Search (17 results, page 1 of 1)

  • × author_ss:"Cole, C."
  1. Cole, C.; Leide, J.E.: Using the user's mental model to guide the integration of information space into information need (2003) 0.06
    0.06036007 = product of:
      0.12072014 = sum of:
        0.101278044 = weight(_text_:space in 1237) [ClassicSimilarity], result of:
          0.101278044 = score(doc=1237,freq=4.0), product of:
            0.24842183 = queryWeight, product of:
              5.2183776 = idf(docFreq=650, maxDocs=44218)
              0.047605187 = queryNorm
            0.40768576 = fieldWeight in 1237, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              5.2183776 = idf(docFreq=650, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1237)
        0.019442094 = product of:
          0.03888419 = sum of:
            0.03888419 = weight(_text_:model in 1237) [ClassicSimilarity], result of:
              0.03888419 = score(doc=1237,freq=2.0), product of:
                0.1830527 = queryWeight, product of:
                  3.845226 = idf(docFreq=2569, maxDocs=44218)
                  0.047605187 = queryNorm
                0.21242073 = fieldWeight in 1237, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.845226 = idf(docFreq=2569, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1237)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    The study reported here tested the efficacy of an information retrieval system output summary and visualization scheme for undergraduates taking a Vietnam War history who were in Kuhlthau's Stage 3 of researching a history essay. The visualization scheme consisted of (a) the undergraduate's own visualization of his or her essay topic, drawn by the student an the bottom half of a sheet of paper, and (b) a visualization of the information space (determined by index term counting) an the tophalf of the same page. To test the visualization scheme, students enrolled in a Vietnam War history course were randomly assigned to either the visualization scheme group, who received a high recall search output, or the nonvisualization group, who received a high precision search output. The dependent variable was the mark awarded the essay by the course instructor. There was no significant difference between the mean marks for the two groups. We were pleasantly surprised with this result given the bad reputation of high recall as a practical search strategy. We hypothesize that a more proactive visualization system is needed that takes the student through the process of using the visualization scheme, including steps that induce student cognition about task-subject objectives.
  2. Leide, J.E.; Large, A.; Beheshti, J.; Brooks, M.; Cole, C.: Visualization schemes for domain novices exploring a topic space : the navigation classification scheme (2003) 0.06
    0.06036007 = product of:
      0.12072014 = sum of:
        0.101278044 = weight(_text_:space in 1078) [ClassicSimilarity], result of:
          0.101278044 = score(doc=1078,freq=4.0), product of:
            0.24842183 = queryWeight, product of:
              5.2183776 = idf(docFreq=650, maxDocs=44218)
              0.047605187 = queryNorm
            0.40768576 = fieldWeight in 1078, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              5.2183776 = idf(docFreq=650, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1078)
        0.019442094 = product of:
          0.03888419 = sum of:
            0.03888419 = weight(_text_:model in 1078) [ClassicSimilarity], result of:
              0.03888419 = score(doc=1078,freq=2.0), product of:
                0.1830527 = queryWeight, product of:
                  3.845226 = idf(docFreq=2569, maxDocs=44218)
                  0.047605187 = queryNorm
                0.21242073 = fieldWeight in 1078, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.845226 = idf(docFreq=2569, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1078)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    In this article and two other articles which conceptualize a future stage of the research program (Leide, Cole, Large, & Beheshti, submitted for publication; Cole, Leide, Large, Beheshti, & Brooks, in preparation), we map-out a domain novice user's encounter with an IR system from beginning to end so that appropriate classification-based visualization schemes can be inserted into the encounter process. This article describes the visualization of a navigation classification scheme only. The navigation classification scheme uses the metaphor of a ship and ship's navigator traveling through charted (but unknown to the user) waters, guided by a series of lighthouses. The lighthouses contain mediation interfaces linking the user to the information store through agents created for each. The user's agent is the cognitive model the user has of the information space, which the system encourages to evolve via interaction with the system's agent. The system's agent is an evolving classification scheme created by professional indexers to represent the structure of the information store. We propose a more systematic, multidimensional approach to creating evolving classification/indexing schemes, based on where the user is and what she is trying to do at that moment during the search session.
