Search (18 results, page 1 of 1)

  • × theme_ss:"Semantic Web"
  • × type_ss:"el"
  1. Dextre Clarke, S.G.: Challenges and opportunities for KOS standards (2007) 0.02
    0.015707046 = product of:
      0.047121134 = sum of:
        0.047121134 = product of:
          0.09424227 = sum of:
            0.09424227 = weight(_text_:22 in 4643) [ClassicSimilarity], result of:
              0.09424227 = score(doc=4643,freq=2.0), product of:
                0.17398734 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049684696 = queryNorm
                0.5416616 = fieldWeight in 4643, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.109375 = fieldNorm(doc=4643)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    22. 9.2007 15:41:14
  2. Kara, S.: ¬An ontology-based retrieval system using semantic indexing (2012) 0.01
    0.013931636 = product of:
      0.041794907 = sum of:
        0.041794907 = product of:
          0.083589815 = sum of:
            0.083589815 = weight(_text_:indexing in 3829) [ClassicSimilarity], result of:
              0.083589815 = score(doc=3829,freq=6.0), product of:
                0.19018644 = queryWeight, product of:
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.049684696 = queryNorm
                0.4395151 = fieldWeight in 3829, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3829)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    In this thesis, we present an ontology-based information extraction and retrieval system and its application to soccer domain. In general, we deal with three issues in semantic search, namely, usability, scalability and retrieval performance. We propose a keyword-based semantic retrieval approach. The performance of the system is improved considerably using domain-specific information extraction, inference and rules. Scalability is achieved by adapting a semantic indexing approach. The system is implemented using the state-of-the-art technologies in SemanticWeb and its performance is evaluated against traditional systems as well as the query expansion methods. Furthermore, a detailed evaluation is provided to observe the performance gain due to domain-specific information extraction and inference. Finally, we show how we use semantic indexing to solve simple structural ambiguities.
  3. Broughton, V.: Automatic metadata generation : Digital resource description without human intervention (2007) 0.01
    0.0134631805 = product of:
      0.04038954 = sum of:
        0.04038954 = product of:
          0.08077908 = sum of:
            0.08077908 = weight(_text_:22 in 6048) [ClassicSimilarity], result of:
              0.08077908 = score(doc=6048,freq=2.0), product of:
                0.17398734 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049684696 = queryNorm
                0.46428138 = fieldWeight in 6048, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=6048)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    22. 9.2007 15:41:14
  4. Tudhope, D.: Knowledge Organization System Services : brief review of NKOS activities and possibility of KOS registries (2007) 0.01
    0.0134631805 = product of:
      0.04038954 = sum of:
        0.04038954 = product of:
          0.08077908 = sum of:
            0.08077908 = weight(_text_:22 in 100) [ClassicSimilarity], result of:
              0.08077908 = score(doc=100,freq=2.0), product of:
                0.17398734 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049684696 = queryNorm
                0.46428138 = fieldWeight in 100, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.09375 = fieldNorm(doc=100)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    22. 9.2007 15:41:14
  5. Radhakrishnan, A.: Swoogle : an engine for the Semantic Web (2007) 0.01
    0.01072458 = product of:
      0.032173738 = sum of:
        0.032173738 = product of:
          0.064347476 = sum of:
            0.064347476 = weight(_text_:indexing in 4709) [ClassicSimilarity], result of:
              0.064347476 = score(doc=4709,freq=8.0), product of:
                0.19018644 = queryWeight, product of:
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.049684696 = queryNorm
                0.3383389 = fieldWeight in 4709, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.03125 = fieldNorm(doc=4709)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Content
    "Swoogle, the Semantic web search engine, is a research project carried out by the ebiquity research group in the Computer Science and Electrical Engineering Department at the University of Maryland. It's an engine tailored towards finding documents on the semantic web. The whole research paper is available here. Semantic web is touted as the next generation of online content representation where the web documents are represented in a language that is not only easy for humans but is machine readable (easing the integration of data as never thought possible) as well. And the main elements of the semantic web include data model description formats such as Resource Description Framework (RDF), a variety of data interchange formats (e.g. RDF/XML, Turtle, N-Triples), and notations such as RDF Schema (RDFS), the Web Ontology Language (OWL), all of which are intended to provide a formal description of concepts, terms, and relationships within a given knowledge domain (Wikipedia). And Swoogle is an attempt to mine and index this new set of web documents. The engine performs crawling of semantic documents like most web search engines and the search is available as web service too. The engine is primarily written in Java with the PHP used for the front-end and MySQL for database. Swoogle is capable of searching over 10,000 ontologies and indexes more that 1.3 million web documents. It also computes the importance of a Semantic Web document. The techniques used for indexing are the more google-type page ranking and also mining the documents for inter-relationships that are the basis for the semantic web. For more information on how the RDF framework can be used to relate documents, read the link here. Being a research project, and with a non-commercial motive, there is not much hype around Swoogle. However, the approach to indexing of Semantic web documents is an approach that most engines will have to take at some point of time. When the Internet debuted, there were no specific engines available for indexing or searching. The Search domain only picked up as more and more content became available. One fundamental question that I've always wondered about it is - provided that the search engines return very relevant results for a query - how to ascertain that the documents are indeed the most relevant ones available. There is always an inherent delay in indexing of document. Its here that the new semantic documents search engines can close delay. Experimenting with the concept of Search in the semantic web can only bore well for the future of search technology."
