Search (73 results, page 1 of 4)

  • × theme_ss:"Multilinguale Probleme"
  1. Chen, H.-H.; Lin, W.-C.; Yang, C.; Lin, W.-H.: Translating-transliterating named entities for multilingual information access (2006) 0.10
    0.09939035 = product of:
      0.14908552 = sum of:
        0.12552495 = weight(_text_:systematic in 1080) [ClassicSimilarity], result of:
          0.12552495 = score(doc=1080,freq=2.0), product of:
            0.28397155 = queryWeight, product of:
              5.715473 = idf(docFreq=395, maxDocs=44218)
              0.049684696 = queryNorm
            0.44203353 = fieldWeight in 1080, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.715473 = idf(docFreq=395, maxDocs=44218)
              0.0546875 = fieldNorm(doc=1080)
        0.023560567 = product of:
          0.047121134 = sum of:
            0.047121134 = weight(_text_:22 in 1080) [ClassicSimilarity], result of:
              0.047121134 = score(doc=1080,freq=2.0), product of:
                0.17398734 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049684696 = queryNorm
                0.2708308 = fieldWeight in 1080, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=1080)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Named entities are major constituents of a document but are usually unknown words. This work proposes a systematic way of dealing with formulation, transformation, translation, and transliteration of multilingual-named entities. The rules and similarity matrices for translation and transliteration are learned automatically from parallel-named-entity corpora. The results are applied in cross-language access to collections of images with captions. Experimental results demonstrate that the similarity-based transliteration of named entities is effective, and runs in which transliteration is considered outperform the runs in which it is neglected.
    Date
    4. 6.2006 19:52:22
  2. Francu, V.: Building a multilingual thesaurus based on UDC (1996) 0.08
    0.07873234 = product of:
      0.11809851 = sum of:
        0.08966068 = weight(_text_:systematic in 7410) [ClassicSimilarity], result of:
          0.08966068 = score(doc=7410,freq=2.0), product of:
            0.28397155 = queryWeight, product of:
              5.715473 = idf(docFreq=395, maxDocs=44218)
              0.049684696 = queryNorm
            0.31573826 = fieldWeight in 7410, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.715473 = idf(docFreq=395, maxDocs=44218)
              0.0390625 = fieldNorm(doc=7410)
        0.028437834 = product of:
          0.05687567 = sum of:
            0.05687567 = weight(_text_:indexing in 7410) [ClassicSimilarity], result of:
              0.05687567 = score(doc=7410,freq=4.0), product of:
                0.19018644 = queryWeight, product of:
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.049684696 = queryNorm
                0.29905218 = fieldWeight in 7410, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=7410)
          0.5 = coord(1/2)
      0.6666667 = coord(2/3)
    
    Abstract
    Once the library has been through a process of transition from traditional library procedures to automated ones, natural language searching became a necessity for both indexers and searchers. Therefore, aside from the precoordinated classified catalogue we started to build a dictionary of terms in order to make postcoordinate search possible in keeping with the UDC notations assigned to each bibliographic record. After a while we came to the conclusion that the dictionary needed a control of its terms so that synonymous concepts and semantic ambuguities be avoided. The project presented in this paper shows how reality imposed the improvement of the quality of indexing and hence of the searching possibilities. Is also shows the reasons why we consider a multilingual thesaurus based on UDC an ideal indexing and searching device. The experiment applied on class 8 of UDC illustrates the way the UDC tables can be quite successfully used in building a thesaurus due to their qulities and how their limitations can be overcome by a thesaurus. An appendix to the paper contains a sample of the multilingual thesaurus given in both alphabetical and systematic layouts
  3. Kutschekmanesch, S.; Lutes, B.; Moelle, K.; Thiel, U.; Tzeras, K.: Automated multilingual indexing : a synthesis of rule-based and thesaurus-based methods (1998) 0.05
    0.04925008 = product of:
      0.14775024 = sum of:
        0.14775024 = sum of:
          0.08043434 = weight(_text_:indexing in 4157) [ClassicSimilarity], result of:
            0.08043434 = score(doc=4157,freq=2.0), product of:
              0.19018644 = queryWeight, product of:
                3.8278677 = idf(docFreq=2614, maxDocs=44218)
                0.049684696 = queryNorm
              0.42292362 = fieldWeight in 4157, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.8278677 = idf(docFreq=2614, maxDocs=44218)
                0.078125 = fieldNorm(doc=4157)
          0.06731591 = weight(_text_:22 in 4157) [ClassicSimilarity], result of:
            0.06731591 = score(doc=4157,freq=2.0), product of:
              0.17398734 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.049684696 = queryNorm
              0.38690117 = fieldWeight in 4157, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.078125 = fieldNorm(doc=4157)
      0.33333334 = coord(1/3)
    
    Source
    Information und Märkte: 50. Deutscher Dokumentartag 1998, Kongreß der Deutschen Gesellschaft für Dokumentation e.V. (DGD), Rheinische Friedrich-Wilhelms-Universität Bonn, 22.-24. September 1998. Hrsg. von Marlies Ockenfeld u. Gerhard J. Mantwill
  4. MacEwan, A.: Crossing language barriers in Europe : Linking LCSH to other subject heading languages (2000) 0.04
    0.03621345 = product of:
      0.10864034 = sum of:
        0.10864034 = sum of:
          0.068250805 = weight(_text_:indexing in 5618) [ClassicSimilarity], result of:
            0.068250805 = score(doc=5618,freq=4.0), product of:
              0.19018644 = queryWeight, product of:
                3.8278677 = idf(docFreq=2614, maxDocs=44218)
                0.049684696 = queryNorm
              0.3588626 = fieldWeight in 5618, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                3.8278677 = idf(docFreq=2614, maxDocs=44218)
                0.046875 = fieldNorm(doc=5618)
          0.04038954 = weight(_text_:22 in 5618) [ClassicSimilarity], result of:
            0.04038954 = score(doc=5618,freq=2.0), product of:
              0.17398734 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.049684696 = queryNorm
              0.23214069 = fieldWeight in 5618, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.046875 = fieldNorm(doc=5618)
      0.33333334 = coord(1/3)
    
    Abstract
    A study group representing four European national libraries (the Swiss National Library, Die Deutsche Bibliothek, the Bibliothèque nationale de France and The British Library) recently conducted a study on the possibility of establishing multilingual thesaural links between the headings in the LCSH authority file and the authority files of the German indexing system SWD/RSWK and the French indexing system RAMEAU. The study demonstrated a high level of correspondence in main headings, but also revealed a number of issues requiring further investigation. The study group's findings led to recommendations on the scope for the development of a prototype system for linking the three Subject Heading Languages (SHLs) in the databases of the four institutions
    Date
    27. 5.2001 16:22:10
  5. Levow, G.-A.; Oard, D.W.; Resnik, P.: Dictionary-based techniques for cross-language information retrieval (2005) 0.04
    0.03586427 = product of:
      0.10759281 = sum of:
        0.10759281 = weight(_text_:systematic in 1025) [ClassicSimilarity], result of:
          0.10759281 = score(doc=1025,freq=2.0), product of:
            0.28397155 = queryWeight, product of:
              5.715473 = idf(docFreq=395, maxDocs=44218)
              0.049684696 = queryNorm
            0.3788859 = fieldWeight in 1025, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              5.715473 = idf(docFreq=395, maxDocs=44218)
              0.046875 = fieldNorm(doc=1025)
      0.33333334 = coord(1/3)
    
    Abstract
    Cross-language information retrieval (CLIR) systems allow users to find documents written in different languages from that of their query. Simple knowledge structures such as bilingual term lists have proven to be a remarkably useful basis for bridging that language gap. A broad array of dictionary-based techniques have demonstrated utility, but comparison across techniques has been difficult because evaluation results often span only a limited range of conditions. This article identifies the key issues in dictionary-based CLIR, develops unified frameworks for term selection and term translation that help to explain the relationships among existing techniques, and illustrates the effect of those techniques using four contrasting languages for systematic experiments with a uniform query translation architecture. Key results include identification of a previously unseen dependence of pre- and post-translation expansion on orthographic cognates and development of a query-specific measure for translation fanout that helps to explain the utility of structured query methods.
