Search (182 results, page 1 of 10)

  • × theme_ss:"Citation indexing"
  1. Van der Veer Martens, B.: Do citation systems represent theories of truth? (2001) 0.04
    0.040173974 = product of:
      0.06026096 = sum of:
        0.016631098 = weight(_text_:to in 3925) [ClassicSimilarity], result of:
          0.016631098 = score(doc=3925,freq=2.0), product of:
            0.08279609 = queryWeight, product of:
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.045541126 = queryNorm
            0.20086816 = fieldWeight in 3925, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.078125 = fieldNorm(doc=3925)
        0.04362986 = product of:
          0.08725972 = sum of:
            0.08725972 = weight(_text_:22 in 3925) [ClassicSimilarity], result of:
              0.08725972 = score(doc=3925,freq=4.0), product of:
                0.15947726 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045541126 = queryNorm
                0.54716086 = fieldWeight in 3925, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=3925)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Arranged according to subjects the bibliography lists 79 references,mostly with terse abstracts.
    Date
    22. 7.2006 15:22:28
  2. Garfield, E.; Stock, W.G.: Citation Consciousness : Interview with Eugene Garfiels, chairman emeritus of ISI; Philadelphia (2002) 0.03
    0.03165471 = product of:
      0.047482066 = sum of:
        0.016631098 = weight(_text_:to in 613) [ClassicSimilarity], result of:
          0.016631098 = score(doc=613,freq=2.0), product of:
            0.08279609 = queryWeight, product of:
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.045541126 = queryNorm
            0.20086816 = fieldWeight in 613, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.078125 = fieldNorm(doc=613)
        0.03085097 = product of:
          0.06170194 = sum of:
            0.06170194 = weight(_text_:22 in 613) [ClassicSimilarity], result of:
              0.06170194 = score(doc=613,freq=2.0), product of:
                0.15947726 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045541126 = queryNorm
                0.38690117 = fieldWeight in 613, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=613)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Content
    Abschnitte zu: The origins of citation indexing in science - Citation analysis in sociology, history and philosophy of science - From ASIS to ASIST
    Source
    Password. 2002, H.6, S.22-25
  3. Snyder, H.; Bonzi, S.: Patterns of self-citation across disciplines : 1980-1989 (1998) 0.03
    0.029941088 = product of:
      0.04491163 = sum of:
        0.026401049 = weight(_text_:to in 3692) [ClassicSimilarity], result of:
          0.026401049 = score(doc=3692,freq=14.0), product of:
            0.08279609 = queryWeight, product of:
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.045541126 = queryNorm
            0.3188683 = fieldWeight in 3692, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.046875 = fieldNorm(doc=3692)
        0.018510582 = product of:
          0.037021164 = sum of:
            0.037021164 = weight(_text_:22 in 3692) [ClassicSimilarity], result of:
              0.037021164 = score(doc=3692,freq=2.0), product of:
                0.15947726 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045541126 = queryNorm
                0.23214069 = fieldWeight in 3692, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3692)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Reports results of a study to examine the patterns of self citation in 6 disciplines distributed among the physical and social sciences and humanities. Sample articles were examined to deermine the relative numbers and ages of self citations and citations to other in the bibliographies and to the exposure given to each type of citation in the text of the articles. significant differences were found in the number and age of citations between disciplines. Overall, 9% of all citations were self citations; 15% of physical sciences citations were self citations, as opposed to 6% in the social sciences and 3% in the humanities. Within disciplines, there was no significantly different amount of coverage between self citations and citations to others. Overall, it appears that a lack of substantive differences in self citation behaviour is consistent across disciplines
    Date
    22. 5.1999 19:33:24
  4. Bensman, S.J.: Eugene Garfield, Francis Narin, and PageRank : the theoretical bases of the Google search engine (2013) 0.03
    0.028997809 = product of:
      0.043496713 = sum of:
        0.018815938 = weight(_text_:to in 1149) [ClassicSimilarity], result of:
          0.018815938 = score(doc=1149,freq=4.0), product of:
            0.08279609 = queryWeight, product of:
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.045541126 = queryNorm
            0.22725637 = fieldWeight in 1149, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.0625 = fieldNorm(doc=1149)
        0.024680775 = product of:
          0.04936155 = sum of:
            0.04936155 = weight(_text_:22 in 1149) [ClassicSimilarity], result of:
              0.04936155 = score(doc=1149,freq=2.0), product of:
                0.15947726 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045541126 = queryNorm
                0.30952093 = fieldWeight in 1149, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=1149)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    This paper presents a test of the validity of using Google Scholar to evaluate the publications of researchers by comparing the premises on which its search engine, PageRank, is based, to those of Garfield's theory of citation indexing. It finds that the premises are identical and that PageRank and Garfield's theory of citation indexing validate each other.
