Search (2 results, page 1 of 1)

  • × year_i:[2020 TO 2030}
  • × author_ss:"Costas, R."
  1. Fang, Z.; Dudek, J.; Costas, R.: Facing the volatility of tweets in altmetric research (2022) 0.00
    0.0024970302 = product of:
      0.009988121 = sum of:
        0.009988121 = product of:
          0.039952483 = sum of:
            0.039952483 = weight(_text_:based in 605) [ClassicSimilarity], result of:
              0.039952483 = score(doc=605,freq=4.0), product of:
                0.14144066 = queryWeight, product of:
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.04694356 = queryNorm
                0.28246817 = fieldWeight in 605, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.046875 = fieldNorm(doc=605)
          0.25 = coord(1/4)
      0.25 = coord(1/4)
    
    Abstract
    The data re-collection for tweets from data snapshots is a common methodological step in Twitter-based research. Understanding better the volatility of tweets over time is important for validating the reliability of metrics based on Twitter data. We tracked a set of 37,918 original scholarly tweets mentioning COVID-19-related research daily for 56 days and captured the reasons for the changes in their availability over time. Results show that the proportion of unavailable tweets increased from 1.6 to 2.6% in the time window observed. Of the 1,323 tweets that became unavailable at some point in the period observed, 30.5% became available again afterwards. "Revived" tweets resulted mainly from the unprotecting, reactivating, or unsuspending of users' accounts. Our findings highlight the importance of noting this dynamic nature of Twitter data in altmetric research and testify to the challenges that this poses for the retrieval, processing, and interpretation of Twitter data about scientific papers.
  2. Fang, Z.; Costas, R.; Tian, W.; Wang, X.; Wouters, P.: How is science clicked on Twitter? : click metrics for Bitly short links to scientific publications (2021) 0.00
    0.0014713892 = product of:
      0.005885557 = sum of:
        0.005885557 = product of:
          0.023542227 = sum of:
            0.023542227 = weight(_text_:based in 265) [ClassicSimilarity], result of:
              0.023542227 = score(doc=265,freq=2.0), product of:
                0.14144066 = queryWeight, product of:
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.04694356 = queryNorm
                0.16644597 = fieldWeight in 265, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.0129938 = idf(docFreq=5906, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=265)
          0.25 = coord(1/4)
      0.25 = coord(1/4)
    
    Abstract
    To provide some context for the potential engagement behavior of Twitter users around science, this article investigates how Bitly short links to scientific publications embedded in scholarly Twitter mentions are clicked on Twitter. Based on the click metrics of over 1.1 million Bitly short links referring to Web of Science (WoS) publications, our results show that around 49.5% of them were not clicked by Twitter users. For those Bitly short links with clicks from Twitter, the majority of their Twitter clicks accumulated within a short period of time after they were first tweeted. Bitly short links to the publications in the field of Social Sciences and Humanities tend to attract more clicks from Twitter over other subject fields. This article also assesses the extent to which Twitter clicks are correlated with some other impact indicators. Twitter clicks are weakly correlated with scholarly impact indicators (WoS citations and Mendeley readers), but moderately correlated to other Twitter engagement indicators (total retweets and total likes). In light of these results, we highlight the importance of paying more attention to the click metrics of URLs in scholarly Twitter mentions, to improve our understanding about the more effective dissemination and reception of science information on Twitter.