  6. Ménard, E.; Khashman, N.; Kochkina, S.; Torres-Moreno, J.-M.; Velazquez-Morales, P.; Zhou, F.; Jourlin, P.; Rawat, P.; Peinl, P.; Linhares Pontes, E.; Brunetti., I.: ¬A second life for TIIARA : from bilingual to multilingual! (2016) 0.03
    0.030177874 = product of:
      0.09053362 = sum of:
        0.09053362 = sum of:
          0.05687567 = weight(_text_:indexing in 2834) [ClassicSimilarity], result of:
            0.05687567 = score(doc=2834,freq=4.0), product of:
              0.19018644 = queryWeight, product of:
                3.8278677 = idf(docFreq=2614, maxDocs=44218)
                0.049684696 = queryNorm
              0.29905218 = fieldWeight in 2834, product of:
                2.0 = tf(freq=4.0), with freq of:
                  4.0 = termFreq=4.0
                3.8278677 = idf(docFreq=2614, maxDocs=44218)
                0.0390625 = fieldNorm(doc=2834)
          0.033657953 = weight(_text_:22 in 2834) [ClassicSimilarity], result of:
            0.033657953 = score(doc=2834,freq=2.0), product of:
              0.17398734 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.049684696 = queryNorm
              0.19345059 = fieldWeight in 2834, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=2834)
      0.33333334 = coord(1/3)
    
    Abstract
    Multilingual controlled vocabularies are rare and often very limited in the choice of languages offered. TIIARA (Taxonomy for Image Indexing and RetrievAl) is a bilingual taxonomy developed for image indexing and retrieval. This controlled vocabulary offers indexers and image searchers innovative and coherent access points for ordinary images. The preliminary steps of the elaboration of the bilingual structure are presented. For its initial development, TIIARA included only two languages, French and English. As a logical follow-up, TIIARA was translated into eight languages-Arabic, Spanish, Brazilian Portuguese, Mandarin Chinese, Italian, German, Hindi and Russian-in order to increase its international scope. This paper briefly describes the different stages of the development of the bilingual structure. The processes used in the translations are subsequently presented, as well as the main difficulties encountered by the translators. Adding more languages in TIIARA constitutes an added value for a controlled vocabulary meant to be used by image searchers, who are often limited by their lack of knowledge of multiple languages.
    Source
    Knowledge organization. 43(2016) no.1, S.22-34
  7. Subirats, I.; Prasad, A.R.D.; Keizer, J.; Bagdanov, A.: Implementation of rich metadata formats and demantic tools using DSpace (2008) 0.02
    0.019700034 = product of:
      0.0591001 = sum of:
        0.0591001 = sum of:
          0.032173738 = weight(_text_:indexing in 2656) [ClassicSimilarity], result of:
            0.032173738 = score(doc=2656,freq=2.0), product of:
              0.19018644 = queryWeight, product of:
                3.8278677 = idf(docFreq=2614, maxDocs=44218)
                0.049684696 = queryNorm
              0.16916946 = fieldWeight in 2656, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.8278677 = idf(docFreq=2614, maxDocs=44218)
                0.03125 = fieldNorm(doc=2656)
          0.026926363 = weight(_text_:22 in 2656) [ClassicSimilarity], result of:
            0.026926363 = score(doc=2656,freq=2.0), product of:
              0.17398734 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.049684696 = queryNorm
              0.15476047 = fieldWeight in 2656, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.03125 = fieldNorm(doc=2656)
      0.33333334 = coord(1/3)
    
    Abstract
    This poster explores the customization of DSpace to allow the use of the AGRIS Application Profile metadata standard and the AGROVOC thesaurus. The objective is the adaptation of DSpace, through the least invasive code changes either in the form of plug-ins or add-ons, to the specific needs of the Agricultural Sciences and Technology community. Metadata standards such as AGRIS AP, and Knowledge Organization Systems such as the AGROVOC thesaurus, provide mechanisms for sharing information in a standardized manner by recommending the use of common semantics and interoperable syntax (Subirats et al., 2007). AGRIS AP was created to enhance the description, exchange and subsequent retrieval of agricultural Document-like Information Objects (DLIOs). It is a metadata schema which draws from Metadata standards such as Dublin Core (DC), the Australian Government Locator Service Metadata (AGLS) and the Agricultural Metadata Element Set (AgMES) namespaces. It allows sharing of information across dispersed bibliographic systems (FAO, 2005). AGROVOC68 is a multilingual structured thesaurus covering agricultural and related domains. Its main role is to standardize the indexing process in order to make searching simpler and more efficient. AGROVOC is developed by FAO (Lauser et al., 2006). The customization of the DSpace is taking place in several phases. First, the AGRIS AP metadata schema was mapped onto the metadata DSpace model, with several enhancements implemented to support AGRIS AP elements. Next, AGROVOC will be integrated as a controlled vocabulary accessed through a local SKOS or OWL file. Eventually the system will be configurable to access AGROVOC through local files or remotely via webservices. Finally, spell checking and tooltips will be incorporated in the user interface to support metadata editing. Adapting DSpace to support AGRIS AP and annotation using the semantically-rich AGROVOC thesaurus transform DSpace into a powerful, domain-specific system for annotation and exchange of bibliographic metadata in the agricultural domain.
