Search (1125 results, page 1 of 57)

  • × theme_ss:"Informetrie"
  1. Bookstein, A.: Informetric distributions : II. Resilience to ambiguity (1990) 0.04
    0.044316597 = product of:
      0.06647489 = sum of:
        0.023283537 = weight(_text_:to in 4689) [ClassicSimilarity], result of:
          0.023283537 = score(doc=4689,freq=2.0), product of:
            0.08279609 = queryWeight, product of:
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.045541126 = queryNorm
            0.28121543 = fieldWeight in 4689, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.109375 = fieldNorm(doc=4689)
        0.043191355 = product of:
          0.08638271 = sum of:
            0.08638271 = weight(_text_:22 in 4689) [ClassicSimilarity], result of:
              0.08638271 = score(doc=4689,freq=2.0), product of:
                0.15947726 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045541126 = queryNorm
                0.5416616 = fieldWeight in 4689, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.109375 = fieldNorm(doc=4689)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Date
    22. 7.2006 18:55:55
  2. Van der Veer Martens, B.: Do citation systems represent theories of truth? (2001) 0.04
    0.040173974 = product of:
      0.06026096 = sum of:
        0.016631098 = weight(_text_:to in 3925) [ClassicSimilarity], result of:
          0.016631098 = score(doc=3925,freq=2.0), product of:
            0.08279609 = queryWeight, product of:
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.045541126 = queryNorm
            0.20086816 = fieldWeight in 3925, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.078125 = fieldNorm(doc=3925)
        0.04362986 = product of:
          0.08725972 = sum of:
            0.08725972 = weight(_text_:22 in 3925) [ClassicSimilarity], result of:
              0.08725972 = score(doc=3925,freq=4.0), product of:
                0.15947726 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045541126 = queryNorm
                0.54716086 = fieldWeight in 3925, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.078125 = fieldNorm(doc=3925)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Arranged according to subjects the bibliography lists 79 references,mostly with terse abstracts.
    Date
    22. 7.2006 15:22:28
  3. Marx, W.; Bornmann, L.: On the problems of dealing with bibliometric data (2014) 0.04
    0.037985653 = product of:
      0.05697848 = sum of:
        0.019957317 = weight(_text_:to in 1239) [ClassicSimilarity], result of:
          0.019957317 = score(doc=1239,freq=2.0), product of:
            0.08279609 = queryWeight, product of:
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.045541126 = queryNorm
            0.24104178 = fieldWeight in 1239, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.09375 = fieldNorm(doc=1239)
        0.037021164 = product of:
          0.07404233 = sum of:
            0.07404233 = weight(_text_:22 in 1239) [ClassicSimilarity], result of:
              0.07404233 = score(doc=1239,freq=2.0), product of:
                0.15947726 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045541126 = queryNorm
                0.46428138 = fieldWeight in 1239, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=1239)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Date
    18. 3.2014 19:13:22
    Series
    Letter to the editor
  4. Pichappan, P.; Sangaranachiyar, S.: Ageing approach to scientific eponyms (1996) 0.03
    0.034193687 = product of:
      0.05129053 = sum of:
        0.026609756 = weight(_text_:to in 80) [ClassicSimilarity], result of:
          0.026609756 = score(doc=80,freq=8.0), product of:
            0.08279609 = queryWeight, product of:
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.045541126 = queryNorm
            0.32138905 = fieldWeight in 80, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.0625 = fieldNorm(doc=80)
        0.024680775 = product of:
          0.04936155 = sum of:
            0.04936155 = weight(_text_:22 in 80) [ClassicSimilarity], result of:
              0.04936155 = score(doc=80,freq=2.0), product of:
                0.15947726 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045541126 = queryNorm
                0.30952093 = fieldWeight in 80, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=80)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    There is a decrease in the incidence of explicit references to a paper over time, hence the assumption that information ages. In a study which attempts to discover whether information really ages it is necessary to include eponyms, anonyms and footnote references. Reports a pilot study which demonstrates that there is an increase over time in the frequency of use of eponyms
    Footnote
    Report presented at the 16th National Indian Association of Special Libraries and Information Centres Seminar Special Interest Group Meeting on Informatrics in Bombay, 19-22 Dec 94
  5. Neth, M.: Citation analysis and the Web (1998) 0.03
    0.033408046 = product of:
      0.05011207 = sum of:
        0.028516391 = weight(_text_:to in 108) [ClassicSimilarity], result of:
          0.028516391 = score(doc=108,freq=12.0), product of:
            0.08279609 = queryWeight, product of:
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.045541126 = queryNorm
            0.34441712 = fieldWeight in 108, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.0546875 = fieldNorm(doc=108)
        0.021595677 = product of:
          0.043191355 = sum of:
            0.043191355 = weight(_text_:22 in 108) [ClassicSimilarity], result of:
              0.043191355 = score(doc=108,freq=2.0), product of:
                0.15947726 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045541126 = queryNorm
                0.2708308 = fieldWeight in 108, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=108)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Citation analysis has long been used by librarians as an important tool of collection development and the advent of Internet technology and especially the WWW adds a new facet to the role played by citation analysis. One of the reasons why librarians create WWW homepages is to provide users with further sources of interest or reference and to do this libraries include links from their own homepages to other information sources. Reports current research on the analysis of WWW pages as an introduction to an examination of the homepages of 25 art libraries to determine what sites are most often included. The types of linked sites are analyzed based on 3 criteria: location, focus and evidence that the link was evaluated before the connection was establisheds
    Date
    10. 1.1999 16:22:37
  6. Thelwall, M.; Maflahi, N.: Guideline references and academic citations as evidence of the clinical value of health research (2016) 0.03
    0.033377253 = product of:
      0.050065875 = sum of:
        0.03155529 = weight(_text_:to in 2856) [ClassicSimilarity], result of:
          0.03155529 = score(doc=2856,freq=20.0), product of:
            0.08279609 = queryWeight, product of:
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.045541126 = queryNorm
            0.38112053 = fieldWeight in 2856, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.046875 = fieldNorm(doc=2856)
        0.018510582 = product of:
          0.037021164 = sum of:
            0.037021164 = weight(_text_:22 in 2856) [ClassicSimilarity], result of:
              0.037021164 = score(doc=2856,freq=2.0), product of:
                0.15947726 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045541126 = queryNorm
                0.23214069 = fieldWeight in 2856, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2856)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    This article introduces a new source of evidence of the value of medical-related research: citations from clinical guidelines. These give evidence that research findings have been used to inform the day-to-day practice of medical staff. To identify whether citations from guidelines can give different information from that of traditional citation counts, this article assesses the extent to which references in clinical guidelines tend to be highly cited in the academic literature and highly read in Mendeley. Using evidence from the United Kingdom, references associated with the UK's National Institute of Health and Clinical Excellence (NICE) guidelines tended to be substantially more cited than comparable articles, unless they had been published in the most recent 3 years. Citation counts also seemed to be stronger indicators than Mendeley readership altmetrics. Hence, although presence in guidelines may be particularly useful to highlight the contributions of recently published articles, for older articles citation counts may already be sufficient to recognize their contributions to health in society.
    Date
    19. 3.2016 12:22:00
  7. Yan, E.: Finding knowledge paths among scientific disciplines (2014) 0.03
    0.032074004 = product of:
      0.048111003 = sum of:
        0.026296074 = weight(_text_:to in 1534) [ClassicSimilarity], result of:
          0.026296074 = score(doc=1534,freq=20.0), product of:
            0.08279609 = queryWeight, product of:
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.045541126 = queryNorm
            0.31760043 = fieldWeight in 1534, product of:
              4.472136 = tf(freq=20.0), with freq of:
                20.0 = termFreq=20.0
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1534)
        0.02181493 = product of:
          0.04362986 = sum of:
            0.04362986 = weight(_text_:22 in 1534) [ClassicSimilarity], result of:
              0.04362986 = score(doc=1534,freq=4.0), product of:
                0.15947726 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045541126 = queryNorm
                0.27358043 = fieldWeight in 1534, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1534)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    This paper uncovers patterns of knowledge dissemination among scientific disciplines. Although the transfer of knowledge is largely unobservable, citations from one discipline to another have been proven to be an effective proxy to study disciplinary knowledge flow. This study constructs a knowledge-flow network in which a node represents a Journal Citation Reports subject category and a link denotes the citations from one subject category to another. Using the concept of shortest path, several quantitative measurements are proposed and applied to a knowledge-flow network. Based on an examination of subject categories in Journal Citation Reports, this study indicates that social science domains tend to be more self-contained, so it is more difficult for knowledge from other domains to flow into them; at the same time, knowledge from science domains, such as biomedicine-, chemistry-, and physics-related domains, can access and be accessed by other domains more easily. This study also shows that social science domains are more disunified than science domains, because three fifths of the knowledge paths from one social science domain to another require at least one science domain to serve as an intermediate. This work contributes to discussions on disciplinarity and interdisciplinarity by providing empirical analysis.
