Search (10 results, page 1 of 1)

  • × author_ss:"Spink, A."
  1. Spink, A.; Goodrum, A.; Robins, D.: Search intermediary elicitations during mediated online searching (1995) 0.06
    0.064490765 = product of:
      0.09673614 = sum of:
        0.06476502 = weight(_text_:reference in 3872) [ClassicSimilarity], result of:
          0.06476502 = score(doc=3872,freq=2.0), product of:
            0.205834 = queryWeight, product of:
              4.0683694 = idf(docFreq=2055, maxDocs=44218)
              0.050593734 = queryNorm
            0.31464687 = fieldWeight in 3872, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.0683694 = idf(docFreq=2055, maxDocs=44218)
              0.0546875 = fieldNorm(doc=3872)
        0.03197112 = product of:
          0.06394224 = sum of:
            0.06394224 = weight(_text_:database in 3872) [ClassicSimilarity], result of:
              0.06394224 = score(doc=3872,freq=2.0), product of:
                0.20452234 = queryWeight, product of:
                  4.042444 = idf(docFreq=2109, maxDocs=44218)
                  0.050593734 = queryNorm
                0.31264183 = fieldWeight in 3872, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.042444 = idf(docFreq=2109, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3872)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Investigates search intermediary elicitations during mediated online searching. A study of 40 online reference interviews involving 1.557 search intermediary elicitation, found 15 different types of search intermediary elicitation to users. The elicitation purpose included search terms and strategies, database selection, relevance of retrieved items, users' knowledge and previous information seeking. Analysis of the patterns in the types and sequencing of elicitation showed significant strings of multiple elicitation regarding search terms and strategies, and relevance judgements. Discusses the implications of the findings for training search intermediaries and the design of interfaces eliciting information from end users
  2. Spink, A.: Term relevance feedback and mediated database searching : implications for information retrieval practice and systems design (1995) 0.02
    0.020425599 = product of:
      0.061276797 = sum of:
        0.061276797 = product of:
          0.122553594 = sum of:
            0.122553594 = weight(_text_:database in 1756) [ClassicSimilarity], result of:
              0.122553594 = score(doc=1756,freq=10.0), product of:
                0.20452234 = queryWeight, product of:
                  4.042444 = idf(docFreq=2109, maxDocs=44218)
                  0.050593734 = queryNorm
                0.5992186 = fieldWeight in 1756, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  4.042444 = idf(docFreq=2109, maxDocs=44218)
                  0.046875 = fieldNorm(doc=1756)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Research into both the algorithmic and human approaches to information retrieval is required to improve information retrieval system design and database searching effectiveness. Uses the human approach to examine the sources and effectiveness of search terms selected during mediated interactive information retrieval. Focuses on determining the retrieval effectiveness of search terms identified by users and intermediaries from retrieved items during term relevance feedback. Results show that termns selected from particular database fields of retrieved items during term relevance feedback (TRF) were more effective than search terms from the intermediarity, database thesauri or users' domain knowledge during the interaction, but not as effective as terms from the users' written question statements. Implications for the design and testing of automatic relevance feedback techniques that place greater emphasis on these sources and the practice of database searching are also discussed
  3. Spink, A.; Wilson, T.; Ellis, D.; Ford, N.: Modeling users' successive searches in digital environments : a National Science Foundation/British Library funded study (1998) 0.01
    0.01079417 = product of:
      0.03238251 = sum of:
        0.03238251 = weight(_text_:reference in 1255) [ClassicSimilarity], result of:
          0.03238251 = score(doc=1255,freq=2.0), product of:
            0.205834 = queryWeight, product of:
              4.0683694 = idf(docFreq=2055, maxDocs=44218)
              0.050593734 = queryNorm
            0.15732343 = fieldWeight in 1255, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              4.0683694 = idf(docFreq=2055, maxDocs=44218)
              0.02734375 = fieldNorm(doc=1255)
      0.33333334 = coord(1/3)
    
    Abstract