    Source
    Metadata for semantic and social applications : proceedings of the International Conference on Dublin Core and Metadata Applications, Berlin, 22 - 26 September 2008, DC 2008: Berlin, Germany / ed. by Jane Greenberg and Wolfgang Klas
  8. Ménard, E.: Indexing and retrieving images in a multilingual world (2008) 0.02
    0.018768014 = product of:
      0.05630404 = sum of:
        0.05630404 = product of:
          0.11260808 = sum of:
            0.11260808 = weight(_text_:indexing in 2239) [ClassicSimilarity], result of:
              0.11260808 = score(doc=2239,freq=8.0), product of:
                0.19018644 = queryWeight, product of:
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.049684696 = queryNorm
                0.5920931 = fieldWeight in 2239, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=2239)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Content
    This paper presents the problem statement, the methodology and the preliminary results of a research project aiming to compare two different approaches for indexing images, namely: traditional image indexing with the use of controlled vocabularies, and free image indexing using uncontrolled vocabulary. The experiment intends to measure their respective performance for image retrieval in a multilingual context, in terms of effectiveness, efficiency, and satisfaction of the user.
  9. Hlava, M.M.K.: Machine-Aided Indexing (MAI) in a multilingual environemt (1992) 0.02
    0.018575516 = product of:
      0.055726547 = sum of:
        0.055726547 = product of:
          0.11145309 = sum of:
            0.11145309 = weight(_text_:indexing in 2378) [ClassicSimilarity], result of:
              0.11145309 = score(doc=2378,freq=6.0), product of:
                0.19018644 = queryWeight, product of:
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.049684696 = queryNorm
                0.5860202 = fieldWeight in 2378, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.0625 = fieldNorm(doc=2378)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    The Machine-Aided Indexing (MAI) program, developed by Access Innovations, Inc., is a semantic based, Boolean statement, rule interpreting application designed to operate in a multilingual environment. Use of MAI across several languages with controlled vocabularies for each language provides a consistency in indexing not available through any other mechanism
  10. Ménard, E.: Ordinary image retrieval in a multilingual context : a comparison of two indexing vocabularies (2010) 0.02
    0.018575516 = product of:
      0.055726547 = sum of:
        0.055726547 = product of:
          0.11145309 = sum of:
            0.11145309 = weight(_text_:indexing in 3946) [ClassicSimilarity], result of:
              0.11145309 = score(doc=3946,freq=24.0), product of:
                0.19018644 = queryWeight, product of:
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.049684696 = queryNorm
                0.5860202 = fieldWeight in 3946, product of:
                  4.8989797 = tf(freq=24.0), with freq of:
                    24.0 = termFreq=24.0
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.03125 = fieldNorm(doc=3946)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Purpose - This paper seeks to examine image retrieval within two different contexts: a monolingual context where the language of the query is the same as the indexing language and a multilingual context where the language of the query is different from the indexing language. The study also aims to compare two different approaches for the indexing of ordinary images representing common objects: traditional image indexing with the use of a controlled vocabulary and free image indexing using uncontrolled vocabulary. Design/methodology/approach - This research uses three data collection methods. An analysis of the indexing terms was employed in order to examine the multiplicity of term types assigned to images. A simulation of the retrieval process involving a set of 30 images was performed with 60 participants. The quantification of the retrieval performance of each indexing approach was based on the usability measures, that is, effectiveness, efficiency and satisfaction of the user. Finally, a questionnaire was used to gather information on searcher satisfaction during and after the retrieval process. Findings - The results of this research are twofold. The analysis of indexing terms associated with all the 3,950 images provides a comprehensive description of the characteristics of the four non-combined indexing forms used for the study. Also, the retrieval simulation results offers information about the relative performance of the six indexing forms (combined and non-combined) in terms of their effectiveness, efficiency (temporal and human) and the image searcher's satisfaction. Originality/value - The findings of the study suggest that, in the near future, the information systems could benefit from allowing an increased coexistence of controlled vocabularies and uncontrolled vocabularies, resulting from collaborative image tagging, for example, and giving the users the possibility to dynamically participate in the image-indexing process, in a more user-centred way.
