Search (67 results, page 1 of 4)

  • × year_i:[2020 TO 2030}
  • × theme_ss:"Informetrie"
  1. Positionspapier der DMV zur Verwendung bibliometrischer Daten (2020) 0.04
    0.035779864 = product of:
      0.07155973 = sum of:
        0.06991446 = weight(_text_:von in 5738) [ClassicSimilarity], result of:
          0.06991446 = score(doc=5738,freq=14.0), product of:
            0.12806706 = queryWeight, product of:
              2.6679487 = idf(docFreq=8340, maxDocs=44218)
              0.04800207 = queryNorm
            0.5459207 = fieldWeight in 5738, product of:
              3.7416575 = tf(freq=14.0), with freq of:
                14.0 = termFreq=14.0
              2.6679487 = idf(docFreq=8340, maxDocs=44218)
              0.0546875 = fieldNorm(doc=5738)
        0.0016452647 = product of:
          0.004935794 = sum of:
            0.004935794 = weight(_text_:a in 5738) [ClassicSimilarity], result of:
              0.004935794 = score(doc=5738,freq=2.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.089176424 = fieldWeight in 5738, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=5738)
          0.33333334 = coord(1/3)
      0.5 = coord(2/4)
    
    Abstract
    Bibliometrische Daten werden heute zunehmend in der Evaluation von Forschungsergebnissen benutzt. Diese Anwendungen reichen von der (indirekten) Verwendung bei der Peer-Evaluation von Drittmittelanträgen über die Beurteilung von Bewerbungen in Berufungskommissionen oder Anträgen für Forschungszulagen bis hin zur systematischen Erhebung von forschungsorientierten Kennzahlen von Institutionen. Mit diesem Dokument will die DMV ihren Mitgliedern eine Diskussionsgrundlage zur Verwendung bibliometrischer Daten im Zusammenhang mit der Evaluation von Personen und Institutionen im Fachgebiet Mathematik zur Verfügung stellen, insbesondere auch im Vergleich zu anderen Fächern. Am Ende des Texts befindet sich ein Glossar, in dem die wichtigsten Begriffe kurz erläutert werden.
    Type
    a
  2. Wang, S.; Ma, Y.; Mao, J.; Bai, Y.; Liang, Z.; Li, G.: Quantifying scientific breakthroughs by a novel disruption indicator based on knowledge entities : On the rise of scrape-and-report scholarship in online reviews research (2023) 0.03
    0.028777454 = product of:
      0.115109816 = sum of:
        0.115109816 = sum of:
          0.007051134 = weight(_text_:a in 882) [ClassicSimilarity], result of:
            0.007051134 = score(doc=882,freq=8.0), product of:
              0.055348642 = queryWeight, product of:
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.04800207 = queryNorm
              0.12739488 = fieldWeight in 882, product of:
                2.828427 = tf(freq=8.0), with freq of:
                  8.0 = termFreq=8.0
                1.153047 = idf(docFreq=37942, maxDocs=44218)
                0.0390625 = fieldNorm(doc=882)
          0.075540595 = weight(_text_:z in 882) [ClassicSimilarity], result of:
            0.075540595 = score(doc=882,freq=2.0), product of:
              0.2562021 = queryWeight, product of:
                5.337313 = idf(docFreq=577, maxDocs=44218)
                0.04800207 = queryNorm
              0.29484767 = fieldWeight in 882, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                5.337313 = idf(docFreq=577, maxDocs=44218)
                0.0390625 = fieldNorm(doc=882)
          0.032518093 = weight(_text_:22 in 882) [ClassicSimilarity], result of:
            0.032518093 = score(doc=882,freq=2.0), product of:
              0.16809508 = queryWeight, product of:
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.04800207 = queryNorm
              0.19345059 = fieldWeight in 882, product of:
                1.4142135 = tf(freq=2.0), with freq of:
                  2.0 = termFreq=2.0
                3.5018296 = idf(docFreq=3622, maxDocs=44218)
                0.0390625 = fieldNorm(doc=882)
      0.25 = coord(1/4)
    