  3. Cole, C.; Lin, Y.; Leide, J.; Large, A.; Beheshti, J.: ¬A classification of mental models of undergraduates seeking information for a course essay in history and psychology : preliminary investigations into aligning their mental models with online thesauri (2007) 0.06
    0.056064893 = product of:
      0.112129785 = sum of:
        0.081022434 = weight(_text_:space in 625) [ClassicSimilarity], result of:
          0.081022434 = score(doc=625,freq=4.0), product of:
            0.24842183 = queryWeight, product of:
              5.2183776 = idf(docFreq=650, maxDocs=44218)
              0.047605187 = queryNorm
            0.3261486 = fieldWeight in 625, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              5.2183776 = idf(docFreq=650, maxDocs=44218)
              0.03125 = fieldNorm(doc=625)
        0.031107351 = product of:
          0.062214702 = sum of:
            0.062214702 = weight(_text_:model in 625) [ClassicSimilarity], result of:
              0.062214702 = score(doc=625,freq=8.0), product of:
                0.1830527 = queryWeight, product of:
                  3.845226 = idf(docFreq=2569, maxDocs=44218)
                  0.047605187 = queryNorm
                0.33987316 = fieldWeight in 625, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.845226 = idf(docFreq=2569, maxDocs=44218)
                  0.03125 = fieldNorm(doc=625)
          0.5 = coord(1/2)
      0.5 = coord(2/4)
    
    Abstract
    The article reports a field study which examined the mental models of 80 undergraduates seeking information for either a history or psychology course essay when they were in an early, exploration stage of researching their essay. This group is presently at a disadvantage when using thesaurus-type schemes in indexes and online search engines because there is a disconnect between how domain novice users of IR systems represent a topic space and how this space is represented in the standard IR system thesaurus. The study attempted to (a) ascertain the coding language used by the 80 undergraduates in the study to mentally represent their topic and then (b) align the mental models with the hierarchical structure found in many thesauri. The intervention focused the undergraduates' thinking about their topic from a topic statement to a thesis statement. The undergraduates were asked to produce three mental model diagrams for their real-life course essay at the beginning, middle, and end of the interview, for a total of 240 mental model diagrams, from which we created a 12-category mental model classification scheme. Findings indicate that at the end of the intervention, (a) the percentage of vertical mental models increased from 24 to 35% of all mental models; but that (b) 3rd-year students had fewer vertical mental models than did 1st-year undergraduates in the study, which is counterintuitive. The results indicate that there is justification for pursuing our research based on the hypothesis that rotating a domain novice's mental model into a vertical position would make it easier for him or her to cognitively connect with the thesaurus's hierarchical representation of the topic area.
