Search (63 results, page 1 of 4)

  • × theme_ss:"Begriffstheorie"
  1. Marradi, A.: ¬The concept of concept : concepts and terms (2012) 0.03
    0.025963604 = product of:
      0.038945407 = sum of:
        0.023519924 = weight(_text_:to in 33) [ClassicSimilarity], result of:
          0.023519924 = score(doc=33,freq=16.0), product of:
            0.08279609 = queryWeight, product of:
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.045541126 = queryNorm
            0.28407046 = fieldWeight in 33, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.0390625 = fieldNorm(doc=33)
        0.015425485 = product of:
          0.03085097 = sum of:
            0.03085097 = weight(_text_:22 in 33) [ClassicSimilarity], result of:
              0.03085097 = score(doc=33,freq=2.0), product of:
                0.15947726 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045541126 = queryNorm
                0.19345059 = fieldWeight in 33, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=33)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    The concept of concept has seldom been examined in its entirety, and the term very seldom defined. The rigidity, or lack thereof, and the homogeneity, or lack thereof, of concepts, are only two of their characteristics that have been debated. These issues are reviewed in this paper, namely: 1) does a concept represent its referent(s), or is it a free creation of the mind?; 2) can a concept be analyzed in parts or elements?; 3) must a concept be general, i.e., refer to a category or a type, or can it refer to a single object, physical or mental?; 4) are concepts as clearly delimited as terms are? Are concepts voiceless terms?; and, 5) what do terms contribute to an individual's and a community's conceptual richness? As regards the relationship of concepts with their referents in the stage of formation, it seems reasonable to conclude that said relationship may be close in some concepts, less close in others, and lacking altogether in some cases. The set of elements of a concept, which varies from individual to individual and across time inside the same individual, is called the intension of a concept. The set of referents of a concept is called the extension of that concept. Most concepts don't have a clearly delimited extension: their referents form a fuzzy set. The aspects of a concept's intension form a scale of generality. A concept is not equal to the term that describes it; rather, many terms are joined to concepts. Language, therefore, renders a gamut of services to the development, consolidation, and communication of conceptual richness.
    Date
    22. 1.2012 13:11:25
  2. Besler, G.; Szulc, J.: Gottlob Frege's theory of definition as useful tool for knowledge organization : definition of 'context' - case study (2014) 0.03
    0.025963604 = product of:
      0.038945407 = sum of:
        0.023519924 = weight(_text_:to in 1440) [ClassicSimilarity], result of:
          0.023519924 = score(doc=1440,freq=16.0), product of:
            0.08279609 = queryWeight, product of:
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.045541126 = queryNorm
            0.28407046 = fieldWeight in 1440, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1440)
        0.015425485 = product of:
          0.03085097 = sum of:
            0.03085097 = weight(_text_:22 in 1440) [ClassicSimilarity], result of:
              0.03085097 = score(doc=1440,freq=2.0), product of:
                0.15947726 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045541126 = queryNorm
                0.19345059 = fieldWeight in 1440, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1440)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    The aim of this paper is to analyze the Gottlob Frege's (1848-1925) theory of definition as a tool for knowledge organization. The objective was achieved by discussing the theory of definition including: the aims of definition, kinds of definition, condition of correct definition, what is undefinable. Frege indicated the following aims of a defining: (1) to introduce a new word, which has had no precise meaning until then (2) to explain the meaning of a word; (3) to catch a thought. We would like to present three kinds of definitions used by Frege: a contextual definition, a stipulative definition and a piecemeal definition. In the history of theory of definition Frege was the first to have formulated the condition of a correct definition. According to Frege not everything can be defined, what is logically simple cannot have a proper definition Usability of Frege's theory of definition is referred in the case study. Definitions that serve as an example are definitions of 'context'. The term 'context' is used in different situations and meanings in the field of knowledge organization. The paper is rounded by a discussion of how Frege's theory of definition can be useful for knowledge organization. To present G. Frege's theory of definition in view of the need for knowledge organization we shall start with different ranges of knowledge organization.
    Source
    Knowledge organization in the 21st century: between historical patterns and future prospects. Proceedings of the Thirteenth International ISKO Conference 19-22 May 2014, Kraków, Poland. Ed.: Wieslaw Babik
  3. Jouis, C.: Logic of relationships (2002) 0.02
    0.024950907 = product of:
      0.03742636 = sum of:
        0.022000873 = weight(_text_:to in 1204) [ClassicSimilarity], result of:
          0.022000873 = score(doc=1204,freq=14.0), product of:
            0.08279609 = queryWeight, product of:
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.045541126 = queryNorm
            0.2657236 = fieldWeight in 1204, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1204)
        0.015425485 = product of:
          0.03085097 = sum of:
            0.03085097 = weight(_text_:22 in 1204) [ClassicSimilarity], result of:
              0.03085097 = score(doc=1204,freq=2.0), product of:
                0.15947726 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045541126 = queryNorm