  6. Shah, U.; Finin, T.; Joshi, A.; Cost, R.S.; Mayfield, J.: Information retrieval on the Semantic Web (2002) 0.01
    0.009384007 = product of:
      0.02815202 = sum of:
        0.02815202 = product of:
          0.05630404 = sum of:
            0.05630404 = weight(_text_:indexing in 696) [ClassicSimilarity], result of:
              0.05630404 = score(doc=696,freq=2.0), product of:
                0.19018644 = queryWeight, product of:
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.049684696 = queryNorm
                0.29604656 = fieldWeight in 696, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=696)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    We describe an apporach to retrieval of documents that consist of both free text and semantically enriched markup. In particular, we present the design and implementation prototype of a framework in which both documents and queries can be marked up with statements in the DAML+OIL semantic web language. These statement provide both structured and semi-structured information about the documents and their content. We claim that indexing text and semantic markup will significantly improve retrieval performance. Outr approach allows inferencing to be done over this information at several points: when a document is indexed,when a query is processed and when query results are evaluated.
  7. Eckert, K.: SKOS: eine Sprache für die Übertragung von Thesauri ins Semantic Web (2011) 0.01
    0.008975455 = product of:
      0.026926363 = sum of:
        0.026926363 = product of:
          0.053852726 = sum of:
            0.053852726 = weight(_text_:22 in 4331) [ClassicSimilarity], result of:
              0.053852726 = score(doc=4331,freq=2.0), product of:
                0.17398734 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049684696 = queryNorm
                0.30952093 = fieldWeight in 4331, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4331)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    15. 3.2011 19:21:22
  8. OWL Web Ontology Language Test Cases (2004) 0.01
    0.008975455 = product of:
      0.026926363 = sum of:
        0.026926363 = product of:
          0.053852726 = sum of:
            0.053852726 = weight(_text_:22 in 4685) [ClassicSimilarity], result of:
              0.053852726 = score(doc=4685,freq=2.0), product of:
                0.17398734 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049684696 = queryNorm
                0.30952093 = fieldWeight in 4685, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0625 = fieldNorm(doc=4685)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    14. 8.2011 13:33:22
  9. Vatant, B.: Porting library vocabularies to the Semantic Web, and back : a win-win round trip (2010) 0.01
    0.0080434345 = product of:
      0.024130303 = sum of:
        0.024130303 = product of:
          0.048260607 = sum of:
            0.048260607 = weight(_text_:indexing in 3968) [ClassicSimilarity], result of:
              0.048260607 = score(doc=3968,freq=2.0), product of:
                0.19018644 = queryWeight, product of:
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.049684696 = queryNorm
                0.2537542 = fieldWeight in 3968, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.046875 = fieldNorm(doc=3968)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Content
    Vortrag im Rahmen der Session 93. Cataloguing der WORLD LIBRARY AND INFORMATION CONGRESS: 76TH IFLA GENERAL CONFERENCE AND ASSEMBLY, 10-15 August 2010, Gothenburg, Sweden - 149. Information Technology, Cataloguing, Classification and Indexing with Knowledge Management
  10. Ding, L.; Finin, T.; Joshi, A.; Peng, Y.; Cost, R.S.; Sachs, J.; Pan, R.; Reddivari, P.; Doshi, V.: Swoogle : a Semantic Web search and metadata engine (2004) 0.01
    0.0080434345 = product of:
      0.024130303 = sum of:
        0.024130303 = product of:
          0.048260607 = sum of:
            0.048260607 = weight(_text_:indexing in 4704) [ClassicSimilarity], result of:
              0.048260607 = score(doc=4704,freq=2.0), product of:
                0.19018644 = queryWeight, product of:
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.049684696 = queryNorm
                0.2537542 = fieldWeight in 4704, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4704)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Swoogle is a crawler-based indexing and retrieval system for the Semantic Web, i.e., for Web documents in RDF or OWL. It extracts metadata for each discovered document, and computes relations between documents. Discovered documents are also indexed by an information retrieval system which can use either character N-Gram or URIrefs as keywords to find relevant documents and to compute the similarity among a set of documents. One of the interesting properties we compute is rank, a measure of the importance of a Semantic Web document.