    Date
    26.10.2014 20:22:22
  8. Ding, Y.: Applying weighted PageRank to author citation networks (2011) 0.03
    0.031751644 = product of:
      0.047627464 = sum of:
        0.026031785 = weight(_text_:to in 4188) [ClassicSimilarity], result of:
          0.026031785 = score(doc=4188,freq=10.0), product of:
            0.08279609 = queryWeight, product of:
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.045541126 = queryNorm
            0.3144084 = fieldWeight in 4188, product of:
              3.1622777 = tf(freq=10.0), with freq of:
                10.0 = termFreq=10.0
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.0546875 = fieldNorm(doc=4188)
        0.021595677 = product of:
          0.043191355 = sum of:
            0.043191355 = weight(_text_:22 in 4188) [ClassicSimilarity], result of:
              0.043191355 = score(doc=4188,freq=2.0), product of:
                0.15947726 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045541126 = queryNorm
                0.2708308 = fieldWeight in 4188, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4188)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    This article aims to identify whether different weighted PageRank algorithms can be applied to author citation networks to measure the popularity and prestige of a scholar from a citation perspective. Information retrieval (IR) was selected as a test field and data from 1956-2008 were collected from Web of Science. Weighted PageRank with citation and publication as weighted vectors were calculated on author citation networks. The results indicate that both popularity rank and prestige rank were highly correlated with the weighted PageRank. Principal component analysis was conducted to detect relationships among these different measures. For capturing prize winners within the IR field, prestige rank outperformed all the other measures
    Date
    22. 1.2011 13:02:21
  9. Ridenour, L.: Boundary objects : measuring gaps and overlap between research areas (2016) 0.03
    0.031156328 = product of:
      0.04673449 = sum of:
        0.02822391 = weight(_text_:to in 2835) [ClassicSimilarity], result of:
          0.02822391 = score(doc=2835,freq=16.0), product of:
            0.08279609 = queryWeight, product of:
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.045541126 = queryNorm
            0.34088457 = fieldWeight in 2835, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.046875 = fieldNorm(doc=2835)
        0.018510582 = product of:
          0.037021164 = sum of:
            0.037021164 = weight(_text_:22 in 2835) [ClassicSimilarity], result of:
              0.037021164 = score(doc=2835,freq=2.0), product of:
                0.15947726 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045541126 = queryNorm
                0.23214069 = fieldWeight in 2835, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2835)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    The aim of this paper is to develop methodology to determine conceptual overlap between research areas. It investigates patterns of terminology usage in scientific abstracts as boundary objects between research specialties. Research specialties were determined by high-level classifications assigned by Thomson Reuters in their Essential Science Indicators file, which provided a strictly hierarchical classification of journals into 22 categories. Results from the query "network theory" were downloaded from the Web of Science. From this file, two top-level groups, economics and social sciences, were selected and topically analyzed to provide a baseline of similarity on which to run an informetric analysis. The Places & Spaces Map of Science (Klavans and Boyack 2007) was used to determine the proximity of disciplines to one another in order to select the two disciplines use in the analysis. Groups analyzed share common theories and goals; however, groups used different language to describe their research. It was found that 61% of term words were shared between the two groups.