    Date
    17.12.2013 11:02:22
  5. Mingers, J.; Burrell, Q.L.: Modeling citation behavior in Management Science journals (2006) 0.03
    0.027215695 = product of:
      0.04082354 = sum of:
        0.02231296 = weight(_text_:to in 994) [ClassicSimilarity], result of:
          0.02231296 = score(doc=994,freq=10.0), product of:
            0.08279609 = queryWeight, product of:
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.045541126 = queryNorm
            0.26949292 = fieldWeight in 994, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.046875 = fieldNorm(doc=994)
        0.018510582 = product of:
          0.037021164 = sum of:
            0.037021164 = weight(_text_:22 in 994) [ClassicSimilarity], result of:
              0.037021164 = score(doc=994,freq=2.0), product of:
                0.15947726 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045541126 = queryNorm
                0.23214069 = fieldWeight in 994, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=994)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Citation rates are becoming increasingly important in judging the research quality of journals, institutions and departments, and individual faculty. This paper looks at the pattern of citations across different management science journals and over time. A stochastic model is proposed which views the generating mechanism of citations as a gamma mixture of Poisson processes generating overall a negative binomial distribution. This is tested empirically with a large sample of papers published in 1990 from six management science journals and found to fit well. The model is extended to include obsolescence, i.e., that the citation rate for a paper varies over its cited lifetime. This leads to the additional citations distribution which shows that future citations are a linear function of past citations with a time-dependent and decreasing slope. This is also verified empirically in a way that allows different obsolescence functions to be fitted to the data. Conclusions concerning the predictability of future citations, and future research in this area are discussed.
    Date
    26.12.2007 19:22:05
  6. Larivière, V.; Gingras, Y.; Archambault, E.: ¬The decline in the concentration of citations, 1900-2007 (2009) 0.03
    0.026859915 = product of:
      0.04028987 = sum of:
        0.014111955 = weight(_text_:to in 2763) [ClassicSimilarity], result of:
          0.014111955 = score(doc=2763,freq=4.0), product of:
            0.08279609 = queryWeight, product of:
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.045541126 = queryNorm
            0.17044228 = fieldWeight in 2763, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.046875 = fieldNorm(doc=2763)
        0.026177917 = product of:
          0.052355833 = sum of:
            0.052355833 = weight(_text_:22 in 2763) [ClassicSimilarity], result of:
              0.052355833 = score(doc=2763,freq=4.0), product of:
                0.15947726 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045541126 = queryNorm
                0.32829654 = fieldWeight in 2763, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2763)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    This article challenges recent research (Evans, 2008) reporting that the concentration of cited scientific literature increases with the online availability of articles and journals. Using Thomson Reuters' Web of Science, the present article analyses changes in the concentration of citations received (2- and 5-year citation windows) by papers published between 1900 and 2005. Three measures of concentration are used: the percentage of papers that received at least one citation (cited papers); the percentage of papers needed to account for 20%, 50%, and 80% of the citations; and the Herfindahl-Hirschman index (HHI). These measures are used for four broad disciplines: natural sciences and engineering, medical fields, social sciences, and the humanities. All these measures converge and show that, contrary to what was reported by Evans, the dispersion of citations is actually increasing.