    Abstract
    Compared to previous studies that generally detect scientific breakthroughs based on citation patterns, this article proposes a knowledge entity-based disruption indicator by quantifying the change of knowledge directly created and inspired by scientific breakthroughs to their evolutionary trajectories. Two groups of analytic units, including MeSH terms and their co-occurrences, are employed independently by the indicator to measure the change of knowledge. The effectiveness of the proposed indicators was evaluated against the four datasets of scientific breakthroughs derived from four recognition trials. In terms of identifying scientific breakthroughs, the proposed disruption indicator based on MeSH co-occurrences outperforms that based on MeSH terms and three earlier citation-based disruption indicators. It is also shown that in our indicator, measuring the change of knowledge inspired by the focal paper in its evolutionary trajectory is a larger contributor than measuring the change created by the focal paper. Our study not only offers empirical insights into conceptual understanding of scientific breakthroughs but also provides practical disruption indicator for scientists and science management agencies searching for valuable research.
    Date
    22. 1.2023 18:37:33
    Type
    a
  3. Herb, U.; Geith, U.: Kriterien der qualitativen Bewertung wissenschaftlicher Publikationen : Befunde aus dem Projekt visOA (2020) 0.02
    0.022684347 = product of:
      0.045368694 = sum of:
        0.042709544 = weight(_text_:von in 108) [ClassicSimilarity], result of:
          0.042709544 = score(doc=108,freq=4.0), product of:
            0.12806706 = queryWeight, product of:
              2.6679487 = idf(docFreq=8340, maxDocs=44218)
              0.04800207 = queryNorm
            0.3334936 = fieldWeight in 108, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.6679487 = idf(docFreq=8340, maxDocs=44218)
              0.0625 = fieldNorm(doc=108)
        0.0026591495 = product of:
          0.007977448 = sum of:
            0.007977448 = weight(_text_:a in 108) [ClassicSimilarity], result of:
              0.007977448 = score(doc=108,freq=4.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.14413087 = fieldWeight in 108, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=108)
          0.33333334 = coord(1/3)
      0.5 = coord(2/4)
    
    Abstract
    Dieser Beitrag beschreibt a) die Ergebnisse einer Literaturstudie zur qualitativen Wahrnehmung wissenschaftlicher Publikationen, b) die Konstruktion eines daraus abgeleiteten Kriterienkatalogs zur Wahrnehmung der Qualität wissenschaftlicher Publikationen sowie c) der Überprüfung dieses Katalogs in qualitativen Interviews mit Wissenschaflterinnen und Wissenschaftlern aus dem Fachspektrum Chemie, Physik, Biologie, Materialwissenschaft und Engineering. Es zeigte sich, dass die Wahrnehmung von Qualität auf äußerlichen und von außen herangetragenen Faktoren, inhaltlichen / semantischen Faktoren und sprachlichen, syntaktischen sowie strukturellen Faktoren beruht.
    Type
    a
  4. Krattenthaler, C.: Was der h-Index wirklich aussagt (2021) 0.02
    0.022294924 = product of:
      0.044589847 = sum of:
        0.042709544 = weight(_text_:von in 407) [ClassicSimilarity], result of:
          0.042709544 = score(doc=407,freq=4.0), product of:
            0.12806706 = queryWeight, product of:
              2.6679487 = idf(docFreq=8340, maxDocs=44218)
              0.04800207 = queryNorm
            0.3334936 = fieldWeight in 407, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.6679487 = idf(docFreq=8340, maxDocs=44218)
              0.0625 = fieldNorm(doc=407)
        0.0018803024 = product of:
          0.005640907 = sum of:
            0.005640907 = weight(_text_:a in 407) [ClassicSimilarity], result of:
              0.005640907 = score(doc=407,freq=2.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.10191591 = fieldWeight in 407, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=407)
          0.33333334 = coord(1/3)
      0.5 = coord(2/4)
    