  11. Weihs, J.: Three tales of multilingual cataloguing (1998) 0.02
    0.01795091 = product of:
      0.053852726 = sum of:
        0.053852726 = product of:
          0.10770545 = sum of:
            0.10770545 = weight(_text_:22 in 6063) [ClassicSimilarity], result of:
              0.10770545 = score(doc=6063,freq=2.0), product of:
                0.17398734 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049684696 = queryNorm
                0.61904186 = fieldWeight in 6063, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.125 = fieldNorm(doc=6063)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    2. 8.2001 8:55:22
  12. Menard, E.: Study on the influence of vocabularies used for image indexing in a multilingual retrieval environment : reflections on scribbles (2007) 0.02
    0.017734105 = product of:
      0.053202312 = sum of:
        0.053202312 = product of:
          0.106404625 = sum of:
            0.106404625 = weight(_text_:indexing in 1089) [ClassicSimilarity], result of:
              0.106404625 = score(doc=1089,freq=14.0), product of:
                0.19018644 = queryWeight, product of:
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.049684696 = queryNorm
                0.55947536 = fieldWeight in 1089, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1089)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    For many years, the Web became an important media for the diffusion of multilingual resources. Linguistic differenees still form a major obstacle to scientific, cultural, and educational exchange. Besides this linguistic diversity, a multitude of databases and collections now contain documents in various formats, which may also adversely affect the retrieval process. This paper describes a research project aiming to verify the existing relations between two indexing approaches: traditional image indexing recommending the use of controlled vocabularies or free image indexing using uncontrolled vocabulary, and their respective performance for image retrieval, in a multilingual context. This research also compares image retrieval within two contexts: a monolingual context where the language of the query is the same as the indexing language; and a multilingual context where the language of the query is different from the indexing language. This research will indicate whether one of these indexing approaches surpasses the other, in terms of effectiveness, efficiency, and satisfaction of the image searchers. This paper presents the context and the problem statement of the research project. The experiment carried out is also described, as well as the data collection methods
  13. Turner, J.M.: Cross-language transfer of indexing concepts for storage and retrieval of moving images : preliminary results (1996) 0.02
    0.016253578 = product of:
      0.04876073 = sum of:
        0.04876073 = product of:
          0.09752146 = sum of:
            0.09752146 = weight(_text_:indexing in 7400) [ClassicSimilarity], result of:
              0.09752146 = score(doc=7400,freq=6.0), product of:
                0.19018644 = queryWeight, product of:
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.049684696 = queryNorm
                0.5127677 = fieldWeight in 7400, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=7400)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    In previous research, participants who screen a videotape of stock footage from the National Film Board of Canada's stockshot collection were asked to assign terms in English that could be used for retrieval of each shot. The most popular terms were analyzed as potential indexing terms. In the current research a French language version of the research tapes was prepared, using the same images, and the data collected were in French. Compares the most popular terms identified in each of the 2 studies for each of the shots in order to determine the rate of correspondence between potential indexing terms in each language
  14. Hlava, M.M.K.: Machine aided indexing (MAI) in a multilingual environment (1993) 0.02
    0.016253578 = product of:
      0.04876073 = sum of:
        0.04876073 = product of:
          0.09752146 = sum of:
            0.09752146 = weight(_text_:indexing in 7405) [ClassicSimilarity], result of:
              0.09752146 = score(doc=7405,freq=6.0), product of:
                0.19018644 = queryWeight, product of:
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.049684696 = queryNorm
                0.5127677 = fieldWeight in 7405, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=7405)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    The machine aided indexing (MAI) software devloped by Access Innovations, Inc., is a semantic based, Boolean statement, rule interpreting application with 3 modules: the MA engine which accepts input files, matches terms in the knowledge base, interprets rules, and outputs a text file with suggested indexing terms; a rule building application allowing each Boolean style rule in the knowledge base to be created or modifies; and a statistical computation module which analyzes performance of the MA software against text manually indexed by professional human indexers. The MA software can be applied across multiple languages and can be used where the text to be searched is in one language and the indexes to be output are in another