  10. Crespo, J.A.; Herranz, N.; Li, Y.; Ruiz-Castillo, J.: ¬The effect on citation inequality of differences in citation practices at the web of science subject category level (2014) 0.03
    0.030223235 = product of:
      0.045334853 = sum of:
        0.023519924 = weight(_text_:to in 1291) [ClassicSimilarity], result of:
          0.023519924 = score(doc=1291,freq=16.0), product of:
            0.08279609 = queryWeight, product of:
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.045541126 = queryNorm
            0.28407046 = fieldWeight in 1291, product of:
              4.0 = tf(freq=16.0), with freq of:
                16.0 = termFreq=16.0
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1291)
        0.02181493 = product of:
          0.04362986 = sum of:
            0.04362986 = weight(_text_:22 in 1291) [ClassicSimilarity], result of:
              0.04362986 = score(doc=1291,freq=4.0), product of:
                0.15947726 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045541126 = queryNorm
                0.27358043 = fieldWeight in 1291, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1291)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    This article studies the impact of differences in citation practices at the subfield, or Web of Science subject category level, using the model introduced in Crespo, Li, and Ruiz-Castillo (2013a), according to which the number of citations received by an article depends on its underlying scientific influence and the field to which it belongs. We use the same Thomson Reuters data set of about 4.4 million articles used in Crespo et al. (2013a) to analyze 22 broad fields. The main results are the following: First, when the classification system goes from 22 fields to 219 subfields the effect on citation inequality of differences in citation practices increases from ?14% at the field level to 18% at the subfield level. Second, we estimate a set of exchange rates (ERs) over a wide [660, 978] citation quantile interval to express the citation counts of articles into the equivalent counts in the all-sciences case. In the fractional case, for example, we find that in 187 of 219 subfields the ERs are reliable in the sense that the coefficient of variation is smaller than or equal to 0.10. Third, in the fractional case the normalization of the raw data using the ERs (or subfield mean citations) as normalization factors reduces the importance of the differences in citation practices from 18% to 3.8% (3.4%) of overall citation inequality. Fourth, the results in the fractional case are essentially replicated when we adopt a multiplicative approach.
  11. Frandsen, T.F.; Nicolaisen, J.: ¬The ripple effect : citation chain reactions of a nobel prize (2013) 0.03
    0.029941088 = product of:
      0.04491163 = sum of:
        0.026401049 = weight(_text_:to in 654) [ClassicSimilarity], result of:
          0.026401049 = score(doc=654,freq=14.0), product of:
            0.08279609 = queryWeight, product of:
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.045541126 = queryNorm
            0.3188683 = fieldWeight in 654, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.046875 = fieldNorm(doc=654)
        0.018510582 = product of:
          0.037021164 = sum of:
            0.037021164 = weight(_text_:22 in 654) [ClassicSimilarity], result of:
              0.037021164 = score(doc=654,freq=2.0), product of:
                0.15947726 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045541126 = queryNorm
                0.23214069 = fieldWeight in 654, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=654)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    This paper explores the possible citation chain reactions of a Nobel Prize using the mathematician Robert J. Aumann as a case example. The results show that the award of the Nobel Prize in 2005 affected not only the citations to his work, but also affected the citations to the references in his scientific oeuvre. The results indicate that the spillover effect is almost as powerful as the effect itself. We are consequently able to document a ripple effect in which the awarding of the Nobel Prize ignites a citation chain reaction to Aumann's scientific oeuvre and to the references in its nearest citation network. The effect is discussed using innovation decision process theory as a point of departure to identify the factors that created a bandwagon effect leading to the reported observations.
    Date
    22. 3.2013 16:21:09
  12. Thelwall, M.; Sud, P.: Mendeley readership counts : an investigation of temporal and disciplinary differences (2016) 0.03
    0.029941088 = product of:
      0.04491163 = sum of:
        0.026401049 = weight(_text_:to in 3211) [ClassicSimilarity], result of:
          0.026401049 = score(doc=3211,freq=14.0), product of:
            0.08279609 = queryWeight, product of:
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.045541126 = queryNorm
            0.3188683 = fieldWeight in 3211, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.046875 = fieldNorm(doc=3211)
        0.018510582 = product of:
          0.037021164 = sum of:
            0.037021164 = weight(_text_:22 in 3211) [ClassicSimilarity], result of:
              0.037021164 = score(doc=3211,freq=2.0), product of:
                0.15947726 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045541126 = queryNorm
                0.23214069 = fieldWeight in 3211, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3211)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Scientists and managers using citation-based indicators to help evaluate research cannot evaluate recent articles because of the time needed for citations to accrue. Reading occurs before citing, however, and so it makes sense to count readers rather than citations for recent publications. To assess this, Mendeley readers and citations were obtained for articles from 2004 to late 2014 in five broad categories (agriculture, business, decision science, pharmacy, and the social sciences) and 50 subcategories. In these areas, citation counts tended to increase with every extra year since publication, and readership counts tended to increase faster initially but then stabilize after about 5 years. The correlation between citations and readers was also higher for longer time periods, stabilizing after about 5 years. Although there were substantial differences between broad fields and smaller differences between subfields, the results confirm the value of Mendeley reader counts as early scientific impact indicators.