    Abstract
    Diese Note legt dar, dass der sogenannte h-Index (Hirschs bibliometrischer Index) im Wesentlichen dieselbe Information wiedergibt wie die Gesamtanzahl von Zitationen von Publikationen einer Autorin oder eines Autors, also ein nutzloser bibliometrischer Index ist. Dies basiert auf einem faszinierenden Satz der Wahrscheinlichkeitstheorie, der hier ebenfalls erläutert wird.
    Type
    a
  5. Dorsch, I.; Haustein, S.: Bibliometrie (2023) 0.02
    0.022294924 = product of:
      0.044589847 = sum of:
        0.042709544 = weight(_text_:von in 789) [ClassicSimilarity], result of:
          0.042709544 = score(doc=789,freq=4.0), product of:
            0.12806706 = queryWeight, product of:
              2.6679487 = idf(docFreq=8340, maxDocs=44218)
              0.04800207 = queryNorm
            0.3334936 = fieldWeight in 789, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.6679487 = idf(docFreq=8340, maxDocs=44218)
              0.0625 = fieldNorm(doc=789)
        0.0018803024 = product of:
          0.005640907 = sum of:
            0.005640907 = weight(_text_:a in 789) [ClassicSimilarity], result of:
              0.005640907 = score(doc=789,freq=2.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.10191591 = fieldWeight in 789, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=789)
          0.33333334 = coord(1/3)
      0.5 = coord(2/4)
    
    Abstract
    Die Bibliometrie ist eine sozialwissenschaftliche Disziplin, die historisch gesehen auf drei Entwicklungen fußt: die positivistisch-funktionalistische Philosophie, soziale Fakten objektiv untersuchen zu können; die Entwicklung von Zitationsindizes und -analyse, um Forschungsleistung zu messen; und die Entdeckung mathematischer Gesetzmäßigkeiten, die die Anwendung von Indikatoren in der Wissenschaftsevaluation ermöglichten.
    Type
    a
  6. Dederke, J.; Hirschmann, B.; Johann, D.: ¬Der Data Citation Index von Clarivate : Eine wertvolle Ressource für die Forschung und für Bibliotheken? (2022) 0.02
    0.020050319 = product of:
      0.040100638 = sum of:
        0.03775026 = weight(_text_:von in 50) [ClassicSimilarity], result of:
          0.03775026 = score(doc=50,freq=2.0), product of:
            0.12806706 = queryWeight, product of:
              2.6679487 = idf(docFreq=8340, maxDocs=44218)
              0.04800207 = queryNorm
            0.29476947 = fieldWeight in 50, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6679487 = idf(docFreq=8340, maxDocs=44218)
              0.078125 = fieldNorm(doc=50)
        0.002350378 = product of:
          0.007051134 = sum of:
            0.007051134 = weight(_text_:a in 50) [ClassicSimilarity], result of:
              0.007051134 = score(doc=50,freq=2.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.12739488 = fieldWeight in 50, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.078125 = fieldNorm(doc=50)
          0.33333334 = coord(1/3)
      0.5 = coord(2/4)
    
    Type
    a
  7. Tian, W.; Cai, R.; Fang, Z.; Geng, Y.; Wang, X.; Hu, Z.: Understanding co-corresponding authorship : a bibliometric analysis and detailed overview (2024) 0.02
    0.019359719 = product of:
      0.077438876 = sum of:
        0.077438876 = product of:
          0.11615831 = sum of:
            0.009327774 = weight(_text_:a in 1196) [ClassicSimilarity], result of:
              0.009327774 = score(doc=1196,freq=14.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.1685276 = fieldWeight in 1196, product of:
                  3.7416575 = tf(freq=14.0), with freq of:
                    14.0 = termFreq=14.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1196)
            0.10683053 = weight(_text_:z in 1196) [ClassicSimilarity], result of:
              0.10683053 = score(doc=1196,freq=4.0), product of:
                0.2562021 = queryWeight, product of:
                  5.337313 = idf(docFreq=577, maxDocs=44218)
                  0.04800207 = queryNorm
                0.41697758 = fieldWeight in 1196, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  5.337313 = idf(docFreq=577, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1196)
          0.6666667 = coord(2/3)
      0.25 = coord(1/4)
    
