Search (7 results, page 1 of 1)

  • × author_ss:"Daniel, H.-D."
  • × language_ss:"e"
  1. Mutz, R.; Bornmann, L.; Daniel, H.-D.: Testing for the fairness and predictive validity of research funding decisions : a multilevel multiple imputation for missing data approach using ex-ante and ex-post peer evaluation data from the Austrian science fund (2015) 0.01
    0.010558897 = product of:
      0.042235587 = sum of:
        0.042235587 = weight(_text_:data in 2270) [ClassicSimilarity], result of:
          0.042235587 = score(doc=2270,freq=8.0), product of:
            0.120893985 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.03823278 = queryNorm
            0.34936053 = fieldWeight in 2270, product of:
              2.828427 = tf(freq=8.0), with freq of:
                8.0 = termFreq=8.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2270)
      0.25 = coord(1/4)
    
    Abstract
    It is essential for research funding organizations to ensure both the validity and fairness of the grant approval procedure. The ex-ante peer evaluation (EXANTE) of N?=?8,496 grant applications submitted to the Austrian Science Fund from 1999 to 2009 was statistically analyzed. For 1,689 funded research projects an ex-post peer evaluation (EXPOST) was also available; for the rest of the grant applications a multilevel missing data imputation approach was used to consider verification bias for the first time in peer-review research. Without imputation, the predictive validity of EXANTE was low (r?=?.26) but underestimated due to verification bias, and with imputation it was r?=?.49. That is, the decision-making procedure is capable of selecting the best research proposals for funding. In the EXANTE there were several potential biases (e.g., gender). With respect to the EXPOST there was only one real bias (discipline-specific and year-specific differential prediction). The novelty of this contribution is, first, the combining of theoretical concepts of validity and fairness with a missing data imputation approach to correct for verification bias and, second, multilevel modeling to test peer review-based funding decisions for both validity and fairness in terms of potential and real biases.
  2. Neuhaus, C.; Daniel, H.-D.: Data sources for performing citation analysis : an overview (2008) 0.01
    0.010452774 = product of:
      0.041811097 = sum of:
        0.041811097 = weight(_text_:data in 1735) [ClassicSimilarity], result of:
          0.041811097 = score(doc=1735,freq=4.0), product of:
            0.120893985 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.03823278 = queryNorm
            0.34584928 = fieldWeight in 1735, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1735)
      0.25 = coord(1/4)
    
    Abstract
    Purpose - The purpose of this paper is to provide an overview of new citation-enhanced databases and to identify issues to be considered when they are used as a data source for performing citation analysis. Design/methodology/approach - The paper reports the limitations of Thomson Scientific's citation indexes and reviews the characteristics of the citation-enhanced databases Chemical Abstracts, Google Scholar and Scopus. Findings - The study suggests that citation-enhanced databases need to be examined carefully, with regard to both their potentialities and their limitations for citation analysis. Originality/value - The paper presents a valuable overview of new citation-enhanced databases in the context of research evaluation.
  3. Bornmann, L.; Mutz, R.; Daniel, H.-D.: Are there better indices for evaluation purposes than the h index? : a comparison of nine different variants of the h index using data from biomedicine (2008) 0.01
    0.0074662673 = product of:
      0.02986507 = sum of:
        0.02986507 = weight(_text_:data in 1608) [ClassicSimilarity], result of:
          0.02986507 = score(doc=1608,freq=4.0), product of:
            0.120893985 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.03823278 = queryNorm
            0.24703519 = fieldWeight in 1608, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1608)
      0.25 = coord(1/4)
    
    Abstract
    In this study, we examined empirical results on the h index and its most important variants in order to determine whether the variants developed are associated with an incremental contribution for evaluation purposes. The results of a factor analysis using bibliographic data on postdoctoral researchers in biomedicine indicate that regarding the h index and its variants, we are dealing with two types of indices that load on one factor each. One type describes the most productive core of a scientist's output and gives the number of papers in that core. The other type of indices describes the impact of the papers in the core. Because an index for evaluative purposes is a useful yardstick for comparison among scientists if the index corresponds strongly with peer assessments, we calculated a logistic regression analysis with the two factors resulting from the factor analysis as independent variables and peer assessment of the postdoctoral researchers as the dependent variable. The results of the regression analysis show that peer assessments can be predicted better using the factor impact of the productive core than using the factor quantity of the productive core.
  4. Bornmann, L.; Mutz, R.; Daniel, H.-D.: Multilevel-statistical reformulation of citation-based university rankings : the Leiden ranking 2011/2012 (2013) 0.01
    0.0074662673 = product of:
      0.02986507 = sum of:
        0.02986507 = weight(_text_:data in 1007) [ClassicSimilarity], result of:
          0.02986507 = score(doc=1007,freq=4.0), product of:
            0.120893985 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.03823278 = queryNorm
            0.24703519 = fieldWeight in 1007, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=1007)
      0.25 = coord(1/4)
    