  4. Spink, A.; Cole, C.: ¬A multitasking framework for cognitive information retrieval (2005) 0.03
    0.031042367 = product of:
      0.12416947 = sum of:
        0.12416947 = sum of:
          0.09837008 = weight(_text_:model in 642) [ClassicSimilarity], result of:
            0.09837008 = score(doc=642,freq=20.0), product of:
              0.1830527 = queryWeight, product of:
                3.845226 = idf(docFreq=2569, maxDocs=44218)
                0.047605187 = queryNorm
              0.53738666 = fieldWeight in 642, product of:
                4.472136 = tf(freq=20.0), with freq of:
                  20.0 = termFreq=20.0
                3.845226 = idf(docFreq=2569, maxDocs=44218)
                0.03125 = fieldNorm(doc=642)
          0.025799382 = weight(_text_:22 in 642) [ClassicSimilarity], result of:
            0.025799382 = score(doc=642,freq=2.0), product of:
              0.16670525 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.047605187 = queryNorm
              0.15476047 = fieldWeight in 642, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.03125 = fieldNorm(doc=642)
      0.25 = coord(1/4)
    
    Abstract
    Information retrieval (IR) research has developed considerably since the 1950's to include consideration of more cognitive, interactive and iterative processes during the interaction between humans and IR or Web systems (Ingwersen, 1992, 1996). Interactive search sessions by humans with IR systems have been depicted as interactive IR models (Saracevic, 1997). Human-IR system interaction is also modeled as taking place within the context of broader human information behavior (HIB) processes (Spink et al., 2002). Research into the human or cognitive (user modeling) aspects of IR is a growing body of research on user interactivity, task performance and measures for observing user interactivity. The task context and situational characteristics of users' searches and evaluation have also been identified as key elements in a user's interaction with an IR system (Cool and Spink, 2002; Vakkari, 2003). Major theorized interactive IR models have been proposed relating to the single search episode, including Ingwersen's (1992,1996) Cognitive Model of IR Interaction, Belkin et al.'s (1995) Episodic Interaction Model, and Saracevic's (1996,1997) Stratified Model of IR Interaction. In this chapter we examine Saracevic's Stratified Model of IR Interaction and extend the model within the framework of cognitive IR (CIR) to depict CIR as a multitasking process. This chapter provides a new direction for CIR research by conceptualizing IR with a multitasking context. The next section of the chapter defines the concept of multitasking in the cognitive sciences and Section 3 discusses the emerging understanding of multitasking information behavior. In Section 4, cognitive IR is depicted within a multitasking framework using Saracevic's (1996, 1997) Stratified Model of IR Interaction. In Section 5, we link information searching and seeking models together, via Saracevic's Stratified Model of IR Interaction, but starting with a unitask model of HIB. We begin to model multitasking in cognitive IR in Section 6. In Sections 7 and 8, we increase the complexity of our developing multitasking model of cognitive IR by adding coordinating mechanisms, including feedback loops. Finally, in Section 9, we conclude the chapter and indicate future directions for further research.
    Date
    19. 1.2007 12:55:22
  5. Cole, C.: Activity of understanding a problem during interaction with an 'enabling' information retrieval system : modeling information flow (1999) 0.03
    0.029879589 = product of:
      0.119518355 = sum of:
        0.119518355 = sum of:
          0.08081928 = weight(_text_:model in 3675) [ClassicSimilarity], result of:
            0.08081928 = score(doc=3675,freq=6.0), product of:
              0.1830527 = queryWeight, product of:
                3.845226 = idf(docFreq=2569, maxDocs=44218)
                0.047605187 = queryNorm
              0.44150823 = fieldWeight in 3675, product of:
                2.4494898 = tf(freq=6.0), with freq of:
                  6.0 = termFreq=6.0
                3.845226 = idf(docFreq=2569, maxDocs=44218)
                0.046875 = fieldNorm(doc=3675)
          0.03869907 = weight(_text_:22 in 3675) [ClassicSimilarity], result of:
            0.03869907 = score(doc=3675,freq=2.0), product of:
              0.16670525 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.047605187 = queryNorm
              0.23214069 = fieldWeight in 3675, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=3675)
      0.25 = coord(1/4)
    
    Abstract
    This article is about the mental coding processes involved in the flow of 'information' when the user is interacting with an 'enabling' information retrieval system. An 'enabling' IR system is designed to stimulate the user's grasping towards a higher understanding of the information need / problem / task that brought the user to the IR system. C. Shannon's (1949/1959) model of the flow of information and K.R. Popper's (1975) 3 worlds concept are used to diagram the flow of information between the user and system when the user receives a stimulating massage, with particluar emphasis on the decoding and encoding operations involved as the user processes the message. The key difference between the model of information flow proposed here and the linear transmission, receiver-oriented model now in use is that we assume that users of a truly interactive, 'enabling' IR system are primarily message senders, not passive receivers of the message, because they must create a new message back to the system, absed on a reconceptualization of their information need, while they are 'online' interacting with the system
    Date
    22. 5.1999 14:51:49
  6. Cole, C.; Mandelblatt, B.; Stevenson, J.: Visualizing a high recall search strategy output for undergraduates in an exploration stage of researching a term paper (2002) 0.03