    Date
    22. 3.2009 19:22:35
  7. Ma, N.; Guan, J.; Zhao, Y.: Bringing PageRank to the citation analysis (2008) 0.03
    0.025645267 = product of:
      0.0384679 = sum of:
        0.019957317 = weight(_text_:to in 2064) [ClassicSimilarity], result of:
          0.019957317 = score(doc=2064,freq=8.0), product of:
            0.08279609 = queryWeight, product of:
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.045541126 = queryNorm
            0.24104178 = fieldWeight in 2064, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.046875 = fieldNorm(doc=2064)
        0.018510582 = product of:
          0.037021164 = sum of:
            0.037021164 = weight(_text_:22 in 2064) [ClassicSimilarity], result of:
              0.037021164 = score(doc=2064,freq=2.0), product of:
                0.15947726 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045541126 = queryNorm
                0.23214069 = fieldWeight in 2064, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2064)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    The paper attempts to provide an alternative method for measuring the importance of scientific papers based on the Google's PageRank. The method is a meaningful extension of the common integer counting of citations and is then experimented for bringing PageRank to the citation analysis in a large citation network. It offers a more integrated picture of the publications' influence in a specific field. We firstly calculate the PageRanks of scientific papers. The distributional characteristics and comparison with the traditionally used number of citations are then analyzed in detail. Furthermore, the PageRank is implemented in the evaluation of research influence for several countries in the field of Biochemistry and Molecular Biology during the time period of 2000-2005. Finally, some advantages of bringing PageRank to the citation analysis are concluded.
    Date
    31. 7.2008 14:22:05
  8. Garfield, E.: Recollections of Irving H. Sher 1924-1996 : Polymath/information scientist extraordinaire (2001) 0.03
    0.025373083 = product of:
      0.038059622 = sum of:
        0.016463947 = weight(_text_:to in 6920) [ClassicSimilarity], result of:
          0.016463947 = score(doc=6920,freq=4.0), product of:
            0.08279609 = queryWeight, product of:
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.045541126 = queryNorm
            0.19884932 = fieldWeight in 6920, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.0546875 = fieldNorm(doc=6920)
        0.021595677 = product of:
          0.043191355 = sum of:
            0.043191355 = weight(_text_:22 in 6920) [ClassicSimilarity], result of:
              0.043191355 = score(doc=6920,freq=2.0), product of:
                0.15947726 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045541126 = queryNorm
                0.2708308 = fieldWeight in 6920, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=6920)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Over a 35-year period, Irving H. Sher played a critical role in the development and implementation of the Science Citation Index and other ISI products. Trained as a biochemist, statistician, and linguist, Sher brought a unique combination of talents to ISI as Director of Quality Control and Director of Research and Development. His talents as a teacher and mentor evoked loyalty. He was a particularly inventive but self-taught programmer. In addition to the SCI, Social Sciences Citation Index, and Arts and Humanities Citation Index,
    Date
    16.12.2001 14:01:22
  9. Van der Veer Martens, B.; Goodrum, G.: ¬The diffusion of theories : a functional approach (2006) 0.03
    0.025373083 = product of:
      0.038059622 = sum of:
        0.016463947 = weight(_text_:to in 5269) [ClassicSimilarity], result of:
          0.016463947 = score(doc=5269,freq=4.0), product of:
            0.08279609 = queryWeight, product of:
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.045541126 = queryNorm
            0.19884932 = fieldWeight in 5269, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.0546875 = fieldNorm(doc=5269)
        0.021595677 = product of:
          0.043191355 = sum of:
            0.043191355 = weight(_text_:22 in 5269) [ClassicSimilarity], result of:
              0.043191355 = score(doc=5269,freq=2.0), product of:
                0.15947726 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045541126 = queryNorm
                0.2708308 = fieldWeight in 5269, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=5269)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    This comparative case study of the diffusion and nondiffusion over time of eight theories in the social sciences uses citation analysis, citation context analysis, content analysis, surveys of editorial review boards, and personal interviews with theorists to develop a model of the theory functions that facilitate theory diffusion throughout specific intellectual communities. Unlike previous work on the diffusion of theories as innovations, this theory functions model differs in several important respects from the findings of previous studies that employed Everett Rogers's classic typology of innovation characteristics that promote diffusion. The model is also presented as a contribution to a more integrated theory of citation.
    Date
    22. 7.2006 15:20:01
  10. Tay, A.: ¬The next generation discovery citation indexes : a review of the landscape in 2020 (2020) 0.03
    0.025373083 = product of:
      0.038059622 = sum of:
        0.016463947 = weight(_text_:to in 40) [ClassicSimilarity], result of:
          0.016463947 = score(doc=40,freq=4.0), product of:
            0.08279609 = queryWeight, product of:
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.045541126 = queryNorm
            0.19884932 = fieldWeight in 40, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.0546875 = fieldNorm(doc=40)
        0.021595677 = product of:
          0.043191355 = sum of:
            0.043191355 = weight(_text_:22 in 40) [ClassicSimilarity], result of:
              0.043191355 = score(doc=40,freq=2.0), product of:
                0.15947726 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045541126 = queryNorm
                0.2708308 = fieldWeight in 40, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=40)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Conclusion There is a reason why Google Scholar and Web of Science/Scopus are kings of the hills in their various arenas. They have strong brand recogniton, a head start in development and a mass of eyeballs and users that leads to an almost virtious cycle of improvement. Competing against such well established competitors is not easy even when one has deep pockets (Microsoft) or a killer idea (scite). It will be interesting to see how the landscape will look like in 2030. Stay tuned for part II where I review each particular index.