                0.19345059 = fieldWeight in 1204, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1204)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    A main goal of recent studies in semantics is to integrate into conceptual structures the models of representation used in linguistics, logic, and/or artificial intelligence. A fundamental problem resides in the need to structure knowledge and then to check the validity of constructed representations. We propose associating logical properties with relationships by introducing the relationships into a typed and functional system of specifcations. This makes it possible to compare conceptual representations against the relationships established between the concepts. The mandatory condition to validate such a conceptual representation is consistency. The semantic system proposed is based an a structured set of semantic primitives-types, relations, and properties-based an a global model of language processing, Applicative and Cognitive Grammar (ACG) (Desc16s, 1990), and an extension of this model to terminology (Jouis & Mustafa 1995, 1996, 1997). The ACG postulates three levels of representation of languages, including a cognitive level. At this level, the meanings of lexical predicates are represented by semantic cognitive schemes. From this perspective, we propose a set of semantic concepts, which defines an organized system of meanings. Relations are part of a specification network based an a general terminological scheure (i.e., a coherent system of meanings of relations). In such a system, a specific relation may be characterized as to its: (1) functional type (the semantic type of arguments of the relation); (2) algebraic properties (reflexivity, symmetry, transitivity, etc.); and (3) combinatorial relations with other entities in the same context (for instance, the part of the text where a concept is defined).
    Date
    1.12.2002 11:12:22
  4. Storms, G.; VanMechelen, I.; DeBoeck, P.: Structural-analysis of the intension and extension of semantic concepts (1994) 0.02
    0.022158299 = product of:
      0.033237446 = sum of:
        0.011641769 = weight(_text_:to in 2574) [ClassicSimilarity], result of:
          0.011641769 = score(doc=2574,freq=2.0), product of:
            0.08279609 = queryWeight, product of:
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.045541126 = queryNorm
            0.14060771 = fieldWeight in 2574, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.0546875 = fieldNorm(doc=2574)
        0.021595677 = product of:
          0.043191355 = sum of:
            0.043191355 = weight(_text_:22 in 2574) [ClassicSimilarity], result of:
              0.043191355 = score(doc=2574,freq=2.0), product of:
                0.15947726 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045541126 = queryNorm
                0.2708308 = fieldWeight in 2574, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2574)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    A method (HICLAS, DeBoeck & Rosenberg, 1988) for studying the internal structure of semantic concepts is presented. The proposed method reveals the internal structure of the extension as well as the intesion of a concept, together with a correspondence relation that shows the mutual dependence of both structures. Its use is illustrated with the analysis of simple concepts (e.g. sports) and conjunctive concepts (e.g. birds that are also pets). The underlying structure that is revealed can be interpreted as a differentiation of the simple concepts studied and for conjunctive concepts the proposed method is able to extract non-inherited and emergent features (Hampton, 1988)
    Date
    22. 7.2000 19:17:40
  5. Olson, H.A.: How we construct subjects : a feminist analysis (2007) 0.02
    0.018123632 = product of:
      0.027185448 = sum of:
        0.011759962 = weight(_text_:to in 5588) [ClassicSimilarity], result of:
          0.011759962 = score(doc=5588,freq=4.0), product of:
            0.08279609 = queryWeight, product of:
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.045541126 = queryNorm
            0.14203523 = fieldWeight in 5588, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.0390625 = fieldNorm(doc=5588)
        0.015425485 = product of:
          0.03085097 = sum of:
            0.03085097 = weight(_text_:22 in 5588) [ClassicSimilarity], result of:
              0.03085097 = score(doc=5588,freq=2.0), product of:
                0.15947726 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045541126 = queryNorm
                0.19345059 = fieldWeight in 5588, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5588)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    To organize information, librarians create structures. These structures grow from a logic that goes back at least as far as Aristotle. It is the basis of classification as we practice it, and thesauri and subject headings have developed from it. Feminist critiques of logic suggest that logic is gendered in nature. This article will explore how these critiques play out in contemporary standards for the organization of information. Our widely used classification schemes embody principles such as hierarchical force that conform to traditional/Aristotelian logic. Our subject heading strings follow a linear path of subdivision. Our thesauri break down subjects into discrete concepts. In thesauri and subject heading lists we privilege hierarchical relationships, reflected in the syndetic structure of broader and narrower terms, over all other relationships. Are our classificatory and syndetic structures gendered? Are there other options? Carol Gilligan's In a Different Voice (1982), Women's Ways of Knowing (Belenky, Clinchy, Goldberger, & Tarule, 1986), and more recent related research suggest a different type of structure for women's knowledge grounded in "connected knowing." This article explores current and potential elements of connected knowing in subject access with a focus on the relationships, both paradigmatic and syntagmatic, between concepts.
    Date
    11.12.2019 19:00:22
  6. Dahlberg, I.: ¬Die gegenstandsbezogene, analytische Begriffstheorie und ihre Definitionsarten (1987) 0.01
    0.014397118 = product of:
      0.043191355 = sum of:
        0.043191355 = product of:
          0.08638271 = sum of:
            0.08638271 = weight(_text_:22 in 880) [ClassicSimilarity], result of:
              0.08638271 = score(doc=880,freq=2.0), product of:
                0.15947726 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045541126 = queryNorm
                0.5416616 = fieldWeight in 880, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.109375 = fieldNorm(doc=880)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Pages
    S.9-22
  7. Grolier, E. de: From theories to concepts and from facts to words (1990) 0.01
    0.01254396 = product of:
      0.037631877 = sum of:
        0.037631877 = weight(_text_:to in 3198) [ClassicSimilarity], result of:
          0.037631877 = score(doc=3198,freq=4.0), product of:
            0.08279609 = queryWeight, product of:
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.045541126 = queryNorm
            0.45451275 = fieldWeight in 3198, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.125 = fieldNorm(doc=3198)
      0.33333334 = coord(1/3)
    