    Abstract
    Since the 1990s, with the heightened competition and the strong growth of the international higher education market, an increasing number of rankings have been created that measure the scientific performance of an institution based on data. The Leiden Ranking 2011/2012 (LR) was published early in 2012. Starting from Goldstein and Spiegelhalter's (1996) recommendations for conducting quantitative comparisons among institutions, in this study we undertook a reformulation of the LR by means of multilevel regression models. First, with our models we replicated the ranking results; second, the reanalysis of the LR data showed that only 5% of the PPtop10% total variation is attributable to differences between universities. Beyond that, about 80% of the variation between universities can be explained by differences among countries. If covariates are included in the model the differences among most of the universities become meaningless. Our findings have implications for conducting university rankings in general and for the LR in particular. For example, with Goldstein-adjusted confidence intervals, it is possible to interpret the significance of differences among universities meaningfully: Rank differences among universities should be interpreted as meaningful only if their confidence intervals do not overlap.
  5. Bornmann, L.; Daniel, H.-D.: Multiple publication on a single research study: does it pay? : The influence of number of research articles on total citation counts in biomedicine (2007) 0.01
    0.0052794483 = product of:
      0.021117793 = sum of:
        0.021117793 = weight(_text_:data in 444) [ClassicSimilarity], result of:
          0.021117793 = score(doc=444,freq=2.0), product of:
            0.120893985 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.03823278 = queryNorm
            0.17468026 = fieldWeight in 444, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=444)
      0.25 = coord(1/4)
    
    Abstract
    Scientists may seek to report a single definable body of research in more than one publication, that is, in repeated reports of the same work or in fractional reports, in order to disseminate their research as widely as possible in the scientific community. Up to now, however, it has not been examined whether this strategy of "multiple publication" in fact leads to greater reception of the research. In the present study, we investigate the influence of number of articles reporting the results of a single study on reception in the scientific community (total citation counts of an article on a single study). Our data set consists of 96 applicants for a research fellowship from the Boehringer Ingelheim Fonds (BIF), an international foundation for the promotion of basic research in biomedicine. The applicants reported to us all articles that they had published within the framework of their doctoral research projects. On this single project, the applicants had published from 1 to 16 articles (M = 4; Mdn = 3). The results of a regression model with an interaction term show that the practice of multiple publication of research study results does in fact lead to greater reception of the research (higher total citation counts) in the scientific community. However, reception is dependent upon length of article: the longer the article, the more total citation counts increase with the number of articles. Thus, it pays for scientists to practice multiple publication of study results in the form of sizable reports.
  6. Bornmann, L.; Daniel, H.-D.: Universality of citation distributions : a validation of Radicchi et al.'s relative indicator cf = c/c0 at the micro level using data from chemistry (2009) 0.01
    0.0052794483 = product of:
      0.021117793 = sum of:
        0.021117793 = weight(_text_:data in 2954) [ClassicSimilarity], result of:
          0.021117793 = score(doc=2954,freq=2.0), product of:
            0.120893985 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.03823278 = queryNorm
            0.17468026 = fieldWeight in 2954, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=2954)
      0.25 = coord(1/4)
    
  7. Mutz, R.; Wolbring, T.; Daniel, H.-D.: ¬The effect of the "very important paper" (VIP) designation in Angewandte Chemie International Edition on citation impact : a propensity score matching analysis (2017) 0.01
    0.0052794483 = product of:
      0.021117793 = sum of:
        0.021117793 = weight(_text_:data in 3792) [ClassicSimilarity], result of:
          0.021117793 = score(doc=3792,freq=2.0), product of:
            0.120893985 = queryWeight, product of:
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.03823278 = queryNorm
            0.17468026 = fieldWeight in 3792, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              3.1620505 = idf(docFreq=5088, maxDocs=44218)
              0.0390625 = fieldNorm(doc=3792)
      0.25 = coord(1/4)
    
    Abstract
    Scientific journals publish an increasing number of articles every year. To steer readers' attention to the most important papers, journals use several techniques (e.g., lead paper). Angewandte Chemie International Edition (AC), a leading international journal in chemistry, signals high-quality papers through designating them as a "very important paper" (VIP). This study aims to investigate the citation impact of Communications in AC receiving the special feature VIP, both cumulated and over time. Using propensity score matching, treatment group (VIP) and control group (non-VIP) were balanced for 14 covariates to estimate the unconfounded "average treatment effect on the treated" for the VIP designation. Out of N = 3,011 Communications published in 2007 and 2008, N = 207 received the special feature VIP. For each Communication, data were collected from AC (e.g., referees' ratings) and from the databases Chemical Abstracts (e.g., sections) and the Web of Science (e.g., citations). The estimated unconfounded average treatment effect on the treated (that is, Communications designated as a VIP) was statistically significant and amounted to 19.83 citations. In addition, the special feature VIP fostered the cumulated annual citation growth. For instance, the time until a Communication reached its maximum annual number of citations, was reduced.