    0.025319511 = product of:
      0.101278044 = sum of:
        0.101278044 = weight(_text_:space in 2575) [ClassicSimilarity], result of:
          0.101278044 = score(doc=2575,freq=4.0), product of:
            0.24842183 = queryWeight, product of:
              5.2183776 = idf(docFreq=650, maxDocs=44218)
              0.047605187 = queryNorm
            0.40768576 = fieldWeight in 2575, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              5.2183776 = idf(docFreq=650, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2575)
      0.25 = coord(1/4)
    
    Abstract
    When accessing an information retrieval system, it has long been said that undergraduates who are in an exploratory stage of researching their essay topic should use a high recall search strategy; what prevents them from doing so is the information overload factor associated with showing the undergraduate a long list of citations. One method of overcoming information overload is summarizing and visualizing the citation list. This paper examines five summarization and visualization schemes for presenting information retrieval (IR) citation output, then discusses whether these schemes are appropriate for undergraduates and other domain novice users. We ask and answer four questions: (1) What is the message these schemes try to communicate and (2) is this message appropriate for domain novice users like undergraduates? (3) How do these schemes communicate their message and (4) is how they communicate the message appropriate for a domain novice? We conclude that (i) the most appropriate message for information space visualizations for domain novice users is associative thinking, and (ii) the message should be communicated with a standardized look that remains relatively constant over time so that the shape and form of the visualization can become familiar and thus useful to students as they navigate their way through the information space produced by a high recall search strategy.
  7. Cole, C.; Beheshti, J.; Abuhimed, D.; Lamoureux, I.: ¬The end game in Kuhlthau's ISP Model : knowledge construction for grade 8 students researching an inquiry-based history project (2015) 0.01
    0.011905802 = product of:
      0.04762321 = sum of:
        0.04762321 = product of:
          0.09524642 = sum of:
            0.09524642 = weight(_text_:model in 2265) [ClassicSimilarity], result of:
              0.09524642 = score(doc=2265,freq=12.0), product of:
                0.1830527 = queryWeight, product of:
                  3.845226 = idf(docFreq=2569, maxDocs=44218)
                  0.047605187 = queryNorm
                0.5203224 = fieldWeight in 2265, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  3.845226 = idf(docFreq=2569, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=2265)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    This article reports on a field study of the information behavior of Grade 8 students researching an inquiry-based class history project. Kuhlthau's 7-stage Information Search Process (ISP) model forms the conceptual framework for the study. The aim of the study was to define an end game for the ISP model by answering the following question: How do the student participants' feelings, thoughts, and information behavior lead to the construction of new knowledge? Study findings tentatively indicate that knowledge construction results from an iterative process between the student and information, which can be divided into 3 phases. In the first phase, the students formulate questions from their previous knowledge to start knowledge construction; in the second phase, newly found topic information causes students to ask questions; and in the third phase, the students answer the questions asked by this newly found topic information. Based on these results and Kuhlthau's own ISP stage 7 assessment definition of the ISP model end game, we propose a model of knowledge construction inserted as an extra row in the ISP model framework.
  8. Beheshti, J.; Cole, C.; Abuhimed, D.; Lamoureux, I.: Tracking middle school students' information behavior via Kuhlthau's ISP Model : temporality (2015) 0.01
    0.009721047 = product of:
      0.03888419 = sum of:
        0.03888419 = product of:
          0.07776838 = sum of:
            0.07776838 = weight(_text_:model in 1819) [ClassicSimilarity], result of:
              0.07776838 = score(doc=1819,freq=8.0), product of:
                0.1830527 = queryWeight, product of:
                  3.845226 = idf(docFreq=2569, maxDocs=44218)
                  0.047605187 = queryNorm
                0.42484146 = fieldWeight in 1819, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.845226 = idf(docFreq=2569, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1819)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    The article reports a field study investigating the temporality of the information behavior of 44 grade 8 students from initiation to completion of their school inquiry-based history project. The conceptual framework for the study is Kuhlthau's 6-stage information-search process (ISP) model. The objective of the study is to test and extend ISP model concepts. As per other ISP model studies, our study measured the evolution of the feelings, thoughts, and actions of the study participants over the 3-month period of their class project. The unique feature of this study is the unlimited access the researchers had to a real-life history class, resulting in 12 separate measuring periods. We report 2 important findings of the study. First, through factor analysis, we determined 5 factors that define the temporality of completing an inquiry-based project for these grade 8 students. The second main finding is the importance of the students' consultations with their classmates, siblings, parents, and teachers in the construction of the knowledge necessary to complete their project.
