more useful and easier to use than PubMed. Users are also more satisfied with Arizona Literature Mapper and show stronger intentions to use it in the future. Assessments of Arizona Literature Mapper's analysis functions are also positive, as our subjects consider them useful, easy to use, and satisfactory. Our results have important implications that are also discussed in the article.
  13. Schroeder, J.; Xu, J.; Chen, H.; Chau, M.: Automated criminal link analysis based on domain knowledge (2007) 0.02
    0.018978544 = product of:
      0.056935627 = sum of:
        0.056935627 = weight(_text_:search in 275) [ClassicSimilarity], result of:
          0.056935627 = score(doc=275,freq=4.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.3258447 = fieldWeight in 275, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.046875 = fieldNorm(doc=275)
      0.33333334 = coord(1/3)
    
    Abstract
    Link (association) analysis has been used in the criminal justice domain to search large datasets for associations between crime entities in order to facilitate crime investigations. However, link analysis still faces many challenging problems, such as information overload, high search complexity, and heavy reliance on domain knowledge. To address these challenges, this article proposes several techniques for automated, effective, and efficient link analysis. These techniques include the co-occurrence analysis, the shortest path algorithm, and a heuristic approach to identifying associations and determining their importance. We developed a prototype system called CrimeLink Explorer based on the proposed techniques. Results of a user study with 10 crime investigators from the Tucson Police Department showed that our system could help subjects conduct link analysis more efficiently than traditional single-level link analysis tools. Moreover, subjects believed that association paths found based on the heuristic approach were more accurate than those found based solely on the co-occurrence analysis and that the automated link analysis system would be of great help in crime investigations.
  14. Chen, H.; Yim, T.; Fye, D.: Automatic thesaurus generation for an electronic community system (1995) 0.02
    0.015815454 = product of:
      0.04744636 = sum of:
        0.04744636 = weight(_text_:search in 2918) [ClassicSimilarity], result of:
          0.04744636 = score(doc=2918,freq=4.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.27153727 = fieldWeight in 2918, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2918)
      0.33333334 = coord(1/3)
    
    Abstract
    Reports an algorithmic approach to the automatic generation of thesauri for electronic community systems. The techniques used included terms filtering, automatic indexing, and cluster analysis. The testbed for the research was the Worm Community System, which contains a comprehensive library of specialized community data and literature, currently in use by molecular biologists who study the nematode worm. The resulting worm thesaurus included 2709 researchers' names, 798 gene names, 20 experimental methods, and 4302 subject descriptors. On average, each term had about 90 weighted neighbouring terms indicating relevant concepts. The thesaurus was developed as an online search aide. Tests the worm thesaurus in an experiment with 6 worm researchers of varying degrees of expertise and background. The experiment showed that the thesaurus was an excellent 'memory jogging' device and that it supported learning and serendipitous browsing. Despite some occurrences of obvious noise, the system was useful in suggesting relevant concepts for the researchers' queries and it helped improve concept recall. With a simple browsing interface, an automatic thesaurus can become a useful tool for online search and can assist researchers in exploring and traversing a dynamic and complex electronic community system
  15. Chen, H.; Lally, A.M.; Zhu, B.; Chau, M.: HelpfulMed : Intelligent searching for medical information over the Internet (2003) 0.02
    0.015815454 = product of:
      0.04744636 = sum of:
        0.04744636 = weight(_text_:search in 1615) [ClassicSimilarity], result of:
          0.04744636 = score(doc=1615,freq=4.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.27153727 = fieldWeight in 1615, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1615)
      0.33333334 = coord(1/3)
    
    Abstract
    The Medical professionals and researchers need information from reputable sources to accomplish their work. Unfortunately, the Web has a large number of documents that are irrelevant to their work, even those documents that purport to be "medically-related." This paper describes an architecture designed to integrate advanced searching and indexing algorithms, an automatic thesaurus, or "concept space," and Kohonen-based Self-Organizing Map (SOM) technologies to provide searchers with finegrained results. Initial results indicate that these systems provide complementary retrieval functionalities. HelpfulMed not only allows users to search Web pages and other online databases, but also allows them to build searches through the use of an automatic thesaurus and browse a graphical display of medical-related topics. Evaluation results for each of the different components are included. Our spidering algorithm outperformed both breadth-first search and PageRank spiders an a test collection of 100,000 Web pages. The automatically generated thesaurus performed as well as both MeSH and UMLS-systems which require human mediation for currency. Lastly, a variant of the Kohonen SOM was comparable to MeSH terms in perceived cluster precision and significantly better at perceived cluster recall.
  16. Chen, H.: Machine learning for information retrieval : neural networks, symbolic learning, and genetic algorithms (1994) 0.02
    0.015656501 = product of:
      0.0469695 = sum of:
        0.0469695 = weight(_text_:search in 2657) [ClassicSimilarity], result of:
          0.0469695 = score(doc=2657,freq=2.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.2688082 = fieldWeight in 2657, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2657)
      0.33333334 = coord(1/3)
    
    Abstract
    In the 1980s, knowledge-based techniques also made an impressive contribution to 'intelligent' information retrieval and indexing. More recently, researchers have turned to newer artificial intelligence based inductive learning techniques including neural networks, symbolic learning, and genetic algorithms grounded on diverse paradigms. These have provided great opportunities to enhance the capabilities of current information storage and retrieval systems. Provides an overview of these techniques and presents 3 popular methods: the connectionist Hopfield network; the symbolic ID3/ID5R; and evaluation based genetic algorithms in the context of information retrieval. The techniques are promising in their ability to analyze user queries, identify users' information needs, and suggest alternatives for search and can greatly complement the prevailing full text, keyword based, probabilistic, and knowledge based techniques
  17. Chen, H.; Houston, A.L.; Sewell, R.R.; Schatz, B.R.: Internet browsing and searching : user evaluations of category map and concept space techniques (1998) 0.02
    0.015495917 = product of:
      0.04648775 = sum of:
        0.04648775 = weight(_text_:search in 869) [ClassicSimilarity], result of:
          0.04648775 = score(doc=869,freq=6.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.2660511 = fieldWeight in 869, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.03125 = fieldNorm(doc=869)
      0.33333334 = coord(1/3)
    