  15. Haruyama, A.; Yamashita, Y.; Kubota, H.: Development of a multilingual indexing vocabulary based on a faceted thesauri (1996) 0.02
    0.016086869 = product of:
      0.048260607 = sum of:
        0.048260607 = product of:
          0.09652121 = sum of:
            0.09652121 = weight(_text_:indexing in 3492) [ClassicSimilarity], result of:
              0.09652121 = score(doc=3492,freq=2.0), product of:
                0.19018644 = queryWeight, product of:
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.049684696 = queryNorm
                0.5075084 = fieldWeight in 3492, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.09375 = fieldNorm(doc=3492)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
  16. Ferber, R.: Automated indexing with thesaurus descriptors : a co-occurence based approach to multilingual retrieval (1997) 0.01
    0.014988055 = product of:
      0.044964164 = sum of:
        0.044964164 = product of:
          0.08992833 = sum of:
            0.08992833 = weight(_text_:indexing in 4144) [ClassicSimilarity], result of:
              0.08992833 = score(doc=4144,freq=10.0), product of:
                0.19018644 = queryWeight, product of:
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.049684696 = queryNorm
                0.47284302 = fieldWeight in 4144, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4144)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Indexing documents with descriptors from a multilingual thesaurus is an approach to multilingual information retrieval. However, manual indexing is expensive. Automazed indexing methods in general use terms found in the document. Thesaurus descriptors are complex terms that are often not used in documents or have specific meanings within the thesaurus; therefore most weighting schemes of automated indexing methods are not suited to select thesaurus descriptors. In this paper a linear associative system is described that uses similarity values extracted from a large corpus of manually indexed documents to construct a rank ordering of the descriptors for a given document title. The system is adaptive and has to be tuned with a training sample of records for the specific task. The system was tested on a corpus of some 80.000 bibliographic records. The results show a high variability with changing parameter values. This indicated that it is very important to empirically adapt the model to the specific situation it is used in. The overall median of the manually assigned descriptors in the automatically generated ranked list of all 3.631 descriptors is 14 for the set used to adapt the system and 11 for a test set not used in the optimization process. This result shows that the optimization is not a fitting to a specific training set but a real adaptation of the model to the setting
  17. Balikova, M.: Multilingual Subject Access to Catalogues of National Libraries (MSAC) : Czech Republic's collaboration with Slovakia, Slovenia, Croatia, Macedonia, Lithuania and Latvia (2005) 0.01
    0.014187284 = product of:
      0.04256185 = sum of:
        0.04256185 = product of:
          0.0851237 = sum of:
            0.0851237 = weight(_text_:indexing in 4349) [ClassicSimilarity], result of:
              0.0851237 = score(doc=4349,freq=14.0), product of:
                0.19018644 = queryWeight, product of:
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.049684696 = queryNorm
                0.4475803 = fieldWeight in 4349, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4349)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Czech authority file of topical terms is intended to form a base for multilingual controlled vocabulary. The aim of the proposal is to provide users of online library catalogues and internet services of cooperating institutions with an indexing and retrieval tool which enables multilingual and cross-domain searching ("one-stop" seamless searching). The goal of the project is to establish a multilingual subject approach to catalogues of participating libraries (Czechia, Croatia, Latvia, Lithuania, Macedonia, Slovakia, and Slovenia). In practice this means that a user in any of these countries would enter a query in his local language and receive hits from all the catalogues. The initiative is complying with the main goals currently defined by IFLA for the activity of Indexing and Classification Section, it means: Changing Roles of Subject Access Tools (Berlin), Implementation and Adaptation of Global Tools for Subject Access to Local Needs (Buenos Aires), and Cataloguing and Subject Tools for Global Access: International Partnerships (Oslo).