  11. Mayfield, J.; Finin, T.: Information retrieval on the Semantic Web : integrating inference and retrieval 0.01
    0.007853523 = product of:
      0.023560567 = sum of:
        0.023560567 = product of:
          0.047121134 = sum of:
            0.047121134 = weight(_text_:22 in 4330) [ClassicSimilarity], result of:
              0.047121134 = score(doc=4330,freq=2.0), product of:
                0.17398734 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049684696 = queryNorm
                0.2708308 = fieldWeight in 4330, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=4330)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    12. 2.2011 17:35:22
  12. Heflin, J.; Hendler, J.: Semantic interoperability on the Web (2000) 0.01
    0.007853523 = product of:
      0.023560567 = sum of:
        0.023560567 = product of:
          0.047121134 = sum of:
            0.047121134 = weight(_text_:22 in 759) [ClassicSimilarity], result of:
              0.047121134 = score(doc=759,freq=2.0), product of:
                0.17398734 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049684696 = queryNorm
                0.2708308 = fieldWeight in 759, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=759)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    11. 5.2013 19:22:18
  13. Hollink, L.; Assem, M. van: Estimating the relevance of search results in the Culture-Web : a study of semantic distance measures (2010) 0.01
    0.0067315903 = product of:
      0.02019477 = sum of:
        0.02019477 = product of:
          0.04038954 = sum of:
            0.04038954 = weight(_text_:22 in 4649) [ClassicSimilarity], result of:
              0.04038954 = score(doc=4649,freq=2.0), product of:
                0.17398734 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049684696 = queryNorm
                0.23214069 = fieldWeight in 4649, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=4649)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    26.12.2011 13:40:22
  14. Firnkes, M.: Schöne neue Welt : der Content der Zukunft wird von Algorithmen bestimmt (2015) 0.01
    0.0067315903 = product of:
      0.02019477 = sum of:
        0.02019477 = product of:
          0.04038954 = sum of:
            0.04038954 = weight(_text_:22 in 2118) [ClassicSimilarity], result of:
              0.04038954 = score(doc=2118,freq=2.0), product of:
                0.17398734 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049684696 = queryNorm
                0.23214069 = fieldWeight in 2118, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=2118)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    5. 7.2015 22:02:31
  15. Hogan, A.; Harth, A.; Umbrich, J.; Kinsella, S.; Polleres, A.; Decker, S.: Searching and browsing Linked Data with SWSE : the Semantic Web Search Engine (2011) 0.01
    0.0067028617 = product of:
      0.020108584 = sum of:
        0.020108584 = product of:
          0.04021717 = sum of:
            0.04021717 = weight(_text_:indexing in 438) [ClassicSimilarity], result of:
              0.04021717 = score(doc=438,freq=2.0), product of:
                0.19018644 = queryWeight, product of:
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.049684696 = queryNorm
                0.21146181 = fieldWeight in 438, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=438)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    In this paper, we discuss the architecture and implementation of the Semantic Web Search Engine (SWSE). Following traditional search engine architecture, SWSE consists of crawling, data enhancing, indexing and a user interface for search, browsing and retrieval of information; unlike traditional search engines, SWSE operates over RDF Web data - loosely also known as Linked Data - which implies unique challenges for the system design, architecture, algorithms, implementation and user interface. In particular, many challenges exist in adopting Semantic Web technologies for Web data: the unique challenges of the Web - in terms of scale, unreliability, inconsistency and noise - are largely overlooked by the current Semantic Web standards. Herein, we describe the current SWSE system, initially detailing the architecture and later elaborating upon the function, design, implementation and performance of each individual component. In so doing, we also give an insight into how current Semantic Web standards can be tailored, in a best-effort manner, for use on Web data. Throughout, we offer evaluation and complementary argumentation to support our design choices, and also offer discussion on future directions and open research questions. Later, we also provide candid discussion relating to the difficulties currently faced in bringing such a search engine into the mainstream, and lessons learnt from roughly six years working on the Semantic Web Search Engine project.