    Abstract
    The phenomenon of co-corresponding authorship is becoming more and more common. To understand the practice of authorship credit sharing among multiple corresponding authors, we comprehensively analyzed the characteristics of the phenomenon of co-corresponding authorships from the perspectives of countries, disciplines, journals, and articles. This researcher was based on a dataset of nearly 8 million articles indexed in the Web of Science, which provides systematic, cross-disciplinary, and large-scale evidence for understanding the phenomenon of co-corresponding authorship for the first time. Our findings reveal that higher proportions of co-corresponding authorship exist in Asian countries, especially in China. From the perspective of disciplines, there is a relatively higher proportion of co-corresponding authorship in the fields of engineering and medicine, while a lower proportion exists in the humanities, social sciences, and computer science fields. From the perspective of journals, high-quality journals usually have higher proportions of co-corresponding authorship. At the level of the article, our findings proved that, compared to articles with a single corresponding author, articles with multiple corresponding authors have a significant citation advantage.
    Type
    a
  8. Zhang, L.; Gou, Z.; Fang, Z.; Sivertsen, G.; Huang, Y.: Who tweets scientific publications? : a large-scale study of tweeting audiences in all areas of research (2023) 0.02
    0.019244395 = product of:
      0.07697758 = sum of:
        0.07697758 = product of:
          0.11546637 = sum of:
            0.00863584 = weight(_text_:a in 1189) [ClassicSimilarity], result of:
              0.00863584 = score(doc=1189,freq=12.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.15602624 = fieldWeight in 1189, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1189)
            0.10683053 = weight(_text_:z in 1189) [ClassicSimilarity], result of:
              0.10683053 = score(doc=1189,freq=4.0), product of:
                0.2562021 = queryWeight, product of:
                  5.337313 = idf(docFreq=577, maxDocs=44218)
                  0.04800207 = queryNorm
                0.41697758 = fieldWeight in 1189, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  5.337313 = idf(docFreq=577, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=1189)
          0.6666667 = coord(2/3)
      0.25 = coord(1/4)
    
    Abstract
    The purpose of this study is to investigate the validity of tweets about scientific publications as an indicator of societal impact by measuring the degree to which the publications are tweeted beyond academia. We introduce methods that allow for using a much larger and broader data set than in previous validation studies. It covers all areas of research and includes almost 40 million tweets by 2.5 million unique tweeters mentioning almost 4 million scientific publications. We find that, although half of the tweeters are external to academia, most of the tweets are from within academia, and most of the external tweets are responses to original tweets within academia. Only half of the tweeted publications are tweeted outside of academia. We conclude that, in general, the tweeting of scientific publications is not a valid indicator of the societal impact of research. However, publications that continue being tweeted after a few days represent recent scientific achievements that catch attention in society. These publications occur more often in the health sciences and in the social sciences and humanities.
    Content
    Beitrag in: JASIST special issue on 'Who tweets scientific publications? A large-scale study of tweeting audiences in all areas of research'. Vgl.: https://asistdl.onlinelibrary.wiley.com/doi/10.1002/asi.24830.
    Type
    a
  9. Yan, E.; Chen, Z.; Li, K.: Authors' status and the perceived quality of their work : measuring citation sentiment change in nobel articles (2020) 0.02
    0.01722346 = product of:
      0.06889384 = sum of:
        0.06889384 = product of:
          0.10334076 = sum of:
            0.012692042 = weight(_text_:a in 5670) [ClassicSimilarity], result of:
              0.012692042 = score(doc=5670,freq=18.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.22931081 = fieldWeight in 5670, product of:
                  4.2426405 = tf(freq=18.0), with freq of:
                    18.0 = termFreq=18.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5670)
            0.09064872 = weight(_text_:z in 5670) [ClassicSimilarity], result of:
              0.09064872 = score(doc=5670,freq=2.0), product of:
                0.2562021 = queryWeight, product of:
                  5.337313 = idf(docFreq=577, maxDocs=44218)
                  0.04800207 = queryNorm
                0.35381722 = fieldWeight in 5670, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.337313 = idf(docFreq=577, maxDocs=44218)
                  0.046875 = fieldNorm(doc=5670)
          0.6666667 = coord(2/3)
      0.25 = coord(1/4)
    