    As digital libraries become a major source of information for many people, we need to know more about how people seek and retrieve information in digital environments. Quite commonly, users with a problem-at-hand and associated question-in-mind repeatedly search a literature for answers, and seek information in stages over extended periods from a variety of digital information resources. The process of repeatedly searching over time in relation to a specific, but possibly an evolving information problem (including changes or shifts in a variety of variables), is called the successive search phenomenon. The study outlined in this paper is currently investigating this new and little explored line of inquiry for information retrieval, Web searching, and digital libraries. The purpose of the research project is to investigate the nature, manifestations, and behavior of successive searching by users in digital environments, and to derive criteria for use in the design of information retrieval interfaces and systems supporting successive searching behavior. This study includes two related projects. The first project is based in the School of Library and Information Sciences at the University of North Texas and is funded by a National Science Foundation POWRE Grant <http://www.nsf.gov/cgi-bin/show?award=9753277>. The second project is based at the Department of Information Studies at the University of Sheffield (UK) and is funded by a grant from the British Library <http://www.shef. ac.uk/~is/research/imrg/uncerty.html> Research and Innovation Center. The broad objectives of each project are to examine the nature and extent of successive search episodes in digital environments by real users over time. The specific aim of the current project is twofold: * To characterize progressive changes and shifts that occur in: user situational context; user information problem; uncertainty reduction; user cognitive styles; cognitive and affective states of the user, and consequently in their queries; and * To characterize related changes over time in the type and use of information resources and search strategies particularly related to given capabilities of IR systems, and IR search engines, and examine changes in users' relevance judgments and criteria, and characterize their differences. The study is an observational, longitudinal data collection in the U.S. and U.K. Three questionnaires are used to collect data: reference, client post search and searcher post search questionnaires. Each successive search episode with a search intermediary for textual materials on the DIALOG Information Service is audiotaped and search transaction logs are recorded. Quantitative analysis includes statistical analysis using Likert scale data from the questionnaires and log-linear analysis of sequential data. Qualitative methods include: content analysis, structuring taxonomies; and diagrams to describe shifts and transitions within and between each search episode. Outcomes of the study are the development of appropriate model(s) for IR interactions in successive search episodes and the derivation of a set of design criteria for interfaces and systems supporting successive searching.
  4. Spink, A.; Goodrum, A.; Robins, D.: Elicitation behavior during mediated information retrieval (1998) 0.01
    0.01065704 = product of:
      0.03197112 = sum of:
        0.03197112 = product of:
          0.06394224 = sum of:
            0.06394224 = weight(_text_:database in 3265) [ClassicSimilarity], result of:
              0.06394224 = score(doc=3265,freq=2.0), product of:
                0.20452234 = queryWeight, product of:
                  4.042444 = idf(docFreq=2109, maxDocs=44218)
                  0.050593734 = queryNorm
                0.31264183 = fieldWeight in 3265, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.042444 = idf(docFreq=2109, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=3265)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Considers what elicitation or requests for information search intermediaries make of users with information requests during an information retrieval interaction - including prior to and during an information retrieval interaction - and for what purpose. Reports a study of elicitations during 40 mediated information retrieval interactions. Identifies a total of 1.557 search intermediary elicitations within 15 purpose categories. The elicitation purposes of search intermediaries included requests for information on search terms and strategies, database selection, search procedures, system's outputs and relevance of retrieved items, and users' knowledge and previous information seeking. Investigates the transition sequences from 1 type of search intermediary elicitation to another. Compares these findings with results from a study of end user questions
  5. Spink, A.; Saracevic, T.: Interaction in information retrieval : selection and effectiveness of search terms (1997) 0.01
    0.009134606 = product of:
      0.027403818 = sum of:
        0.027403818 = product of:
          0.054807637 = sum of:
            0.054807637 = weight(_text_:database in 206) [ClassicSimilarity], result of:
              0.054807637 = score(doc=206,freq=2.0), product of:
                0.20452234 = queryWeight, product of:
                  4.042444 = idf(docFreq=2109, maxDocs=44218)
                  0.050593734 = queryNorm
                0.26797873 = fieldWeight in 206, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.042444 = idf(docFreq=2109, maxDocs=44218)
