Search (7 results, page 1 of 1)

  • × author_ss:"Chen, C."
  1. Liu, S.; Chen, C.: ¬The differences between latent topics in abstracts and citation contexts of citing papers (2013) 0.06
    0.06484189 = product of:
      0.09726283 = sum of:
        0.08012595 = weight(_text_:reference in 671) [ClassicSimilarity], result of:
          0.08012595 = score(doc=671,freq=6.0), product of:
            0.205834 = queryWeight, product of:
              4.0683694 = idf(docFreq=2055, maxDocs=44218)
              0.050593734 = queryNorm
            0.3892746 = fieldWeight in 671, product of:
              2.4494898 = tf(freq=6.0), with freq of:
                6.0 = termFreq=6.0
              4.0683694 = idf(docFreq=2055, maxDocs=44218)
              0.0390625 = fieldNorm(doc=671)
        0.017136881 = product of:
          0.034273762 = sum of:
            0.034273762 = weight(_text_:22 in 671) [ClassicSimilarity], result of:
              0.034273762 = score(doc=671,freq=2.0), product of:
                0.17717063 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050593734 = queryNorm
                0.19345059 = fieldWeight in 671, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=671)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Although it is commonly expected that the citation context of a reference is likely to provide more detailed and direct information about the nature of a citation, few studies in the literature have specifically addressed the extent to which the information in different parts of a scientific publication differs. Do abstracts tend to use conceptually broader terms than sentences in a citation context in the body of a publication? In this article, we propose a method to analyze and compare latent topics in scientific publications, in particular, from abstracts of papers that cited a target reference and from sentences that cited the target reference. We conducted an experiment and applied topical modeling techniques to full-text papers in eight biomedicine journals. Topics derived from the two sources are compared in terms of their similarities and broad-narrow relationships defined based on information entropy. The results show that abstracts and citation contexts are characterized by distinct sets of topics with moderate overlaps. Furthermore, the results confirm that topics from abstracts of citing papers have broader terms than topics from citation contexts formed by citing sentences. The method and the findings could be used to enhance and extend the current methodologies for research evaluation and citation evaluation.
    Date
    22. 3.2013 19:50:00
  2. Chen, C.; Rada, R.: ¬A conceptual model for supporting collaborative authoring and use (1994) 0.02
    0.02158834 = product of:
      0.06476502 = sum of:
        0.06476502 = weight(_text_:reference in 7554) [ClassicSimilarity], result of:
          0.06476502 = score(doc=7554,freq=2.0), product of:
            0.205834 = queryWeight, product of:
              4.0683694 = idf(docFreq=2055, maxDocs=44218)
              0.050593734 = queryNorm
            0.31464687 = fieldWeight in 7554, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.0683694 = idf(docFreq=2055, maxDocs=44218)
              0.0546875 = fieldNorm(doc=7554)
      0.33333334 = coord(1/3)
    
    Abstract
    This paper discusses some problems encountered in hypermedia-based collaboration and reuse, and presents a conceptual framework to resolve these problems. Three suggestions are made based on the discussion: (1) extra organizational structures are necessary in shared hypermedia to support collaborative interactions; (2) an abstract schema is a key to capture the dynamic nature of the shared hypermedia; (3) an integration of the schema evolution approach and the workflow approach is recommended for an open system hypermedia teamwork support. The whole authoring environment is divided into several component spaces with particular respect to the Dexter Hypertext Reference Model. Not only can this separation reduce the overall complexitiy of working within such an environment, but it also conforms more closely with human cognitive needs in collaborative authoring and reuse activities
  3. Chen, C.: Top Ten Problems in Visual Interfaces to Digital Libraries (2002) 0.02
    0.019388169 = product of:
      0.058164507 = sum of:
        0.058164507 = product of:
          0.116329014 = sum of:
            0.116329014 = weight(_text_:22 in 4840) [ClassicSimilarity], result of:
              0.116329014 = score(doc=4840,freq=4.0), product of:
                0.17717063 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050593734 = queryNorm
                0.6565931 = fieldWeight in 4840, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=4840)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    22. 2.2003 17:25:39
    22. 2.2003 18:13:11
  4. Börner, K.; Chen, C.: Visual Interfaces to Digital Libraries : Motivation, Utilization, and Socio-technical Challenges (2002) 0.02
    0.019388169 = product of:
      0.058164507 = sum of:
        0.058164507 = product of:
          0.116329014 = sum of:
            0.116329014 = weight(_text_:22 in 1359) [ClassicSimilarity], result of:
              0.116329014 = score(doc=1359,freq=4.0), product of:
                0.17717063 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050593734 = queryNorm
                0.6565931 = fieldWeight in 1359, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=1359)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    22. 2.2003 17:25:39
    22. 2.2003 18:20:07
  5. Chen, C.; Czerwinski, M.; Macredie, R.: Individual differences in virtual environments : introduction and overview (2000) 0.02
    0.015420245 = product of:
      0.046260733 = sum of:
        0.046260733 = weight(_text_:reference in 4600) [ClassicSimilarity], result of:
          0.046260733 = score(doc=4600,freq=2.0), product of:
            0.205834 = queryWeight, product of:
              4.0683694 = idf(docFreq=2055, maxDocs=44218)
              0.050593734 = queryNorm
            0.22474778 = fieldWeight in 4600, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.0683694 = idf(docFreq=2055, maxDocs=44218)
              0.0390625 = fieldNorm(doc=4600)
      0.33333334 = coord(1/3)
    