  8. Wüster, E.: Begriffs- und Themaklassifikation : Unterschiede in ihrem Wesen und in ihrer Anwendung (1971) 0.01
    0.012340388 = product of:
      0.037021164 = sum of:
        0.037021164 = product of:
          0.07404233 = sum of:
            0.07404233 = weight(_text_:22 in 3904) [ClassicSimilarity], result of:
              0.07404233 = score(doc=3904,freq=2.0), product of:
                0.15947726 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045541126 = queryNorm
                0.46428138 = fieldWeight in 3904, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=3904)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Source
    Nachrichten für Dokumentation. 22(1971) H.3, S.98-104 (T.1); H.4, S.143-150 (T.2)
  9. Kolmayer, E.; Lavandier, J.; Roger, D.: Conceptual maps : users navigation through paradigmatic and syntagmatic links (1998) 0.01
    0.010267075 = product of:
      0.030801224 = sum of:
        0.030801224 = weight(_text_:to in 58) [ClassicSimilarity], result of:
          0.030801224 = score(doc=58,freq=14.0), product of:
            0.08279609 = queryWeight, product of:
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.045541126 = queryNorm
            0.37201303 = fieldWeight in 58, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.0546875 = fieldNorm(doc=58)
      0.33333334 = coord(1/3)
    