  9. Cole, C.: Interaction with an enabling information retrieval system : modeling the user's decoding and encoding operations (2000) 0.01
    0.008418675 = product of:
      0.0336747 = sum of:
        0.0336747 = product of:
          0.0673494 = sum of:
            0.0673494 = weight(_text_:model in 4585) [ClassicSimilarity], result of:
              0.0673494 = score(doc=4585,freq=6.0), product of:
                0.1830527 = queryWeight, product of:
                  3.845226 = idf(docFreq=2569, maxDocs=44218)
                  0.047605187 = queryNorm
                0.36792353 = fieldWeight in 4585, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.845226 = idf(docFreq=2569, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4585)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    With new interactive technology, we can increase user satisfaction by designing information retrieval systems that inform the user while the user is on-line interacting with the system. The purpose of this article is to model the information processing operations of a generic user who has just received an information message from the system and is stimulated by the message into grasping at a higher understanding of his or her information task or problem. The model consists of 3 levels, each of which forms a separate subsystem. In the Perseption subsystem, the user perceives the system message in a visual sense; in the Comprehension subsystem, the user must comprehend the system message; and in the Application subsystem, the user must (a) interpret the system message in terms of the user's task at hand, and (b) create and send a new message back to the system to complete the interaction. Because of the information process stimulated by the interaction, the user's new message forms a query to the system that more accurately represents the user's information need than would have been the case if the interaction had not taken place. This article proposes a device to enable clarification of the user's task, and thus his/her information need at the Application subsystem level of the model
  10. Cole, C.: ¬A socio-cognitive framework for designing interactive IR systems : lessons from the Neanderthals (2008) 0.01
    0.0082485825 = product of:
      0.03299433 = sum of:
        0.03299433 = product of:
          0.06598866 = sum of:
            0.06598866 = weight(_text_:model in 2125) [ClassicSimilarity], result of:
              0.06598866 = score(doc=2125,freq=4.0), product of:
                0.1830527 = queryWeight, product of:
                  3.845226 = idf(docFreq=2569, maxDocs=44218)
                  0.047605187 = queryNorm
                0.36048993 = fieldWeight in 2125, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.845226 = idf(docFreq=2569, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2125)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    The article analyzes user-IR system interaction from the broad, socio-cognitive perspective of lessons we can learn about human brain evolution when we compare the Neanderthal brain to the human brain before and after a small human brain mutation is hypothesized to have occurred 35,000-75,000 years ago. The enhanced working memory mutation enabled modern humans (i) to decode unfamiliar environmental stimuli with greater focusing power on adaptive solutions to environmental changes and problems, and (ii) to encode environmental stimuli in more efficient, generative knowledge structures. A sociological theory of these evolving, more efficient encoding knowledge structures is given. These new knowledge structures instilled in humans not only the ability to adapt to and survive novelty and/or changing conditions in the environment, but they also instilled an imperative to do so. Present day IR systems ignore the encoding imperative in their design framework. To correct for this lacuna, we propose the evolutionary-based socio-cognitive framework model for designing interactive IR systems. A case study is given to illustrate the functioning of the model.