    Date
    17.11.2020 12:22:59
  11. Chan, H.C.; Kim, H.-W.; Tan, W.C.: Information systems citation patterns from International Conference on Information Systems articles (2006) 0.02
    0.023862753 = product of:
      0.035794128 = sum of:
        0.017283546 = weight(_text_:to in 201) [ClassicSimilarity], result of:
          0.017283546 = score(doc=201,freq=6.0), product of:
            0.08279609 = queryWeight, product of:
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.045541126 = queryNorm
            0.20874833 = fieldWeight in 201, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.046875 = fieldNorm(doc=201)
        0.018510582 = product of:
          0.037021164 = sum of:
            0.037021164 = weight(_text_:22 in 201) [ClassicSimilarity], result of:
              0.037021164 = score(doc=201,freq=2.0), product of:
                0.15947726 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045541126 = queryNorm
                0.23214069 = fieldWeight in 201, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=201)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Research patterns could enhance understanding of the Information Systems (IS) field. Citation analysis is the methodology commonly used to determine such research patterns. In this study, the citation methodology is applied to one of the top-ranked Information Systems conferences - International Conference on Information Systems (ICIS). Information is extracted from papers in the proceedings of ICIS 2000 to 2002. A total of 145 base articles and 4,226 citations are used. Research patterns are obtained using total citations, citations per journal or conference, and overlapping citations. We then provide the citation ranking of journals and conferences. We also examine the difference between the citation ranking in this study and the ranking of IS journals and IS conferences in other studies. Based on the comparison, we confirm that IS research is a multidisciplinary research area. We also identify the most cited papers and authors in the IS research area, and the organizations most active in producing papers in the top-rated IS conference. We discuss the findings and implications of the study.
    Date
    3. 1.2007 17:22:03
  12. Campanario, J.M.: Have referees rejected some of the most-cited articles of all times? (1996) 0.02
    0.02174836 = product of:
      0.03262254 = sum of:
        0.014111955 = weight(_text_:to in 4215) [ClassicSimilarity], result of:
          0.014111955 = score(doc=4215,freq=4.0), product of:
            0.08279609 = queryWeight, product of:
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.045541126 = queryNorm
            0.17044228 = fieldWeight in 4215, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.046875 = fieldNorm(doc=4215)
        0.018510582 = product of:
          0.037021164 = sum of:
            0.037021164 = weight(_text_:22 in 4215) [ClassicSimilarity], result of:
              0.037021164 = score(doc=4215,freq=2.0), product of:
                0.15947726 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045541126 = queryNorm
                0.23214069 = fieldWeight in 4215, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4215)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    In this article a quantitative study is reported on the resistance that scientists may encounter when they do innovative work or when they attempt to publish articles that later become highly cited. A set of 205 commentaries by authors of some of the most-cited papers of all times have been examined in order to identify those articles whose authors encountered difficulty in getting his or her work published. There are 22 commentaries (10,7%) in which authors mention some difficulty or resistance in doing or publishing the research reported in the article. Three of the articles which had problems in being published are the most cited from their respective journals. According the authors' commentaries, although sometimes referees' negative evaluations can help improve the articles, in other instances referees and editors wrongly rejected the highly cited articles
  13. Ding, Y.; Zhang, G.; Chambers, T.; Song, M.; Wang, X.; Zhai, C.: Content-based citation analysis : the next generation of citation analysis (2014) 0.02
    0.02174836 = product of:
      0.03262254 = sum of:
        0.014111955 = weight(_text_:to in 1521) [ClassicSimilarity], result of:
          0.014111955 = score(doc=1521,freq=4.0), product of:
            0.08279609 = queryWeight, product of:
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.045541126 = queryNorm
            0.17044228 = fieldWeight in 1521, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.046875 = fieldNorm(doc=1521)
        0.018510582 = product of:
          0.037021164 = sum of:
            0.037021164 = weight(_text_:22 in 1521) [ClassicSimilarity], result of:
              0.037021164 = score(doc=1521,freq=2.0), product of:
                0.15947726 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045541126 = queryNorm
                0.23214069 = fieldWeight in 1521, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1521)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Traditional citation analysis has been widely applied to detect patterns of scientific collaboration, map the landscapes of scholarly disciplines, assess the impact of research outputs, and observe knowledge transfer across domains. It is, however, limited, as it assumes all citations are of similar value and weights each equally. Content-based citation analysis (CCA) addresses a citation's value by interpreting each one based on its context at both the syntactic and semantic levels. This paper provides a comprehensive overview of CAA research in terms of its theoretical foundations, methodical approaches, and example applications. In addition, we highlight how increased computational capabilities and publicly available full-text resources have opened this area of research to vast possibilities, which enable deeper citation analysis, more accurate citation prediction, and increased knowledge discovery.