    Abstract
    This experiment, focused on the users behaviour, aims to study the search topic representation they build and to highlight the role of a graphical thesaurus on their mental models and searching behaviour. The users expertise in the field is considered. The results show how difficult it is to structure a field; they also point out how much a graphical thesaurus could contribute to such a task, but also its restricted role in the query task. They urge us to think over which shape is proper to the conceptual interface and the variety of links that have to be taken into account
  10. Pansegrouw, J.G.: ¬Die begrippe spesie, klas en versameling in verhouding tot indekseringteorie (1995) 0.01
    0.008869919 = product of:
      0.026609756 = sum of:
        0.026609756 = weight(_text_:to in 4447) [ClassicSimilarity], result of:
          0.026609756 = score(doc=4447,freq=8.0), product of:
            0.08279609 = queryWeight, product of:
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.045541126 = queryNorm
            0.32138905 = fieldWeight in 4447, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.0625 = fieldNorm(doc=4447)
      0.33333334 = coord(1/3)
    
    Abstract
    Analyses the concepts species, class and set to explain the development of generic arrangement beginning with Aristotle's theory of essences. Explains the development from Aristotelian essences to the acceptance of accidental characteristics, culminating in the logical algebra of Boole and in a distinction between classes (as the extension of a concept) and sets (as a grouping of elements). Discusses 2 problems relating to indexing theory, selected from PRECIS and the work of Das Gupta
    Footnote
    Übers. des Titels: The concepts species, class and set in relation to indexing theory
  11. Pathak, L.P.: Concept-term relationship and a classified schedule of isolates for the term 'concept' (2000) 0.01
    0.008677262 = product of:
      0.026031785 = sum of:
        0.026031785 = weight(_text_:to in 6046) [ClassicSimilarity], result of:
          0.026031785 = score(doc=6046,freq=10.0), product of:
            0.08279609 = queryWeight, product of:
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.045541126 = queryNorm
            0.3144084 = fieldWeight in 6046, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.0546875 = fieldNorm(doc=6046)
      0.33333334 = coord(1/3)
    
    Abstract
    Draws attention to the efforts to define the terms 'concept' and 'term' and suggests a schedule of isolates for the term 'concept' under eight headings: 0. Concept; 1. Theoretical aspects; 2. Learning theory and Psychological aspects; 3. Origin, evolution, formation, construction; 4. Semantic aspects; 5.Terms and Terminology; 6. Usage and discipline-specific applications; and 7. Concepts and ISAR systems. The schedule also includes about 150 aspects/isolate terms related to 'concept' along with the name of the authors who have used them. The schedule is intended to help in identifying the various aspects of a concept with the help of the terms used for them. These aspects may guide to some extent, in dissecting and seeing the social science concepts from various point of views
  12. Dahlberg, I.: Begriffsarbeit in der Wissensorganisation (2010) 0.01
    0.0082269255 = product of:
      0.024680775 = sum of:
        0.024680775 = product of:
          0.04936155 = sum of:
            0.04936155 = weight(_text_:22 in 3726) [ClassicSimilarity], result of:
              0.04936155 = score(doc=3726,freq=2.0), product of:
                0.15947726 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045541126 = queryNorm
                0.30952093 = fieldWeight in 3726, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3726)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Source
    Wissensspeicher in digitalen Räumen: Nachhaltigkeit - Verfügbarkeit - semantische Interoperabilität. Proceedings der 11. Tagung der Deutschen Sektion der Internationalen Gesellschaft für Wissensorganisation, Konstanz, 20. bis 22. Februar 2008. Hrsg.: J. Sieglerschmidt u. H.P.Ohly
  13. Garcia Marco, F.J.; Esteban Navarro, M.A.: On some contributions of the cognitive sciences and epistemology to a theory of classification (1993) 0.01
    0.0081475405 = product of:
      0.02444262 = sum of:
        0.02444262 = weight(_text_:to in 5876) [ClassicSimilarity], result of:
          0.02444262 = score(doc=5876,freq=12.0), product of:
            0.08279609 = queryWeight, product of:
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.045541126 = queryNorm
            0.29521468 = fieldWeight in 5876, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.046875 = fieldNorm(doc=5876)
      0.33333334 = coord(1/3)
    