    Content
    The aim of this initiative is to provide the users of online library catalogues and information gateways of cooperating libraries with a prototype for multilingual subject searching in online environment. Library collections of these libraries are large and without any doubt very valuable for researchers throughout Europe. What is needed is a standardized, authorized indexing and retrieval tool which would bring together all their catalogues and databases and enable multilingual subject searching. At the beginning of the project, a number of factors affecting subject indexing in current environment and cross-searching for subjects have been identified. These factors include - standardization of subject retrieval process and indexing and classification tools - subject retrieval methods - possibility of interoperability among different indexing and classification schemes - multilingualism issue - possibility to increase precision and recall trough Z39.50 protocol and its profiles and to apply authority control in subject retrieval process - need for cooperation
    Series
    139 SI - Classification and Indexing with Cataloguing ; 044-E
  18. Dini, L.: CACAO : multilingual access to bibliographic records (2007) 0.01
    0.0134631805 = product of:
      0.04038954 = sum of:
        0.04038954 = product of:
          0.08077908 = sum of:
            0.08077908 = weight(_text_:22 in 126) [ClassicSimilarity], result of:
              0.08077908 = score(doc=126,freq=2.0), product of:
                0.17398734 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049684696 = queryNorm
                0.46428138 = fieldWeight in 126, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=126)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Content
    Vortrag anlässlich des Workshops: "Extending the multilingual capacity of The European Library in the EDL project Stockholm, Swedish National Library, 22-23 November 2007".
  19. ¬The subject enhancement of OPAC records and the need for multilingual access (1993) 0.01
    0.0134057235 = product of:
      0.04021717 = sum of:
        0.04021717 = product of:
          0.08043434 = sum of:
            0.08043434 = weight(_text_:indexing in 4259) [ClassicSimilarity], result of:
              0.08043434 = score(doc=4259,freq=2.0), product of:
                0.19018644 = queryWeight, product of:
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.049684696 = queryNorm
                0.42292362 = fieldWeight in 4259, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.078125 = fieldNorm(doc=4259)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Considers the potential of providing enhanced content indexing of document records either by natural language or PRECIS controlled vocabulary in order to provide more effective subject access to OPACs. Considers multilingual access OPACs. Controlled vocabulary is the best option for the latter in the short terms
  20. Austin, D.; Sørensen, J.: PRECIS in a multilingual context : Pt.2: A linguistic and logical explanation of the syntax. (1976) 0.01
    0.0134057235 = product of:
      0.04021717 = sum of:
        0.04021717 = product of:
          0.08043434 = sum of:
            0.08043434 = weight(_text_:indexing in 981) [ClassicSimilarity], result of:
              0.08043434 = score(doc=981,freq=8.0), product of:
                0.19018644 = queryWeight, product of:
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.049684696 = queryNorm
                0.42292362 = fieldWeight in 981, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=981)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    In this second paper in the series on PRECIS we set out to establish a theoretical model of the indexing operation to account for the growing empirical evidence that PRECIS can be applied successfully to the terms and phrases of more than one natural language (NL). For this purpose, the system is examined from two different but related viewpoints, the first linguistic and the second logical. In linguistic terms, the schema of role operators is related to certain features of NL which are regarded by linguists as language-independent, particular attention being paid to Chomsky's 1965 theory, the notion of deep cases, and the idea that roles, as used in an indexing language (IL) are related to deep cases in NL. It is realised that we should not rely too heavily on analogies between NL and IL, on the grounds that these two kinds of language have different structures and to some extent different functions, Consequently, the structure of a PRECIS string is also considered in terms of an alternative logic, and it is suggested that the order of terms in strings and entries, explained in the earlier paper through reference to the dual properties of context-dependency and one-toone relationships, is also amenable to a different but reinforcing explanation in terms of time-dependency. These two types of explanation, the linguistic and the logical, form the basis for a proposed theoretical model of the 'stages of indexing'. Finally, the authors consider the implications of this model for multilingual indexing.

Years

Languages

Types

  • a 68
  • el 3
  • m 1
  • r 1
  • s 1
  • x 1
  • More… Less…