                  0.046875 = fieldNorm(doc=206)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    We investigated the sources and effectiveness of search terms used during mediated on-line searching under real-life (as opposed to laboratory) circumstances. A stratified model of information retrieval (IR) interaction served as a framework for the analysis. For the analysis, we used the on-line transaction logs, videotapes, and transcribed dialogue of the presearch and on-line interaction between 40 users and 4 professional intermediaries. Each user provided one question and interacted with one of the four intermediaries. Searching was done using DIALOG. Five sources of search terms were identified: (1) the users' written question statements, (2) terms derived from users' domain knowledge during the interaction, (3) terms extracted from retrieved items as relevance feedback, (4) database thesaurus, and (5) terms derived by intermediaries during the interaction. Distribution, retrieval effectiveness, transition sequences, and correlation of search terms from different sources were investigated. Search terms from users' written question statements and term relevance feedback were the most productive sources of terms contributing to the retrieval of items judged relevant by users. Implications of the findings are discussed
  6. Spink, A.: Multitasking information behavior and information task switching : an exploratory study (2004) 0.01
    0.009134606 = product of:
      0.027403818 = sum of:
        0.027403818 = product of:
          0.054807637 = sum of:
            0.054807637 = weight(_text_:database in 4426) [ClassicSimilarity], result of:
              0.054807637 = score(doc=4426,freq=2.0), product of:
                0.20452234 = queryWeight, product of:
                  4.042444 = idf(docFreq=2109, maxDocs=44218)
                  0.050593734 = queryNorm
                0.26797873 = fieldWeight in 4426, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.042444 = idf(docFreq=2109, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4426)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Recent studies show that humans engage in multitasking information behaviors, often in libraries, as they seek and search for information on more than one information task. Multitasking information behaviors may consist of library search and use behaviors, or database or Web search sessions on multiple information tasks. However, few human information behavior models of seeking, searching or use, or library use models, include considerations of multitasking information behavior. This paper reports results from a case study exploring multitasking information behavior by an information seeker in a public library using diary, observation and interview data collection techniques. The information seeker sought information on four unrelated personal information tasks during two public library visits. Findings include a taxonomy of information behaviors; a sequential flowchart of the information seeker's complex and iterative processes, including multitasking information behavior, electronic searches, physical library searches, serendipitous browsing, and successive searches; and that the information seeker engaged in a process of 17 information task switches over two library visits. A model of information multitasking and information task switching is presented. Implications for library services and bibliographic instruction are also discussed.
  7. Zhang, Y.; Jansen, B.J.; Spink, A.: Identification of factors predicting clickthrough in Web searching using neural network analysis (2009) 0.01
    0.006854752 = product of:
      0.020564256 = sum of:
        0.020564256 = product of:
          0.041128512 = sum of:
            0.041128512 = weight(_text_:22 in 2742) [ClassicSimilarity], result of:
              0.041128512 = score(doc=2742,freq=2.0), product of:
                0.17717063 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050593734 = queryNorm
                0.23214069 = fieldWeight in 2742, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2742)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    22. 3.2009 17:49:11
  8. Spink, A.; Cole, C.: Introduction (2004) 0.01
    0.006089737 = product of:
      0.018269211 = sum of:
        0.018269211 = product of:
          0.036538422 = sum of:
            0.036538422 = weight(_text_:database in 2389) [ClassicSimilarity], result of:
              0.036538422 = score(doc=2389,freq=2.0), product of:
                0.20452234 = queryWeight, product of:
                  4.042444 = idf(docFreq=2109, maxDocs=44218)
                  0.050593734 = queryNorm
                0.17865248 = fieldWeight in 2389, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.042444 = idf(docFreq=2109, maxDocs=44218)
                  0.03125 = fieldNorm(doc=2389)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    This is the second part of a two-part special topic JASIST issue an information seeking. The first part presented papers an the topics of health information seeking and everyday life information seeking or ELIS (i.e., information seeking outside of work or school). This second issue presents papers an the topics of information retrieval and information seeking in industry environments. Information retrieval involves a specific kind of information seeking, as the user is in direct contact with an information interface and with potential sources of information from the system's database. The user conducts the search using various strategies, tactics, etc., but there is also the possibility that information processes will occur resulting in a change in the way the user thinks about the