    Abstract
    Intended is first of all a preliminary review of the implications that the new approaches to the theory of classification, mainly from cognitive psychology and epistemology may have for information work and research. As a secondary topic the scientific relations existing among information science, epistemology and the cognitive sciences are discussed. Classification is seen as a central activity in all daily and scientific activities, and, of course, of knowledge organization in information services. There is a mutual implication between classification and conceptualization, as the former moves in a natural way to the latter and the best result elaborated for classification is the concept. Research in concept theory is a need for a theory of classification. In this direction it is of outstanding importance to integrate the achievements of 'natural concept formation theory' (NCFT) as an alternative approach to conceptualization different from the traditional one of logicians and problem solving researchers. In conclusion both approaches are seen as being complementary: the NCFT approach being closer to the user and the logical one being more suitable for experts, including 'expert systems'
  14. Thellefsen, M.M.; Thellefsen, T.; Sørensen, B.: Information as signs : a semiotic analysis of the information concept, determining its ontological and epistemological foundations (2018) 0.01
    0.007839975 = product of:
      0.023519924 = sum of:
        0.023519924 = weight(_text_:to in 4241) [ClassicSimilarity], result of:
          0.023519924 = score(doc=4241,freq=16.0), product of:
            0.08279609 = queryWeight, product of:
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.045541126 = queryNorm
            0.28407046 = fieldWeight in 4241, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4241)
      0.33333334 = coord(1/3)
    
    Abstract
    The purpose of this paper is to formulate an analytical framework for the information concept based on the semiotic theory. Design/methodology/approach The paper is motivated by the apparent controversy that still surrounds the information concept. Information, being a key concept within LIS, suffers from being anchored in various incompatible theories. The paper suggests that information is signs, and it demonstrates how the concept of information can be understood within C.S. Peirce's phenomenologically rooted semiotic. Hence, from there, certain ontological conditions as well epistemological consequences of the information concept can be deduced. Findings The paper argues that an understanding of information, as either objective or subjective/discursive, leads to either objective reductionism and signal processing, that fails to explain how information becomes meaningful at all, or conversely, information is understood only relative to subjective/discursive intentions, agendas, etc. To overcome the limitations of defining information as either objective or subjective/discursive, a semiotic analysis shows that information understood as signs is consistently sensitive to both objective and subjective/discursive features of information. It is consequently argued that information as concept should be defined in relation to ontological conditions having certain epistemological consequences. Originality/value The paper presents an analytical framework, derived from semiotics, that adds to the developments of the philosophical dimensions of information within LIS.
  15. Alexander, P.A.; Schallert, D.L.; Hare, V.C.: Coming to terms : how researchers in learning and literacy talk about knowledge (1991) 0.01
    0.0077611795 = product of:
      0.023283537 = sum of:
        0.023283537 = weight(_text_:to in 5673) [ClassicSimilarity], result of:
          0.023283537 = score(doc=5673,freq=2.0), product of:
            0.08279609 = queryWeight, product of:
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.045541126 = queryNorm
            0.28121543 = fieldWeight in 5673, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.109375 = fieldNorm(doc=5673)
      0.33333334 = coord(1/3)
    
  16. Onofri, A.: Concepts in context (2013) 0.01
    0.007514729 = product of:
      0.022544187 = sum of:
        0.022544187 = weight(_text_:to in 1077) [ClassicSimilarity], result of:
          0.022544187 = score(doc=1077,freq=30.0), product of:
            0.08279609 = queryWeight, product of:
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.045541126 = queryNorm
            0.27228564 = fieldWeight in 1077, product of:
              5.477226 = tf(freq=30.0), with freq of:
                30.0 = termFreq=30.0
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.02734375 = fieldNorm(doc=1077)
      0.33333334 = coord(1/3)
    