  11. Spink, A.; Cole, C.: Human information behavior : integrating diverse approaches and information use (2006) 0.01
    0.006873818 = product of:
      0.027495272 = sum of:
        0.027495272 = product of:
          0.054990545 = sum of:
            0.054990545 = weight(_text_:model in 4915) [ClassicSimilarity], result of:
              0.054990545 = score(doc=4915,freq=4.0), product of:
                0.1830527 = queryWeight, product of:
                  3.845226 = idf(docFreq=2569, maxDocs=44218)
                  0.047605187 = queryNorm
                0.30040827 = fieldWeight in 4915, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.845226 = idf(docFreq=2569, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4915)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    For millennia humans have sought, organized, and used information as they learned and evolved patterns of human information behaviors to resolve their human problems and survive. However, despite the current focus an living in an "information age," we have a limited evolutionary understanding of human information behavior. In this article the authors examine the current three interdisciplinary approaches to conceptualizing how humans have sought information including (a) the everyday life information seeking-sense-making approach, (b) the information foraging approach, and (c) the problem-solution perspective an information seeking approach. In addition, due to the lack of clarity regarding the rote of information use in information behavior, a fourth information approach is provided based an a theory of information use. The use theory proposed starts from an evolutionary psychology notion that humans are able to adapt to their environment and survive because of our modular cognitive architecture. Finally, the authors begin the process of conceptualizing these diverse approaches, and the various aspects or elements of these approaches, within an integrated model with consideration of information use. An initial integrated model of these different approaches with information use is proposed.
  12. Cole, C.; Beheshti, J.; Leide, J. E.; Large, A.: Interactive information retrieval : bringing the user to a selection state (2005) 0.01
    0.0054990547 = product of:
      0.021996219 = sum of:
        0.021996219 = product of:
          0.043992437 = sum of:
            0.043992437 = weight(_text_:model in 36) [ClassicSimilarity], result of:
              0.043992437 = score(doc=36,freq=4.0), product of:
                0.1830527 = queryWeight, product of:
                  3.845226 = idf(docFreq=2569, maxDocs=44218)
                  0.047605187 = queryNorm
                0.24032663 = fieldWeight in 36, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.845226 = idf(docFreq=2569, maxDocs=44218)
                  0.03125 = fieldNorm(doc=36)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    There have been various approaches to conceptualizing interactive information retrieval (IR), which can be generally divided into system and user approaches (Hearst, 1999; cf. also Spink, 1997). Both system and user approaches define user-system interaction in terms of the system and the user reacting to the actions or behaviors of the other: the system reacts to the user's input; the user to the output of the system (Spink, 1997). In system approach models of the interaction, e.g., Moran (1981), "[T]he user initiates an action or operation and the system responds in some way which in turn leads the user to initiate another action and so on" (Beaulieu, 2000, p. 433). In its purest form, the system approach models the user as a reactive part of the interaction, with the system taking the lead (Bates, 1990). User approaches, on the other hand, in their purest form wish to insert a model of the user in all its socio-cognitive dimensions, to the extent that system designers consider such approaches impractical (Vakkari and Jarvelin, 2005, Chap. 7, this volume). The cognitive approach to IR interaction attempts to overcome this divide (Ruthven, 2005, Chap. 4, this volume; Vakkari and Jarvelin, 2005 Chap. 7, this volume) by representing the cognitive elements of both system designers and the user in the interaction model (Larsen and Ingwersen, 2005 Chap. 3, this volume). There are cognitive approach researchers meeting in a central ground from both the system and user side. On the system side, are computer scientists employing cognitive research to design more effective IR systems from the point of view of the user's task (Nathan, 1990; Fischer, Henninger, and Redmiles, 1991; O'Day and Jeffries, 1993; Russell et al., 1993; Kitajima and Polson, 1996; Terwilliger and Polson, 1997). On the user side are cognitive approach researchers applying methods, concepts and models from psychology to design systems that are more in tune with how users acquire information (e.g., Belkin, 1980; Ford (2005, Chap. 5, this volume); Ingwersen (Larsen and Ingwersen, 2005, Chap. 3, this volume); Saracevic, 1996; Vakkari (Vakkari and Jarvelin, 2005, Chap. 7, this volume)).