    Date
    16.11.2016 11:07:22
  13. Vieira, E.S.; Cabral, J.A.S.; Gomes, J.A.N.F.: Definition of a model based on bibliometric indicators for assessing applicants to academic positions (2014) 0.03
    0.029919475 = product of:
      0.044879213 = sum of:
        0.023283537 = weight(_text_:to in 1221) [ClassicSimilarity], result of:
          0.023283537 = score(doc=1221,freq=8.0), product of:
            0.08279609 = queryWeight, product of:
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.045541126 = queryNorm
            0.28121543 = fieldWeight in 1221, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1221)
        0.021595677 = product of:
          0.043191355 = sum of:
            0.043191355 = weight(_text_:22 in 1221) [ClassicSimilarity], result of:
              0.043191355 = score(doc=1221,freq=2.0), product of:
                0.15947726 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045541126 = queryNorm
                0.2708308 = fieldWeight in 1221, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1221)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    A model based on a set of bibliometric indicators is proposed for the prediction of the ranking of applicants to an academic position as produced by a committee of peers. The results show that a very small number of indicators may lead to a robust prediction of about 75% of the cases. We start with 12 indicators to build a few composite indicators by factor analysis. Following a discrete choice model, we arrive at 3 comparatively good predicative models. We conclude that these models have a surprisingly good predictive power and may help peers in their selection process.
    Date
    18. 3.2014 18:22:21
  14. Tijssen, R.J.W.; Wijk, E. van: ¬The global science base of information and communication technologies : bibliometric analysis of ICT research papers (1998) 0.03
    0.028997809 = product of:
      0.043496713 = sum of:
        0.018815938 = weight(_text_:to in 3691) [ClassicSimilarity], result of:
          0.018815938 = score(doc=3691,freq=4.0), product of:
            0.08279609 = queryWeight, product of:
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.045541126 = queryNorm
            0.22725637 = fieldWeight in 3691, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.0625 = fieldNorm(doc=3691)
        0.024680775 = product of:
          0.04936155 = sum of:
            0.04936155 = weight(_text_:22 in 3691) [ClassicSimilarity], result of:
              0.04936155 = score(doc=3691,freq=2.0), product of:
                0.15947726 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045541126 = queryNorm
                0.30952093 = fieldWeight in 3691, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=3691)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    International bibliographic databases and related biblimetric indicators together provide an analytical framework and appropriate measure to cover both the 'supply side' - research capabilities and outputs - and 'demand side' - collaboration, diffusion and citation impact - related to information and communication technologies (ICT) research. Presents results of such a bibliometric study describing macro level features of this ICT knowledge base
    Date
    22. 5.1999 19:26:54
  15. Tonta, Y.: Scholarly communication and the use of networked information sources (1996) 0.03
    0.028635468 = product of:
      0.0429532 = sum of:
        0.02444262 = weight(_text_:to in 6389) [ClassicSimilarity], result of:
          0.02444262 = score(doc=6389,freq=12.0), product of:
            0.08279609 = queryWeight, product of:
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.045541126 = queryNorm
            0.29521468 = fieldWeight in 6389, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.046875 = fieldNorm(doc=6389)
        0.018510582 = product of:
          0.037021164 = sum of:
            0.037021164 = weight(_text_:22 in 6389) [ClassicSimilarity], result of:
              0.037021164 = score(doc=6389,freq=2.0), product of:
                0.15947726 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045541126 = queryNorm
                0.23214069 = fieldWeight in 6389, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=6389)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Examines the use of networked information sources in scholarly communication. Networked information sources are defined broadly to cover: documents and images stored on electronic network hosts; data files; newsgroups; listservs; online information services and electronic periodicals. Reports results of a survey to determine how heavily, if at all, networked information sources are cited in scholarly printed periodicals published in 1993 and 1994. 27 printed periodicals, representing a wide range of subjects and the most influential periodicals in their fields, were identified through the Science Citation Index and Social Science Citation Index Journal Citation Reports. 97 articles were selected for further review and references, footnotes and bibliographies were checked for references to networked information sources. Only 2 articles were found to contain such references. Concludes that, although networked information sources facilitate scholars' work to a great extent during the research process, scholars have yet to incorporate such sources in the bibliographies of their published articles