    Date
    22. 8.2014 16:52:04
  14. Ahlgren, P.; Jarneving, B.; Rousseau, R.: Requirements for a cocitation similarity measure, with special reference to Pearson's correlation coefficient (2003) 0.02
    0.017096844 = product of:
      0.025645265 = sum of:
        0.013304878 = weight(_text_:to in 5171) [ClassicSimilarity], result of:
          0.013304878 = score(doc=5171,freq=8.0), product of:
            0.08279609 = queryWeight, product of:
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.045541126 = queryNorm
            0.16069452 = fieldWeight in 5171, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.03125 = fieldNorm(doc=5171)
        0.012340387 = product of:
          0.024680775 = sum of:
            0.024680775 = weight(_text_:22 in 5171) [ClassicSimilarity], result of:
              0.024680775 = score(doc=5171,freq=2.0), product of:
                0.15947726 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045541126 = queryNorm
                0.15476047 = fieldWeight in 5171, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=5171)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Ahlgren, Jarneving, and. Rousseau review accepted procedures for author co-citation analysis first pointing out that since in the raw data matrix the row and column values are identical i,e, the co-citation count of two authors, there is no clear choice for diagonal values. They suggest the number of times an author has been co-cited with himself excluding self citation rather than the common treatment as zeros or as missing values. When the matrix is converted to a similarity matrix the normal procedure is to create a matrix of Pearson's r coefficients between data vectors. Ranking by r and by co-citation frequency and by intuition can easily yield three different orders. It would seem necessary that the adding of zeros to the matrix will not affect the value or the relative order of similarity measures but it is shown that this is not the case with Pearson's r. Using 913 bibliographic descriptions form the Web of Science of articles form JASIS and Scientometrics, authors names were extracted, edited and 12 information retrieval authors and 12 bibliometric authors each from the top 100 most cited were selected. Co-citation and r value (diagonal elements treated as missing) matrices were constructed, and then reconstructed in expanded form. Adding zeros can both change the r value and the ordering of the authors based upon that value. A chi-squared distance measure would not violate these requirements, nor would the cosine coefficient. It is also argued that co-citation data is ordinal data since there is no assurance of an absolute zero number of co-citations, and thus Pearson is not appropriate. The number of ties in co-citation data make the use of the Spearman rank order coefficient problematic.