topic of the search. If this occurs, the user is, in effect, using the found data, turning it into an informational element of some kind. Such processes can be facilitated in the design of the information retrieval system. Information seeking in industry environments takes up more and more of our working day. Even companies producing industrial products are in fact mainly producing informational elements of some kind, often for the purpose of making decisions or as starting positions for further information seeking. While there may be company mechanisms in place to aid such information seeking, and to make it more efficient, if better information seeking structures were in place, not only would workers waste less time in informational pursuits, but they would also find things, discover new processes, etc., that would benefit the corporation's bottom line. In Figure l, we plot the six papers in this issue an an information behavior continuum, following a taxonomy of information behavior terms from Spink and Cole (2001). Information Behavior is a broad term covering all aspects of information seeking, including passive or undetermined information behavior. Information-Seeking Behavior is usually thought of as active or conscious information behavior. Information-Searching Behavior describes the interactive elements between a user and an information system. Information-Use Behavior is about the user's acquisition and incorporation of data in some kind of information process. This leads to the production of information, but also back to the broad range of Information Behavior in the first part of the continuum. Though we plot all papers in this issue along this continuum, they take into account more than their general framework. The three information retrieval reports veer from the traditional information-searching approach of usersystem interaction, while the three industry environment articles veer from the traditional information-seeking approach of specific context information-seeking studies.
  9. Spink, A.; Cole, C.: New directions in cognitive information retrieval : conclusion and further research (2005) 0.01
    0.006089737 = product of:
      0.018269211 = sum of:
        0.018269211 = product of:
          0.036538422 = sum of:
            0.036538422 = weight(_text_:database in 637) [ClassicSimilarity], result of:
              0.036538422 = score(doc=637,freq=2.0), product of:
                0.20452234 = queryWeight, product of:
                  4.042444 = idf(docFreq=2109, maxDocs=44218)
                  0.050593734 = queryNorm
                0.17865248 = fieldWeight in 637, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  4.042444 = idf(docFreq=2109, maxDocs=44218)
                  0.03125 = fieldNorm(doc=637)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    New Directions in Cognitive Information Retrieval (IR) gathers user or cognitive approaches to IR research into one volume. The group of researchers focus on a middleground perspective between system and user. They ask the question: What is the nexus between the wider context of why and how humans behave when seeking information and the technological and other constraints that determine the interaction between user and machine? These researchers' concern for the application of user/cognitive-oriented research to IR system design thus serves as a meeting ground linking computer scientists with their largely system performance concerns and the social science research that examines human information behavior in the wider context of how human perception and cognitive mechanisms function, and the work and social frameworks in which we live. The researchers in this volume provide an in-depth revaluation of the concepts that form the basis of current IR retrieval system design. Current IR systems are in a certain sense based on design conceptualizations that view - the user's role in the user-system interaction as an input and monitoring mechanism for system performance; - the system's role in the user-system interaction as a data acquisition system, not an information retrieval system; and - the central issue in the user-system interaction as the efficacy of the system's matching algorithms, matching the user request statement to representations of the document set contained in the system's database. But the era of matching-focused approaches to interactive IR appears to be giving way to a concern for developing interactive systems to facilitate collaboration between users in the performance of their work and social tasks. There is room for cognitive approaches to interaction to break in here.
  10. Spink, A.; Cole, C.: ¬A multitasking framework for cognitive information retrieval (2005) 0.00
    0.004569835 = product of:
      0.013709505 = sum of:
        0.013709505 = product of:
          0.02741901 = sum of:
            0.02741901 = weight(_text_:22 in 642) [ClassicSimilarity], result of:
              0.02741901 = score(doc=642,freq=2.0), product of:
                0.17717063 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.050593734 = queryNorm
                0.15476047 = fieldWeight in 642, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.03125 = fieldNorm(doc=642)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    19. 1.2007 12:55:22