    Abstract
    Prior research in status ordering has used numeric indicators to examine the impact of a status change on the perception of a scientist's work. This study measures the perception change directly as reflected in citation sentiment, with the attainment of a Nobel Prize in Chemistry or a Nobel Prize in Physiology or Medicine considered the status change. The article identifies 12,393 citances to 25 Nobel articles in PubMed Central and includes a control article set of 75 articles with 30,851 citances. The results show a moderate increase in citation sentiment toward Nobel articles postaward. Dynamically, for Nobel articles there is a steady sentiment increase, and a Nobel Prize seems to co-occur with this trend. This trend, however, is not evident in the control article set.
    Type
    a
  10. Fang, Z.; Dudek, J.; Costas, R.: Facing the volatility of tweets in altmetric research (2022) 0.02
    0.016329413 = product of:
      0.06531765 = sum of:
        0.06531765 = product of:
          0.097976476 = sum of:
            0.007327754 = weight(_text_:a in 605) [ClassicSimilarity], result of:
              0.007327754 = score(doc=605,freq=6.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.13239266 = fieldWeight in 605, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=605)
            0.09064872 = weight(_text_:z in 605) [ClassicSimilarity], result of:
              0.09064872 = score(doc=605,freq=2.0), product of:
                0.2562021 = queryWeight, product of:
                  5.337313 = idf(docFreq=577, maxDocs=44218)
                  0.04800207 = queryNorm
                0.35381722 = fieldWeight in 605, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.337313 = idf(docFreq=577, maxDocs=44218)
                  0.046875 = fieldNorm(doc=605)
          0.6666667 = coord(2/3)
      0.25 = coord(1/4)
    
    Abstract
    The data re-collection for tweets from data snapshots is a common methodological step in Twitter-based research. Understanding better the volatility of tweets over time is important for validating the reliability of metrics based on Twitter data. We tracked a set of 37,918 original scholarly tweets mentioning COVID-19-related research daily for 56 days and captured the reasons for the changes in their availability over time. Results show that the proportion of unavailable tweets increased from 1.6 to 2.6% in the time window observed. Of the 1,323 tweets that became unavailable at some point in the period observed, 30.5% became available again afterwards. "Revived" tweets resulted mainly from the unprotecting, reactivating, or unsuspending of users' accounts. Our findings highlight the importance of noting this dynamic nature of Twitter data in altmetric research and testify to the challenges that this poses for the retrieval, processing, and interpretation of Twitter data about scientific papers.
    Type
    a
  11. Reichmann, G.; Schlögl, C.: Möglichkeiten zur Steuerung der Ergebnisse einer Forschungsevaluation (2021) 0.02
    0.016040254 = product of:
      0.03208051 = sum of:
        0.030200208 = weight(_text_:von in 5660) [ClassicSimilarity], result of:
          0.030200208 = score(doc=5660,freq=2.0), product of:
            0.12806706 = queryWeight, product of:
              2.6679487 = idf(docFreq=8340, maxDocs=44218)
              0.04800207 = queryNorm
            0.23581557 = fieldWeight in 5660, product of:
              1.4142135 = tf(freq=2.0), with freq of:
                2.0 = termFreq=2.0
              2.6679487 = idf(docFreq=8340, maxDocs=44218)
              0.0625 = fieldNorm(doc=5660)
        0.0018803024 = product of:
          0.005640907 = sum of:
            0.005640907 = weight(_text_:a in 5660) [ClassicSimilarity], result of:
              0.005640907 = score(doc=5660,freq=2.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.10191591 = fieldWeight in 5660, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0625 = fieldNorm(doc=5660)
          0.33333334 = coord(1/3)
      0.5 = coord(2/4)
    
    Abstract
    Ein Leistungsvergleich zwischen den (ehemaligen) Instituten für Informationswissenschaft der Universitäten Düsseldorf und Graz auf Basis der Forschungsleistung für einen Zeitraum von zehn Jahren zeigt, wie sehr die Ergebnisse einer Forschungsevaluation gesteuert werden können. Durch die Wahl "geeigneter" Indikatoren gelingt es - je nach Wunsch - entweder das eine oder das andere Institut an die erste Stelle zu bringen. Hält man sich dagegen an das wissenschaftliche Gebot der Unparteilichkeit, führt dies im hier gezeigten Anwendungsbeispiel zu gemischten Ergebnissen.
    Type
    a
  12. Tausch, A.: Zitierungen sind nicht alles : Classroom Citation, Libcitation und die Zukunft bibliometrischer und szientometrischer Leistungsvergleiche (2022) 0.01
    0.014177717 = product of:
      0.028355435 = sum of:
        0.026693465 = weight(_text_:von in 827) [ClassicSimilarity], result of:
          0.026693465 = score(doc=827,freq=4.0), product of:
            0.12806706 = queryWeight, product of:
              2.6679487 = idf(docFreq=8340, maxDocs=44218)
              0.04800207 = queryNorm
            0.2084335 = fieldWeight in 827, product of:
              2.0 = tf(freq=4.0), with freq of:
                4.0 = termFreq=4.0
              2.6679487 = idf(docFreq=8340, maxDocs=44218)
              0.0390625 = fieldNorm(doc=827)
        0.0016619684 = product of:
          0.0049859053 = sum of:
            0.0049859053 = weight(_text_:a in 827) [ClassicSimilarity], result of:
              0.0049859053 = score(doc=827,freq=4.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.090081796 = fieldWeight in 827, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=827)
          0.33333334 = coord(1/3)
      0.5 = coord(2/4)
    