    Date
    9. 7.2006 10:22:35
  15. Nicolaisen, J.: Citation analysis (2007) 0.02
    0.016453851 = product of:
      0.04936155 = sum of:
        0.04936155 = product of:
          0.0987231 = sum of:
            0.0987231 = weight(_text_:22 in 6091) [ClassicSimilarity], result of:
              0.0987231 = score(doc=6091,freq=2.0), product of:
                0.15947726 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045541126 = queryNorm
                0.61904186 = fieldWeight in 6091, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.125 = fieldNorm(doc=6091)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    13. 7.2008 19:53:22
  16. Døsen, K.: One more reference on self-reference (1992) 0.02
    0.016453851 = product of:
      0.04936155 = sum of:
        0.04936155 = product of:
          0.0987231 = sum of:
            0.0987231 = weight(_text_:22 in 4604) [ClassicSimilarity], result of:
              0.0987231 = score(doc=4604,freq=2.0), product of:
                0.15947726 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045541126 = queryNorm
                0.61904186 = fieldWeight in 4604, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.125 = fieldNorm(doc=4604)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    7. 2.2005 14:10:22
  17. Lai, K.-K.; Wu, S.-J.: Using the patent co-citation approach to establish a new patent classification system (2005) 0.01
    0.009994046 = product of:
      0.029982137 = sum of:
        0.029982137 = weight(_text_:to in 1013) [ClassicSimilarity], result of:
          0.029982137 = score(doc=1013,freq=26.0), product of:
            0.08279609 = queryWeight, product of:
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.045541126 = queryNorm
            0.3621202 = fieldWeight in 1013, product of:
              5.0990195 = tf(freq=26.0), with freq of:
                26.0 = termFreq=26.0
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1013)
      0.33333334 = coord(1/3)
    
    Abstract
    The paper proposes a new approach to create a patent classification system to replace the IPC or UPC system for conducting patent analysis and management. The new approach is based on co-citation analysis of bibliometrics. The traditional approach for management of patents, which is based on either the IPC or UPC, is too general to meet the needs of specific industries. In addition, some patents are placed in incorrect categories, making it difficult for enterprises to carry out R&D planning, technology positioning, patent strategy-making and technology forecasting. Therefore, it is essential to develop a patent classification system that is adaptive to the characteristics of a specific industry. The analysis of this approach is divided into three phases. Phase I selects appropriate databases to conduct patent searches according to the subject and objective of this study and then select basic patents. Phase II uses the co-cited frequency of the basic patent pairs to assess their similarity. Phase III uses factor analysis to establish a classification system and assess the efficiency of the proposed approach. The main contribution of this approach is to develop a patent classification system based on patent similarities to assist patent manager in understanding the basic patents for a specific industry, the relationships among categories of technologies and the evolution of a technology category.
  18. Alvarez, P.; Pulgarin, A.: ¬The Rasch model : measuring the impact of scientific journals: analytical chemistry (1996) 0.01
    0.009916872 = product of:
      0.029750613 = sum of:
        0.029750613 = weight(_text_:to in 8505) [ClassicSimilarity], result of:
          0.029750613 = score(doc=8505,freq=10.0), product of:
            0.08279609 = queryWeight, product of:
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.045541126 = queryNorm
            0.3593239 = fieldWeight in 8505, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.0625 = fieldNorm(doc=8505)
      0.33333334 = coord(1/3)
    
    Abstract
    Focuses on a way to determine a ranking of science journals according to the number of citations-to and items-published data used by Science Citation Insitute of Citation Reports of the Institute for Science Information to determine journal ranking by impact factor. Applies latent traits theory to bibliometrics
  19. ISI offers intranet access to its citation index databases (1997) 0.01
    0.009601969 = product of:
      0.028805908 = sum of:
        0.028805908 = weight(_text_:to in 554) [ClassicSimilarity], result of:
          0.028805908 = score(doc=554,freq=6.0), product of:
            0.08279609 = queryWeight, product of:
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.045541126 = queryNorm
            0.34791386 = fieldWeight in 554, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.078125 = fieldNorm(doc=554)
      0.33333334 = coord(1/3)
    
    Abstract
    Announces the availability of the Web of Science, a proprietary Web browser providing intranet access to the Citation Index databases from ISI. The new browser interface will allow researcher to browse indexed information and perform further research. Describes search options
  20. Thelwall, M.; Harries, G.: ¬The connection between the research of a university and counts of links to its Web pages : an investigation based upon a classification of the relationships of pages to the research of the host university (2003) 0.01
    0.009505464 = product of:
      0.028516391 = sum of:
        0.028516391 = weight(_text_:to in 1676) [ClassicSimilarity], result of:
          0.028516391 = score(doc=1676,freq=12.0), product of:
            0.08279609 = queryWeight, product of:
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.045541126 = queryNorm
            0.34441712 = fieldWeight in 1676, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1676)
      0.33333334 = coord(1/3)
    
    Abstract
    Results from recent advances in link metrics have demonstrated that the hyperlink structure of national university systems can be strongly related to the research productivity of the individual institutions. This paper uses a page categorization to show that restricting the metrics to subsets more closely related to the research of the host university can produce even stronger associations. A partial overlap was also found between the effects of applying advanced document models and separating page types, but the best results were achieved through a combination of the two.

Languages

  • e 174
  • d 6
  • chi 2
  • More… Less…

Types

  • a 178
  • el 5
  • m 2
  • s 1
  • More… Less…

Classifications