Search (8 results, page 1 of 1)

  • × author_ss:"Cole, C."
  1. Cole, C.: Name collection by Ph.D. history students : inducing expertise (2000) 0.02
    0.02490652 = product of:
      0.124532595 = sum of:
        0.124532595 = weight(_text_:line in 4588) [ClassicSimilarity], result of:
          0.124532595 = score(doc=4588,freq=4.0), product of:
            0.28424788 = queryWeight, product of:
              5.6078424 = idf(docFreq=440, maxDocs=44218)
              0.050687566 = queryNorm
            0.43811268 = fieldWeight in 4588, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              5.6078424 = idf(docFreq=440, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4588)
      0.2 = coord(1/5)
    
    Abstract
    This article reports a study of 45 Ph.D. history students and the effect of a technique of information seeking on their role as experts in training. It is assumed that the primary task of these students is to prove in their thesis that they have crossed over the line separating novice and expert, which they do by producing a thesis that makes both a substantial and original contribution to knowledge. Their information-seeking behavior, therefore, is a function of this primary task. It was observed that many of the Ph.D. students collected 'names' of people, places and things and assembled data about these names on 3x5 inch index cards. The 'names' were used as access points to the primary and secondary source material they had to read for their thesis. Besides using name collection as an information accessing technique, the larger importance of collecting 'names' is what it does for the Ph.D. student in terms of their primary task (to produce a thesis that proves they have become experts in their field). The article's thesis is that by inducing certain characteristics of expert thinking, the name collection technique's primary purpose is to push the student across the line into expert thinking
  2. Cole, C.: Interaction with an enabling information retrieval system : modeling the user's decoding and encoding operations (2000) 0.02
    0.017611569 = product of:
      0.08805784 = sum of:
        0.08805784 = weight(_text_:line in 4585) [ClassicSimilarity], result of:
          0.08805784 = score(doc=4585,freq=2.0), product of:
            0.28424788 = queryWeight, product of:
              5.6078424 = idf(docFreq=440, maxDocs=44218)
              0.050687566 = queryNorm
            0.30979243 = fieldWeight in 4585, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.6078424 = idf(docFreq=440, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4585)
      0.2 = coord(1/5)
    
    Abstract
    With new interactive technology, we can increase user satisfaction by designing information retrieval systems that inform the user while the user is on-line interacting with the system. The purpose of this article is to model the information processing operations of a generic user who has just received an information message from the system and is stimulated by the message into grasping at a higher understanding of his or her information task or problem. The model consists of 3 levels, each of which forms a separate subsystem. In the Perseption subsystem, the user perceives the system message in a visual sense; in the Comprehension subsystem, the user must comprehend the system message; and in the Application subsystem, the user must (a) interpret the system message in terms of the user's task at hand, and (b) create and send a new message back to the system to complete the interaction. Because of the information process stimulated by the interaction, the user's new message forms a query to the system that more accurately represents the user's information need than would have been the case if the interaction had not taken place. This article proposes a device to enable clarification of the user's task, and thus his/her information need at the Application subsystem level of the model
  3. Cole, C.; Mandelblatt, B.: Using Kintsch's discourse comprehension theory to model the user's coding of an informative message from an enabling information retrieval system (2000) 0.02
    0.017611569 = product of:
      0.08805784 = sum of:
        0.08805784 = weight(_text_:line in 5161) [ClassicSimilarity], result of:
          0.08805784 = score(doc=5161,freq=2.0), product of:
            0.28424788 = queryWeight, product of:
              5.6078424 = idf(docFreq=440, maxDocs=44218)
              0.050687566 = queryNorm
            0.30979243 = fieldWeight in 5161, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.6078424 = idf(docFreq=440, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5161)
      0.2 = coord(1/5)
    
    Abstract
    With new interactive technology, information science can use its traditional information focus to increase user satisfaction by designing information retrieval systems (IRSs) that inform the user about her task, and help the user get the task done, while the user is on-line interacting with the system. By doing so, the system enables the user to perform the task for which the information is being sought. In previous articles, we modeled the information flow and coding operations of a user who has just received an informative IRS message, dividing the user's processing of the IRS message into three subsystem levels. In this article, we use Kintsch's proposition-based construction-integration theory of discourse comprehension to further detail the user coding operations that occur in each of the three subsystems. Our enabling devices are designed to facilitate a specific coding operation in a specific subsystem. In this article, we describe an IRS device made up of two separate parts that enable the user's (1) decoding and (2) encoding of an IRS message in the Comprehension subsystem
  4. Yi, K.; Beheshti, J.; Cole, C.; Leide, J.E.; Large, A.: User search behavior of domain-specific information retrieval systems : an analysis of the query logs from PsycINFO and ABC-Clio's Historical Abstracts/America: History and Life (2006) 0.02
    0.017611569 = product of:
      0.08805784 = sum of:
        0.08805784 = weight(_text_:line in 197) [ClassicSimilarity], result of:
          0.08805784 = score(doc=197,freq=2.0), product of:
            0.28424788 = queryWeight, product of:
              5.6078424 = idf(docFreq=440, maxDocs=44218)
              0.050687566 = queryNorm
            0.30979243 = fieldWeight in 197, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.6078424 = idf(docFreq=440, maxDocs=44218)
              0.0390625 = fieldNorm(doc=197)
      0.2 = coord(1/5)
    