    Abstract
    Der Beitrag soll zeigen, welche fortgeschrittenen bibliometrischen und szientometrischen Daten für ein bewährtes Sample von 104 österreichischen Politikwissenschaftler*innen und 51 transnationalen Verlagsunternehmen enge statistische Beziehungen zwischen Indikatoren der Präsenz von Wissenschaftler*innen und transnationalen Verlagsunternehmen in den akademischen Lehrveranstaltungen der Welt (Classroom Citation, gemessen mit Open Syllabus) und anderen, herkömmlicheren bibliometrischen und szientometrischen Indikatoren (Libcitation gemessen mit dem OCLC Worldcat, sowie der H-Index der Zitierung in den vom System Scopus erfassten Fachzeitschriften der Welt bzw. dem Book Citation Index) bestehen. Die statistischen Berechnungen zeigen, basierend auf den Faktorenanalysen, die engen statistischen Beziehungen zwischen diesen Dimensionen. Diese Ergebnisse sind insbesondere in den Tabellen 5 und 9 dieser Arbeit (Komponentenkorrelationen) ableitbar.
    Type
    a
  13. Kulczycki, E.; Huang, Y.; Zuccala, A.A.; Engels, T.C.E.; Ferrara, A.; Guns, R.; Pölönen, J.; Sivertsen, G.; Taskin, Z.; Zhang, L.: Uses of the Journal Impact Factor in national journal rankings in China and Europe (2022) 0.01
    0.013904001 = product of:
      0.055616003 = sum of:
        0.055616003 = product of:
          0.083424 = sum of:
            0.007883408 = weight(_text_:a in 769) [ClassicSimilarity], result of:
              0.007883408 = score(doc=769,freq=10.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.14243183 = fieldWeight in 769, product of:
                  3.1622777 = tf(freq=10.0), with freq of:
                    10.0 = termFreq=10.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=769)
            0.075540595 = weight(_text_:z in 769) [ClassicSimilarity], result of:
              0.075540595 = score(doc=769,freq=2.0), product of:
                0.2562021 = queryWeight, product of:
                  5.337313 = idf(docFreq=577, maxDocs=44218)
                  0.04800207 = queryNorm
                0.29484767 = fieldWeight in 769, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.337313 = idf(docFreq=577, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=769)
          0.6666667 = coord(2/3)
      0.25 = coord(1/4)
    
    Abstract
    This paper investigates different uses of the Journal Impact Factor (JIF) in national journal rankings and discusses the merits of supplementing metrics with expert assessment. Our focus is national journal rankings used as evidence to support decisions about the distribution of institutional funding or career advancement. The seven countries under comparison are China, Denmark, Finland, Italy, Norway, Poland, and Turkey-and the region of Flanders in Belgium. With the exception of Italy, top-tier journals used in national rankings include those classified at the highest level, or according to tier, or points implemented. A total of 3,565 (75.8%) out of 4,701 unique top-tier journals were identified as having a JIF, with 55.7% belonging to the first Journal Impact Factor quartile. Journal rankings in China, Flanders, Poland, and Turkey classify journals with a JIF as being top-tier, but only when they are in the first quartile of the Average Journal Impact Factor Percentile. Journal rankings that result from expert assessment in Denmark, Finland, and Norway regularly classify journals as top-tier outside the first quartile, particularly in the social sciences and humanities. We conclude that experts, when tasked with metric-informed journal rankings, take into account quality dimensions that are not covered by JIFs.
    Type
    a
  14. Fang, Z.; Costas, R.; Tian, W.; Wang, X.; Wouters, P.: How is science clicked on Twitter? : click metrics for Bitly short links to scientific publications (2021) 0.01
    0.013421084 = product of:
      0.053684335 = sum of:
        0.053684335 = product of:
          0.0805265 = sum of:
            0.0049859053 = weight(_text_:a in 265) [ClassicSimilarity], result of:
              0.0049859053 = score(doc=265,freq=4.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.090081796 = fieldWeight in 265, product of:
                  2.0 = tf(freq=4.0), with freq of:
                    4.0 = termFreq=4.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=265)
            0.075540595 = weight(_text_:z in 265) [ClassicSimilarity], result of:
              0.075540595 = score(doc=265,freq=2.0), product of:
                0.2562021 = queryWeight, product of:
                  5.337313 = idf(docFreq=577, maxDocs=44218)
                  0.04800207 = queryNorm
                0.29484767 = fieldWeight in 265, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  5.337313 = idf(docFreq=577, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=265)
          0.6666667 = coord(2/3)
      0.25 = coord(1/4)
    