  13. Cole, C.: ¬The consciousness' drive : information need and the search for meaning (2018) 0.01
    0.005051205 = product of:
      0.02020482 = sum of:
        0.02020482 = product of:
          0.04040964 = sum of:
            0.04040964 = weight(_text_:model in 480) [ClassicSimilarity], result of:
              0.04040964 = score(doc=480,freq=6.0), product of:
                0.1830527 = queryWeight, product of:
                  3.845226 = idf(docFreq=2569, maxDocs=44218)
                  0.047605187 = queryNorm
                0.22075412 = fieldWeight in 480, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.845226 = idf(docFreq=2569, maxDocs=44218)
                  0.0234375 = fieldNorm(doc=480)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Footnote
    Weitere Rez. unter: https://crl.acrl.org/index.php/crl/article/view/17830/19659: "Author Charles Cole's understanding of human consciousness is built foundationally upon the work of evolutionary psychologist Merlin Donald, who visualized the development of human cognition in four phases, with three transitions. According to Donald's Theory of Mind, preceding types of cognition do not cease to exist after human cognition transitions to a new phase, but exist as four layers within the modern consciousness. Cole's narrative in the first part of the book recounts Donald's model of human cognition, categorizing episodic, mimetic, mythic, and theoretic phases of cognition. The second half of the book sets up a particular situation of consciousness using the frame theory of Marvin Minsky, uses Meno's paradox (how can we come to know that which we don't already know?) in a critique of framing as Minsky conceived it, and presents group and national level framing and shows their inherent danger in allowing information avoidance and sanctioning immoral actions. Cole concludes with a solution of information need being sparked or triggered that takes the human consciousness out of a closed information loop, driving the consciousness to seek new information.
    Cole's reliance upon Donald's Theory of Mind is limiting; it represents a major weakness of the book. Donald's Theory of Mind has been an influential model in evolutionary psychology, appearing in his 1991 book Origins of the Modern Mind: Three Stages in the Evolution of Culture and Cognition (Harvard University Press). Donald's approach is a top-down, conceptual model that explicates what makes the human mind different and exceptional from other animal intelligences. However, there are other alternative, useful, science-based models of animal and human cognition that begin with a bottom-up approach to understanding the building blocks of cognition shared in common by humans and other "intelligent" animals. For example, in "A Bottom-Up Approach to the Primate Mind," Frans B.M. de Waal and Pier Francesco Ferrari note that neurophysiological studies show that specific neuron assemblies in the rat hippocampus are active during memory retrieval and that those same assemblies predict future choices. This would suggest that episodic memory and future orientation aren't as advanced a process as Donald posits in his Theory of Mind. Also, neuroimaging studies in humans show that the cortical areas active during observations of another's actions are related in position and structure to those areas identified as containing mirror neurons in macaques. Could this point to a physiological basis for imitation? ... (Scott Curtis)"
  14. Cole, C.; Mandelblatt, B.: Using Kintsch's discourse comprehension theory to model the user's coding of an informative message from an enabling information retrieval system (2000) 0.00
    0.0048605236 = product of:
      0.019442094 = sum of:
        0.019442094 = product of:
          0.03888419 = sum of:
            0.03888419 = weight(_text_:model in 5161) [ClassicSimilarity], result of:
              0.03888419 = score(doc=5161,freq=2.0), product of:
                0.1830527 = queryWeight, product of:
                  3.845226 = idf(docFreq=2569, maxDocs=44218)
                  0.047605187 = queryNorm
                0.21242073 = fieldWeight in 5161, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.845226 = idf(docFreq=2569, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5161)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
  15. Cole, C.: ¬A theory of information need for information retrieval that connects information to knowledge (2011) 0.00
    0.0048605236 = product of:
      0.019442094 = sum of:
        0.019442094 = product of:
          0.03888419 = sum of:
            0.03888419 = weight(_text_:model in 4474) [ClassicSimilarity], result of:
              0.03888419 = score(doc=4474,freq=2.0), product of:
                0.1830527 = queryWeight, product of:
                  3.845226 = idf(docFreq=2569, maxDocs=44218)
                  0.047605187 = queryNorm
                0.21242073 = fieldWeight in 4474, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.845226 = idf(docFreq=2569, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4474)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    This article proposes a theory of information need for information retrieval (IR). Information need traditionally denotes the start state for someone seeking information, which includes information search using an IR system. There are two perspectives on information need. The dominant, computer science perspective is that the user needs to find an answer to a well-defined question which is easy for the user to formulate into a query to the system. Ironically, information science's best known model of information need (Taylor, 1968) deems it to be a "black box"-unknowable and nonspecifiable by the user in a query to the information system. Information science has instead devoted itself to studying eight adjacent or surrogate concepts (information seeking, search and use; problem, problematic situation and task; sense making and evolutionary adaptation/information foraging). Based on an analysis of these eight adjacent/surrogate concepts, we create six testable propositions for a theory of information need. The central assumption of the theory is that while computer science sees IR as an information- or answer-finding system, focused on the user finding an answer, an information science or user-oriented theory of information need envisages a knowledge formulation/acquisition system.