    Abstract
    My thesis discusses two related problems that have taken center stage in the recent literature on concepts: 1) What are the individuation conditions of concepts? Under what conditions is a concept Cv(1) the same concept as a concept Cv(2)? 2) What are the possession conditions of concepts? What conditions must be satisfied for a thinker to have a concept C? The thesis defends a novel account of concepts, which I call "pluralist-contextualist": 1) Pluralism: Different concepts have different kinds of individuation and possession conditions: some concepts are individuated more "coarsely", have less demanding possession conditions and are widely shared, while other concepts are individuated more "finely" and not shared. 2) Contextualism: When a speaker ascribes a propositional attitude to a subject S, or uses his ascription to explain/predict S's behavior, the speaker's intentions in the relevant context determine the correct individuation conditions for the concepts involved in his report. In chapters 1-3 I defend a contextualist, non-Millian theory of propositional attitude ascriptions. Then, I show how contextualism can be used to offer a novel perspective on the problem of concept individuation/possession. More specifically, I employ contextualism to provide a new, more effective argument for Fodor's "publicity principle": if contextualism is true, then certain specific concepts must be shared in order for interpersonally applicable psychological generalizations to be possible. In chapters 4-5 I raise a tension between publicity and another widely endorsed principle, the "Fregean constraint" (FC): subjects who are unaware of certain identity facts and find themselves in so-called "Frege cases" must have distinct concepts for the relevant object x. For instance: the ancient astronomers had distinct concepts (HESPERUS/PHOSPHORUS) for the same object (the planet Venus). First, I examine some leading theories of concepts and argue that they cannot meet both of our constraints at the same time. Then, I offer principled reasons to think that no theory can satisfy (FC) while also respecting publicity. (FC) appears to require a form of holism, on which a concept is individuated by its global inferential role in a subject S and can thus only be shared by someone who has exactly the same inferential dispositions as S. This explains the tension between publicity and (FC), since holism is clearly incompatible with concept shareability. To solve the tension, I suggest adopting my pluralist-contextualist proposal: concepts involved in Frege cases are holistically individuated and not public, while other concepts are more coarsely individuated and widely shared; given this "plurality" of concepts, we will then need contextual factors (speakers' intentions) to "select" the specific concepts to be employed in our intentional generalizations in the relevant contexts. In chapter 6 I develop the view further by contrasting it with some rival accounts. First, I examine a very different kind of pluralism about concepts, which has been recently defended by Daniel Weiskopf, and argue that it is insufficiently radical. Then, I consider the inferentialist accounts defended by authors like Peacocke, Rey and Jackson. Such views, I argue, are committed to an implausible picture of reference determination, on which our inferential dispositions fix the reference of our concepts: this leads to wrong predictions in all those cases of scientific disagreement where two parties have very different inferential dispositions and yet seem to refer to the same natural kind.
  17. Hovy, E.: Comparing sets of semantic relations in ontologies (2002) 0.01
    0.0074376534 = product of:
      0.02231296 = sum of:
        0.02231296 = weight(_text_:to in 2178) [ClassicSimilarity], result of:
          0.02231296 = score(doc=2178,freq=10.0), product of:
            0.08279609 = queryWeight, product of:
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.045541126 = queryNorm
            0.26949292 = fieldWeight in 2178, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.046875 = fieldNorm(doc=2178)
      0.33333334 = coord(1/3)
    