    Abstract
    To provide some context for the potential engagement behavior of Twitter users around science, this article investigates how Bitly short links to scientific publications embedded in scholarly Twitter mentions are clicked on Twitter. Based on the click metrics of over 1.1 million Bitly short links referring to Web of Science (WoS) publications, our results show that around 49.5% of them were not clicked by Twitter users. For those Bitly short links with clicks from Twitter, the majority of their Twitter clicks accumulated within a short period of time after they were first tweeted. Bitly short links to the publications in the field of Social Sciences and Humanities tend to attract more clicks from Twitter over other subject fields. This article also assesses the extent to which Twitter clicks are correlated with some other impact indicators. Twitter clicks are weakly correlated with scholarly impact indicators (WoS citations and Mendeley readers), but moderately correlated to other Twitter engagement indicators (total retweets and total likes). In light of these results, we highlight the importance of paying more attention to the click metrics of URLs in scholarly Twitter mentions, to improve our understanding about the more effective dissemination and reception of science information on Twitter.
    Type
    a
  15. Manley, S.: Letters to the editor and the race for publication metrics (2022) 0.01
    0.008410187 = product of:
      0.03364075 = sum of:
        0.03364075 = product of:
          0.05046112 = sum of:
            0.004935794 = weight(_text_:a in 547) [ClassicSimilarity], result of:
              0.004935794 = score(doc=547,freq=2.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.089176424 = fieldWeight in 547, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=547)
            0.045525327 = weight(_text_:22 in 547) [ClassicSimilarity], result of:
              0.045525327 = score(doc=547,freq=2.0), product of:
                0.16809508 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04800207 = queryNorm
                0.2708308 = fieldWeight in 547, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0546875 = fieldNorm(doc=547)
          0.6666667 = coord(2/3)
      0.25 = coord(1/4)
    
    Date
    6. 4.2022 19:22:26
    Type
    a
  16. Milard, B.; Pitarch, Y.: Egocentric cocitation networks and scientific papers destinies (2023) 0.01
    0.007913846 = product of:
      0.031655382 = sum of:
        0.031655382 = product of:
          0.04748307 = sum of:
            0.008461362 = weight(_text_:a in 918) [ClassicSimilarity], result of:
              0.008461362 = score(doc=918,freq=8.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.15287387 = fieldWeight in 918, product of:
                  2.828427 = tf(freq=8.0), with freq of:
                    8.0 = termFreq=8.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=918)
            0.039021708 = weight(_text_:22 in 918) [ClassicSimilarity], result of:
              0.039021708 = score(doc=918,freq=2.0), product of:
                0.16809508 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04800207 = queryNorm
                0.23214069 = fieldWeight in 918, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=918)
          0.6666667 = coord(2/3)
      0.25 = coord(1/4)
    