  16. Cole, C.; Behesthi, J.; Large, A.; Lamoureux, I.; Abuhimed, D.; AlGhamdi, M.: Seeking information for a middle school history project : the concept of implicit knowledge in the students' transition from Kuhlthau's Stage 3 to Stage 4 (2013) 0.00
    0.0040311534 = product of:
      0.016124614 = sum of:
        0.016124614 = product of:
          0.032249227 = sum of:
            0.032249227 = weight(_text_:22 in 667) [ClassicSimilarity], result of:
              0.032249227 = score(doc=667,freq=2.0), product of:
                0.16670525 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.047605187 = queryNorm
                0.19345059 = fieldWeight in 667, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=667)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Date
    22. 3.2013 19:41:17
  17. Spink, A.; Cole, C.: New directions in cognitive information retrieval : introduction (2005) 0.00
    0.003888419 = product of:
      0.015553676 = sum of:
        0.015553676 = product of:
          0.031107351 = sum of:
            0.031107351 = weight(_text_:model in 647) [ClassicSimilarity], result of:
              0.031107351 = score(doc=647,freq=2.0), product of:
                0.1830527 = queryWeight, product of:
                  3.845226 = idf(docFreq=2569, maxDocs=44218)
                  0.047605187 = queryNorm
                0.16993658 = fieldWeight in 647, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.845226 = idf(docFreq=2569, maxDocs=44218)
                  0.03125 = fieldNorm(doc=647)
          0.5 = coord(1/2)
      0.25 = coord(1/4)
    
    Abstract
    Humans have used electronic information retrieval (IR) systems for more than 50 years as they evolved from experimental systems to full-scale Web search engines and digital libraries. The fields of library and information science (LIS), cognitive science, human factors and computer science have historically been the leading disciplines in conducting research that seeks to model human interaction with IR systems for all kinds of information related behaviors. As technology problems have been mastered, the theoretical and applied framework for studying human interaction with IR systems has evolved from systems-centered to more user-centered, or cognitive-centered approaches. However, cognitive information retrieval (CIR) research that focuses on user interaction with IR systems is still largely under-funded and is often not included at computing and systems design oriented conferences. But CIR-focused research continues, and there are signs that some IR systems designers in academia and the Web search business are realizing that user behavior research can provide valuable insights into systems design and evaluation. The goal of our book is to provide an overview of new CIR research directions. This book does not provide a history of the research field of CIR. Instead, the book confronts new ways of looking at the human information condition with regard to our increasing need to interact with IR systems. The need has grown due to a number of factors, including the increased importance of information to more people in this information age. Also, IR was once considered document-oriented, but has now evolved to include multimedia, text, and other information objects. As a result, IR systems and their complexity have proliferated as users and user purposes for using them have also proliferated. Human interaction with IR systems can often be frustrating as people often lack an understanding of IR system functionality.