    Abstract
    The practical significances of identifying and accomodating individual differences has been established across a number of fields of research. There is a renewed interest in individual differences due to the advances in virtual environments, especially through far-reaching technologies such as information visualization and 3D graphical user interfaces on the WWW. The effects of individual differences on the use of these new technologies are yet to be found out. More fundamentally, theories and methods developed for the earlier generations of information systems are subject to a close examination of their applicability, efficiency, and effectiveness. In this article, we present a brief historical overview of research in in individual differences in the context of virtual environments. In particular, we highlight the notion of structure in the perception of individual users of an information system and the role of individuals' abilities to recognize and use such structures to perform various information-intensive tasks. Striking the balance between individuals' abilities and the demanding task for detecting, understanding, and utilizing such structures is an emerging theme across the 5 articles in this special issue. We outline the approaches and the major findings of these articles with reference to this central theme
  6. Chen, C.; Hu, Z.; Milbank, J.; Schultz, T.: ¬A visual analytic study of retracted articles in scientific literature (2013) 0.02
    0.015420245 = product of:
      0.046260733 = sum of:
        0.046260733 = weight(_text_:reference in 610) [ClassicSimilarity], result of:
          0.046260733 = score(doc=610,freq=2.0), product of:
            0.205834 = queryWeight, product of:
              4.0683694 = idf(docFreq=2055, maxDocs=44218)
              0.050593734 = queryNorm
            0.22474778 = fieldWeight in 610, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.0683694 = idf(docFreq=2055, maxDocs=44218)
              0.0390625 = fieldNorm(doc=610)
      0.33333334 = coord(1/3)
    
    Abstract
    Retracting published scientific articles is increasingly common. Retraction is a self-correction mechanism of the scientific community to maintain and safeguard the integrity of scientific literature. However, a retracted article may pose a profound and long-lasting threat to the credibility of the literature. New articles may unknowingly build their work on false claims made in retracted articles. Such dependencies on retracted articles may become implicit and indirect. Consequently, it becomes increasingly important to detect implicit and indirect threats. In this article, our aim is to raise the awareness of the potential threats of retracted articles even after their retraction and demonstrate a visual analytic study of retracted articles with reference to the rest of the literature and how their citations are influenced by their retraction. The context of highly cited retracted articles is visualized in terms of a co-citation network as well as the distribution of articles that have high-order citation dependencies on retracted articles. Survival analyses of time to retraction and postretraction citation are included. Sentences that explicitly cite retracted articles are extracted from full-text articles. Transitions of topics over time are depicted in topic-flow visualizations. We recommend that new visual analytic and science mapping tools should take retracted articles into account and facilitate tasks specifically related to the detection and monitoring of retracted articles.
  7. Chen, C.: CiteSpace II : detecting and visualizing emerging trends and transient patterns in scientific literature (2006) 0.01
    0.005712294 = product of:
      0.017136881 = sum of:
        0.017136881 = product of:
          0.034273762 = sum of:
            0.034273762 = weight(_text_:22 in 5272) [ClassicSimilarity], result of:
              0.034273762 = score(doc=5272,freq=2.0), product of:
                0.17717063 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050593734 = queryNorm
                0.19345059 = fieldWeight in 5272, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5272)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    22. 7.2006 16:11:05