    Abstract
    The Internet provides an exceptional testbed for developing algorithms that can improve bowsing and searching large information spaces. Browsing and searching tasks are susceptible to problems of information overload and vocabulary differences. Much of the current research is aimed at the development and refinement of algorithms to improve browsing and searching by addressing these problems. Our research was focused on discovering whether two of the algorithms our research group has developed, a Kohonen algorithm category map for browsing, and an automatically generated concept space algorithm for searching, can help improve browsing and / or searching the Internet. Our results indicate that a Kohonen self-organizing map (SOM)-based algorithm can successfully categorize a large and eclectic Internet information space (the Entertainment subcategory of Yahoo!) into manageable sub-spaces that users can successfully navigate to locate a homepage of interest to them. The SOM algorithm worked best with browsing tasks that were very broad, and in which subjects skipped around between categories. Subjects especially liked the visual and graphical aspects of the map. Subjects who tried to do a directed search, and those that wanted to use the more familiar mental models (alphabetic or hierarchical organization) for browsing, found that the work did not work well. The results from the concept space experiment were especially encouraging. There were no significant differences among the precision measures for the set of documents identified by subject-suggested terms, thesaurus-suggested terms, and the combination of subject- and thesaurus-suggested terms. The recall measures indicated that the combination of subject- and thesaurs-suggested terms exhibited significantly better recall than subject-suggested terms alone. Furthermore, analysis of the homepages indicated that there was limited overlap between the homepages retrieved by the subject-suggested and thesaurus-suggested terms. Since the retrieval homepages for the most part were different, this suggests that a user can enhance a keyword-based search by using an automatically generated concept space. Subejcts especially liked the level of control that they could exert over the search, and the fact that the terms suggested by the thesaurus were 'real' (i.e., orininating in the homepages) and therefore guaranteed to have retrieval success
  18. Chen, H.: Introduction to the JASIST special topic section on Web retrieval and mining : A machine learning perspective (2003) 0.01
    0.013419857 = product of:
      0.04025957 = sum of:
        0.04025957 = weight(_text_:search in 1610) [ClassicSimilarity], result of:
          0.04025957 = score(doc=1610,freq=2.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.230407 = fieldWeight in 1610, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.046875 = fieldNorm(doc=1610)
      0.33333334 = coord(1/3)
    
    Abstract
    Research in information retrieval (IR) has advanced significantly in the past few decades. Many tasks, such as indexing and text categorization, can be performed automatically with minimal human effort. Machine learning has played an important role in such automation by learning various patterns such as document topics, text structures, and user interests from examples. In recent years, it has become increasingly difficult to search for useful information an the World Wide Web because of its large size and unstructured nature. Useful information and resources are often hidden in the Web. While machine learning has been successfully applied to traditional IR systems, it poses some new challenges to apply these algorithms to the Web due to its large size, link structure, diversity in content and languages, and dynamic nature. On the other hand, such characteristics of the Web also provide interesting patterns and knowledge that do not present in traditional information retrieval systems.
  19. Chen, H.; Ng, T.D.; Martinez, J.; Schatz, B.R.: ¬A concept space approach to addressing the vocabulary problem in scientific information retrieval : an experiment on the Worm Community System (1997) 0.01
    0.011183213 = product of:
      0.03354964 = sum of:
        0.03354964 = weight(_text_:search in 6492) [ClassicSimilarity], result of:
          0.03354964 = score(doc=6492,freq=2.0), product of:
            0.1747324 = queryWeight, product of:
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.05027291 = queryNorm
            0.19200584 = fieldWeight in 6492, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.475677 = idf(docFreq=3718, maxDocs=44218)
              0.0390625 = fieldNorm(doc=6492)
      0.33333334 = coord(1/3)
    
    Abstract
    This research presents an algorithmic approach to addressing the vocabulary problem in scientific information retrieval and information sharing, using the molecular biology domain as an example. We first present a literature review of cognitive studies related to the vocabulary problem and vocabulary-based search aids (thesauri) and then discuss techniques for building robust and domain-specific thesauri to assist in cross-domain scientific information retrieval. Using a variation of the automatic thesaurus generation techniques, which we refer to as the concept space approach, we recently conducted an experiment in the molecular biology domain in which we created a C. elegans worm thesaurus of 7.657 worm-specific terms and a Drosophila fly thesaurus of 15.626 terms. About 30% of these terms overlapped, which created vocabulary paths from one subject domain to the other. Based on a cognitve study of term association involving 4 biologists, we found that a large percentage (59,6-85,6%) of the terms suggested by the subjects were identified in the cojoined fly-worm thesaurus. However, we found only a small percentage (8,4-18,1%) of the associations suggested by the subjects in the thesaurus
  20. Chung, W.; Chen, H.: Browsing the underdeveloped Web : an experiment on the Arabic Medical Web Directory (2009) 0.01
    0.0068112854 = product of:
      0.020433856 = sum of:
        0.020433856 = product of:
          0.040867712 = sum of:
            0.040867712 = weight(_text_:22 in 2733) [ClassicSimilarity], result of:
              0.040867712 = score(doc=2733,freq=2.0), product of:
                0.17604718 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.05027291 = queryNorm
                0.23214069 = fieldWeight in 2733, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2733)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    22. 3.2009 17:57:50