    Source
    IFLA journal. 22(1996) no.3, S.240-245
  16. Levitt, J.M.; Thelwall, M.: Citation levels and collaboration within library and information science (2009) 0.03
    0.02812252 = product of:
      0.04218378 = sum of:
        0.02036885 = weight(_text_:to in 2734) [ClassicSimilarity], result of:
          0.02036885 = score(doc=2734,freq=12.0), product of:
            0.08279609 = queryWeight, product of:
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.045541126 = queryNorm
            0.24601223 = fieldWeight in 2734, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2734)
        0.02181493 = product of:
          0.04362986 = sum of:
            0.04362986 = weight(_text_:22 in 2734) [ClassicSimilarity], result of:
              0.04362986 = score(doc=2734,freq=4.0), product of:
                0.15947726 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045541126 = queryNorm
                0.27358043 = fieldWeight in 2734, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2734)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Collaboration is a major research policy objective, but does it deliver higher quality research? This study uses citation analysis to examine the Web of Science (WoS) Information Science & Library Science subject category (IS&LS) to ascertain whether, in general, more highly cited articles are more highly collaborative than other articles. It consists of two investigations. The first investigation is a longitudinal comparison of the degree and proportion of collaboration in five strata of citation; it found that collaboration in the highest four citation strata (all in the most highly cited 22%) increased in unison over time, whereas collaboration in the lowest citation strata (un-cited articles) remained low and stable. Given that over 40% of the articles were un-cited, it seems important to take into account the differences found between un-cited articles and relatively highly cited articles when investigating collaboration in IS&LS. The second investigation compares collaboration for 35 influential information scientists; it found that their more highly cited articles on average were not more highly collaborative than their less highly cited articles. In summary, although collaborative research is conducive to high citation in general, collaboration has apparently not tended to be essential to the success of current and former elite information scientists.
    Date
    22. 3.2009 12:43:51
  17. Zhu, Q.; Kong, X.; Hong, S.; Li, J.; He, Z.: Global ontology research progress : a bibliometric analysis (2015) 0.03
    0.02812252 = product of:
      0.04218378 = sum of:
        0.02036885 = weight(_text_:to in 2590) [ClassicSimilarity], result of:
          0.02036885 = score(doc=2590,freq=12.0), product of:
            0.08279609 = queryWeight, product of:
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.045541126 = queryNorm
            0.24601223 = fieldWeight in 2590, product of:
              3.4641016 = tf(freq=12.0), with freq of:
                12.0 = termFreq=12.0
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2590)
        0.02181493 = product of:
          0.04362986 = sum of:
            0.04362986 = weight(_text_:22 in 2590) [ClassicSimilarity], result of:
              0.04362986 = score(doc=2590,freq=4.0), product of:
                0.15947726 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045541126 = queryNorm
                0.27358043 = fieldWeight in 2590, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2590)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Purpose - The purpose of this paper is to analyse the global scientific outputs of ontology research, an important emerging discipline that has huge potential to improve information understanding, organization, and management. Design/methodology/approach - This study collected literature published during 1900-2012 from the Web of Science database. The bibliometric analysis was performed from authorial, institutional, national, spatiotemporal, and topical aspects. Basic statistical analysis, visualization of geographic distribution, co-word analysis, and a new index were applied to the selected data. Findings - Characteristics of publication outputs suggested that ontology research has entered into the soaring stage, along with increased participation and collaboration. The authors identified the leading authors, institutions, nations, and articles in ontology research. Authors were more from North America, Europe, and East Asia. The USA took the lead, while China grew fastest. Four major categories of frequently used keywords were identified: applications in Semantic Web, applications in bioinformatics, philosophy theories, and common supporting technology. Semantic Web research played a core role, and gene ontology study was well-developed. The study focus of ontology has shifted from philosophy to information science. Originality/value - This is the first study to quantify global research patterns and trends in ontology, which might provide a potential guide for the future research. The new index provides an alternative way to evaluate the multidisciplinary influence of researchers.