    Abstract
    The authors report the findings of a study that analyzes and compares the query logs of PsycINFO for psychology and the two history databases of ABC-Clio: Historical Abstracts and America: History and Life to establish the sociological nature of information need, searching, and seeking in history versus psychology. Two problems are addressed: (a) What level of query log analysis - by individual query terms, by co-occurrence of word pairs, or by multiword terms (MWTs) - best serves as data for categorizing the queries to these two subject-bound databases; and (b) how can the differences in the nature of the queries to history versus psychology databases aid in our understanding of user search behavior and the information needs of their respective users. The authors conclude that MWTs provide the most effective snapshot of user searching behavior for query categorization. The MWTs to ABC-Clio indicate specific instances of historical events, people, and regions, whereas the MWTs to PsycINFO indicate concepts roughly equivalent to descriptors used by PsycINFO's own classification scheme. The average length of queries is 3.16 terms for PsycINFO and 3.42 for ABC-Clio, which breaks from findings for other reference and scholarly search engine studies, bringing query length closer in line to findings for general Web search engines like Excite.
  5. Spink, A.; Cole, C.: Introduction (2004) 0.01
    0.014089256 = product of:
      0.070446275 = sum of:
        0.070446275 = weight(_text_:line in 2389) [ClassicSimilarity], result of:
          0.070446275 = score(doc=2389,freq=2.0), product of:
            0.28424788 = queryWeight, product of:
              5.6078424 = idf(docFreq=440, maxDocs=44218)
              0.050687566 = queryNorm
            0.24783395 = fieldWeight in 2389, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.6078424 = idf(docFreq=440, maxDocs=44218)
              0.03125 = fieldNorm(doc=2389)
      0.2 = coord(1/5)
    
    Abstract
    This is the second part of a two-part special topic JASIST issue an information seeking. The first part presented papers an the topics of health information seeking and everyday life information seeking or ELIS (i.e., information seeking outside of work or school). This second issue presents papers an the topics of information retrieval and information seeking in industry environments. Information retrieval involves a specific kind of information seeking, as the user is in direct contact with an information interface and with potential sources of information from the system's database. The user conducts the search using various strategies, tactics, etc., but there is also the possibility that information processes will occur resulting in a change in the way the user thinks about the topic of the search. If this occurs, the user is, in effect, using the found data, turning it into an informational element of some kind. Such processes can be facilitated in the design of the information retrieval system. Information seeking in industry environments takes up more and more of our working day. Even companies producing industrial products are in fact mainly producing informational elements of some kind, often for the purpose of making decisions or as starting positions for further information seeking. While there may be company mechanisms in place to aid such information seeking, and to make it more efficient, if better information seeking structures were in place, not only would workers waste less time in informational pursuits, but they would also find things, discover new processes, etc., that would benefit the corporation's bottom line. In Figure l, we plot the six papers in this issue an an information behavior continuum, following a taxonomy of information behavior terms from Spink and Cole (2001). Information Behavior is a broad term covering all aspects of information seeking, including passive or undetermined information behavior. Information-Seeking Behavior is usually thought of as active or conscious information behavior. Information-Searching Behavior describes the interactive elements between a user and an information system. Information-Use Behavior is about the user's acquisition and incorporation of data in some kind of information process. This leads to the production of information, but also back to the broad range of Information Behavior in the first part of the continuum. Though we plot all papers in this issue along this continuum, they take into account more than their general framework. The three information retrieval reports veer from the traditional information-searching approach of usersystem interaction, while the three industry environment articles veer from the traditional information-seeking approach of specific context information-seeking studies.
  6. Cole, C.: Activity of understanding a problem during interaction with an 'enabling' information retrieval system : modeling information flow (1999) 0.01
    0.008240959 = product of:
      0.04120479 = sum of:
        0.04120479 = weight(_text_:22 in 3675) [ClassicSimilarity], result of:
          0.04120479 = score(doc=3675,freq=2.0), product of:
            0.17749922 = queryWeight, product of:
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.050687566 = queryNorm
            0.23214069 = fieldWeight in 3675, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.046875 = fieldNorm(doc=3675)
      0.2 = coord(1/5)
    
    Date
    22. 5.1999 14:51:49
  7. Cole, C.; Behesthi, J.; Large, A.; Lamoureux, I.; Abuhimed, D.; AlGhamdi, M.: Seeking information for a middle school history project : the concept of implicit knowledge in the students' transition from Kuhlthau's Stage 3 to Stage 4 (2013) 0.01
    0.0068674656 = product of:
      0.034337327 = sum of:
        0.034337327 = weight(_text_:22 in 667) [ClassicSimilarity], result of:
          0.034337327 = score(doc=667,freq=2.0), product of:
            0.17749922 = queryWeight, product of:
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.050687566 = queryNorm
            0.19345059 = fieldWeight in 667, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.0390625 = fieldNorm(doc=667)
      0.2 = coord(1/5)
    
    Date
    22. 3.2013 19:41:17
  8. Spink, A.; Cole, C.: ¬A multitasking framework for cognitive information retrieval (2005) 0.01
    0.0054939725 = product of:
      0.027469862 = sum of:
        0.027469862 = weight(_text_:22 in 642) [ClassicSimilarity], result of:
          0.027469862 = score(doc=642,freq=2.0), product of:
            0.17749922 = queryWeight, product of:
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.050687566 = queryNorm
            0.15476047 = fieldWeight in 642, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.5018296 = idf(docFreq=3622, maxDocs=44218)
              0.03125 = fieldNorm(doc=642)
      0.2 = coord(1/5)
    
    Date
    19. 1.2007 12:55:22