    Abstract
    A set of semantic relations is created every time a domain modeler wants to solve some complex problem computationally. These relations are usually organized into ontologies. But three is little standardization of ontologies today, and almost no discussion an ways of comparing relations, of determining a general approach to creating relations, or of modeling in general. This chapter outlines an approach to establishing a general methodology for comparing and justifying sets of relations (and ontologies in general). It first provides several dozen characteristics of ontologies, organized into three taxonomies of increasingly detailed features, by which many essential characteristics of ontologies can be described. These features enable one to compare ontologies at a general level, without studying every concept they contain. But sometimes it is necessary to make detailed comparisons of content. The chapter then illustrates one method for determining salient points for comparison, using algorithms that semi-automatically identify similarities and differences between ontologies.
  18. O'Neill, E.T.; Kammerer, K.A.; Bennett, R.: ¬The aboutness of words (2017) 0.01
    0.0074376534 = product of:
      0.02231296 = sum of:
        0.02231296 = weight(_text_:to in 3835) [ClassicSimilarity], result of:
          0.02231296 = score(doc=3835,freq=10.0), product of:
            0.08279609 = queryWeight, product of:
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.045541126 = queryNorm
            0.26949292 = fieldWeight in 3835, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.046875 = fieldNorm(doc=3835)
      0.33333334 = coord(1/3)
    
    Abstract
    Word aboutness is defined as the relationship between words and subjects associated with them. An aboutness coefficient is developed to estimate the strength of the aboutness relationship. Words that are randomly distributed across subjects are assumed to lack aboutness and the degree to which their usage deviates from a random pattern indicates the strength of the aboutness. To estimate aboutness, title words and their associated subjects are extracted from the titles of non-fiction English language books in the OCLC WorldCat database. The usage patterns of the title words are analyzed and used to compute aboutness coefficients for each of the common title words. Words with low aboutness coefficients (An and In) are commonly found in stop word lists, whereas words with high aboutness coefficients (Carbonate, Autism) are unambiguous and have a strong subject association. The aboutness coefficient potentially can enhance indexing, advance authority control, and improve retrieval.
  19. ISO/DIS 5127: Information and documentation - foundation and vocabulary (2013) 0.01
    0.0073336246 = product of:
      0.022000873 = sum of:
        0.022000873 = weight(_text_:to in 6070) [ClassicSimilarity], result of:
          0.022000873 = score(doc=6070,freq=14.0), product of:
            0.08279609 = queryWeight, product of:
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.045541126 = queryNorm
            0.2657236 = fieldWeight in 6070, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.0390625 = fieldNorm(doc=6070)
      0.33333334 = coord(1/3)
    
    Abstract
    This standard provides the basic terms and their definitions in the field of information and documentation for the purpose of promoting and facilitating knowledge sharing and information exchange. This International Standard presents terms and definitions of selected concepts relevant to the field of information and documentation. If a definition is from other standards, the priority of selection is TC46 technical standards, then technical standards in relevant field, and then terminology related standards. The scope of this International Standard corresponds to that of ISO/TC46, Standardization of practices relating to libraries, documentation and information centres, publishing, archives, records management, museum documentation, indexing and abstracting services, and information science. ISO 5127 was prepared by Technical Committee ISO/TC 46, Information and Documentation, WG4, Terminology of information and documentation. This second edition cancels and replaces the first edition (ISO 5127:2001), which has been technically revised to overcome problems in the practical application of ISO 5127:2001 and to take account of the new developments in the field of information and documentation.
    Content
    This document is not an ISO International Standard. It is distributed for review and comment. It is subject to change without notice and may not be referred to as an International Standard.
  20. Bauer, G.: ¬Die vielseitigen Anwendungsmöglichkeiten des Kategorienprinzips bei der Wissensorganisation (2006) 0.01
    0.007198559 = product of:
      0.021595677 = sum of:
        0.021595677 = product of:
          0.043191355 = sum of:
            0.043191355 = weight(_text_:22 in 5710) [ClassicSimilarity], result of:
              0.043191355 = score(doc=5710,freq=2.0), product of:
                0.15947726 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045541126 = queryNorm
                0.2708308 = fieldWeight in 5710, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=5710)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Pages
    S.22-33

Years

Languages

  • e 52
  • d 7
  • ru 2
  • nl 1
  • pt 1
  • More… Less…

Types

  • a 55
  • m 4
  • s 4
  • el 2
  • n 1
  • x 1
  • More… Less…