  16. Martínez-González, M.M.; Alvite-Díez, M.L.: Thesauri and Semantic Web : discussion of the evolution of thesauri toward their integration with the Semantic Web (2019) 0.01
    0.0067028617 = product of:
      0.020108584 = sum of:
        0.020108584 = product of:
          0.04021717 = sum of:
            0.04021717 = weight(_text_:indexing in 5997) [ClassicSimilarity], result of:
              0.04021717 = score(doc=5997,freq=2.0), product of:
                0.19018644 = queryWeight, product of:
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.049684696 = queryNorm
                0.21146181 = fieldWeight in 5997, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=5997)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    Thesauri are Knowledge Organization Systems (KOS), that arise from the consensus of wide communities. They have been in use for many years and are regularly updated. Whereas in the past thesauri were designed for information professionals for indexing and searching, today there is a demand for conceptual vocabularies that enable inferencing by machines. The development of the Semantic Web has brought a new opportunity for thesauri, but thesauri also face the challenge of proving that they add value to it. The evolution of thesauri toward their integration with the Semantic Web is examined. Elements and structures in the thesaurus standard, ISO 25964, and SKOS (Simple Knowledge Organization System), the Semantic Web standard for representing KOS, are reviewed and compared. Moreover, the integrity rules of thesauri are contrasted with the axioms of SKOS. How SKOS has been applied to represent some real thesauri is taken into account. Three thesauri are chosen for this aim: AGROVOC, EuroVoc and the UNESCO Thesaurus. Based on the results of this comparison and analysis, the benefits that Semantic Web technologies offer to thesauri, how thesauri can contribute to the Semantic Web, and the challenges that would help to improve their integration with the Semantic Web are discussed.
  17. Monireh, E.; Sarker, M.K.; Bianchi, F.; Hitzler, P.; Doran, D.; Xie, N.: Reasoning over RDF knowledge bases using deep learning (2018) 0.01
    0.005609659 = product of:
      0.016828977 = sum of:
        0.016828977 = product of:
          0.033657953 = sum of:
            0.033657953 = weight(_text_:22 in 4553) [ClassicSimilarity], result of:
              0.033657953 = score(doc=4553,freq=2.0), product of:
                0.17398734 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.049684696 = queryNorm
                0.19345059 = fieldWeight in 4553, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=4553)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Date
    16.11.2018 14:22:01
  18. Heery, R.; Wagner, H.: ¬A metadata registry for the Semantic Web (2002) 0.00
    0.0046920036 = product of:
      0.01407601 = sum of:
        0.01407601 = product of:
          0.02815202 = sum of:
            0.02815202 = weight(_text_:indexing in 1210) [ClassicSimilarity], result of:
              0.02815202 = score(doc=1210,freq=2.0), product of:
                0.19018644 = queryWeight, product of:
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.049684696 = queryNorm
                0.14802328 = fieldWeight in 1210, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.8278677 = idf(docFreq=2614, maxDocs=44218)
                  0.02734375 = fieldNorm(doc=1210)
          0.5 = coord(1/2)
      0.33333334 = coord(1/3)
    
    Abstract
    * Agencies maintaining directories of data elements in a domain area in accordance with ISO/IEC 11179 (This standard specifies good practice for data element definition as well as the registration process. Example implementations are the National Health Information Knowledgebase hosted by the Australian Institute of Health and Welfare and the Environmental Data Registry hosted by the US Environmental Protection Agency.); * The xml.org directory of the Extended Markup Language (XML) document specifications facilitating re-use of Document Type Definition (DTD), hosted by the Organization for the Advancement of Structured Information Standards (OASIS); * The MetaForm database of Dublin Core usage and mappings maintained at the State and University Library in Goettingen; * The Semantic Web Agreement Group Dictionary, a database of terms for the Semantic Web that can be referred to by humans and software agents; * LEXML, a multi-lingual and multi-jurisdictional RDF Dictionary for the legal world; * The SCHEMAS registry maintained by the European Commission funded SCHEMAS project, which indexes several metadata element sets as well as a large number of activity reports describing metadata related activities and initiatives. Metadata registries essentially provide an index of terms. Given the distributed nature of the Web, there are a number of ways this can be accomplished. For example, the registry could link to terms and definitions in schemas published by implementers and stored locally by the schema maintainer. Alternatively, the registry might harvest various metadata schemas from their maintainers. Registries provide 'added value' to users by indexing schemas relevant to a particular 'domain' or 'community of use' and by simplifying the navigation of terms by enabling multiple schemas to be accessed from one view. An important benefit of this approach is an increase in the reuse of existing terms, rather than users having to reinvent them. Merging schemas to one view leads to harmonization between applications and helps avoid duplication of effort. Additionally, the establishment of registries to index terms actively being used in local implementations facilitates the metadata standards activity by providing implementation experience transferable to the standards-making process.