    Date
    20. 1.2015 18:30:22
    17. 9.2018 18:22:23
  18. Haiqi, Z.: ¬The literature of Qigong : publication patterns and subject headings (1997) 0.03
    0.027839875 = product of:
      0.04175981 = sum of:
        0.020164136 = weight(_text_:to in 862) [ClassicSimilarity], result of:
          0.020164136 = score(doc=862,freq=6.0), product of:
            0.08279609 = queryWeight, product of:
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.045541126 = queryNorm
            0.24353972 = fieldWeight in 862, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.0546875 = fieldNorm(doc=862)
        0.021595677 = product of:
          0.043191355 = sum of:
            0.043191355 = weight(_text_:22 in 862) [ClassicSimilarity], result of:
              0.043191355 = score(doc=862,freq=2.0), product of:
                0.15947726 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045541126 = queryNorm
                0.2708308 = fieldWeight in 862, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=862)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Reports results of a bibliometric study of the literature of Qigong: a relaxation technique used to teach patients to control their heart rate, blood pressure, temperature and other involuntary functions through controlles breathing. All articles indexed in the MEDLINE CD-ROM database, between 1965 and 1995 were identified using 'breathing exercises' MeSH term. The articles were analyzed for geographical and language distribution and a ranking exercise enabled a core list of periodicals to be identified. In addition, the study shed light on the changing frequency of the MeSH terms and evaluated the research areas by measuring the information from these respective MeSH headings
    Source
    International forum on information and documentation. 22(1997) no.3, S.38-44
  19. Falkingham, L.T.; Reeves, R.: Context analysis : a technique for analysing research in a field, applied to literature on the management of R&D at the section level (1998) 0.03
    0.027839875 = product of:
      0.04175981 = sum of:
        0.020164136 = weight(_text_:to in 3689) [ClassicSimilarity], result of:
          0.020164136 = score(doc=3689,freq=6.0), product of:
            0.08279609 = queryWeight, product of:
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.045541126 = queryNorm
            0.24353972 = fieldWeight in 3689, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3689)
        0.021595677 = product of:
          0.043191355 = sum of:
            0.043191355 = weight(_text_:22 in 3689) [ClassicSimilarity], result of:
              0.043191355 = score(doc=3689,freq=2.0), product of:
                0.15947726 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045541126 = queryNorm
                0.2708308 = fieldWeight in 3689, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3689)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Context analysis is a new method for appraising a body of publications. the process consists of creating a database of attributes assigned to each paper by the reviewer and then looking for interesting relationships in the data. Assigning the attributes requires an understanding of the subject matter of the papers. Presents findings about one particular research field, Management of R&D at the Section Level. The findings support the view that this body of academic publications does not meet the needs of practitioner R&D managers. Discusses practical aspects of how to apply the method in other fields
    Date
    22. 5.1999 19:18:46
  20. Burrell, Q.L.: Predicting future citation behavior (2003) 0.03
    0.027839875 = product of:
      0.04175981 = sum of:
        0.020164136 = weight(_text_:to in 3837) [ClassicSimilarity], result of:
          0.020164136 = score(doc=3837,freq=6.0), product of:
            0.08279609 = queryWeight, product of:
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.045541126 = queryNorm
            0.24353972 = fieldWeight in 3837, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              1.818051 = idf(docFreq=19512, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3837)
        0.021595677 = product of:
          0.043191355 = sum of:
            0.043191355 = weight(_text_:22 in 3837) [ClassicSimilarity], result of:
              0.043191355 = score(doc=3837,freq=2.0), product of:
                0.15947726 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.045541126 = queryNorm
                0.2708308 = fieldWeight in 3837, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3837)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    In this article we further develop the theory for a stochastic model for the citation process in the presence of obsolescence to predict the future citation pattern of individual papers in a collection. More precisely, we investigate the conditional distribution-and its mean- of the number of citations to a paper after time t, given the number of citations it has received up to time t. In an important parametric case it is shown that the expected number of future citations is a linear function of the current number, this being interpretable as an example of a success-breeds-success phenomenon.
    Date
    29. 3.2003 19:22:48

Years

Languages

Types

  • a 1100
  • el 13
  • m 12
  • s 12
  • r 1
  • More… Less…