    Abstract
    To what extent is the destiny of a scientific paper shaped by the cocitation network in which it is involved? What are the social contexts that can explain these structuring? Using bibliometric data, interviews with researchers, and social network analysis, this article proposes a typology based on egocentric cocitation networks that displays a quadruple structuring (before and after publication): polarization, clusterization, atomization, and attrition. It shows that the academic capital of the authors and the intellectual resources of their research are key factors of these destinies, as are the social relations between the authors concerned. The circumstances of the publishing are also correlated with the structuring of the egocentric cocitation networks, showing how socially embedded they are. Finally, the article discusses the contribution of these original networks to the analyze of scientific production and its dynamics.
    Date
    21. 3.2023 19:22:14
    Type
    a
  17. Lorentzen, D.G.: Bridging polarised Twitter discussions : the interactions of the users in the middle (2021) 0.01
    0.0077249105 = product of:
      0.030899642 = sum of:
        0.030899642 = product of:
          0.046349462 = sum of:
            0.007327754 = weight(_text_:a in 182) [ClassicSimilarity], result of:
              0.007327754 = score(doc=182,freq=6.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.13239266 = fieldWeight in 182, product of:
                  2.4494898 = tf(freq=6.0), with freq of:
                    6.0 = termFreq=6.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.046875 = fieldNorm(doc=182)
            0.039021708 = weight(_text_:22 in 182) [ClassicSimilarity], result of:
              0.039021708 = score(doc=182,freq=2.0), product of:
                0.16809508 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04800207 = queryNorm
                0.23214069 = fieldWeight in 182, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.046875 = fieldNorm(doc=182)
          0.6666667 = coord(2/3)
      0.25 = coord(1/4)
    
    Abstract
    Purpose The purpose of the paper is to analyse the interactions of bridging users in Twitter discussions about vaccination. Design/methodology/approach Conversational threads were collected through filtering the Twitter stream using keywords and the most active participants in the conversations. Following data collection and anonymisation of tweets and user profiles, a retweet network was created to find users bridging the main clusters. Four conversations were selected, ranging from 456 to 1,983 tweets long, and then analysed through content analysis. Findings Although different opinions met in the discussions, a consensus was rarely built. Many sub-threads involved insults and criticism, and participants seemed not interested in shifting their positions. However, examples of reasoned discussions were also found. Originality/value The study analyses conversations on Twitter, which is rarely studied. The focus on the interactions of bridging users adds to the uniqueness of the paper.
    Date
    20. 1.2015 18:30:22
    Type
    a
  18. Zhang, Y.; Wu, M.; Zhang, G.; Lu, J.: Stepping beyond your comfort zone : diffusion-based network analytics for knowledge trajectory recommendation (2023) 0.01
    0.0073685125 = product of:
      0.02947405 = sum of:
        0.02947405 = product of:
          0.044211075 = sum of:
            0.011692984 = weight(_text_:a in 994) [ClassicSimilarity], result of:
              0.011692984 = score(doc=994,freq=22.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.21126054 = fieldWeight in 994, product of:
                  4.690416 = tf(freq=22.0), with freq of:
                    22.0 = termFreq=22.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=994)
            0.032518093 = weight(_text_:22 in 994) [ClassicSimilarity], result of:
              0.032518093 = score(doc=994,freq=2.0), product of:
                0.16809508 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04800207 = queryNorm
                0.19345059 = fieldWeight in 994, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=994)
          0.6666667 = coord(2/3)
      0.25 = coord(1/4)
    
    Abstract
    Predicting a researcher's knowledge trajectories beyond their current foci can leverage potential inter-/cross-/multi-disciplinary interactions to achieve exploratory innovation. In this study, we present a method of diffusion-based network analytics for knowledge trajectory recommendation. The method begins by constructing a heterogeneous bibliometric network consisting of a co-topic layer and a co-authorship layer. A novel link prediction approach with a diffusion strategy is then used to capture the interactions between social elements (e.g., collaboration) and knowledge elements (e.g., technological similarity) in the process of exploratory innovation. This diffusion strategy differentiates the interactions occurring among homogeneous and heterogeneous nodes in the heterogeneous bibliometric network and weights the strengths of these interactions. Two sets of experiments-one with a local dataset and the other with a global dataset-demonstrate that the proposed method is prior to 10 selected baselines in link prediction, recommender systems, and upstream graph representation learning. A case study recommending knowledge trajectories of information scientists with topical hierarchy and explainable mediators reveals the proposed method's reliability and potential practical uses in broad scenarios.
    Date
    22. 6.2023 18:07:12
    Type
    a
  19. Cerda-Cosme, R.; Méndez, E.: Analysis of shared research data in Spanish scientific papers about COVID-19 : a first approach (2023) 0.01
    0.006858989 = product of:
      0.027435957 = sum of:
        0.027435957 = product of:
          0.041153934 = sum of:
            0.00863584 = weight(_text_:a in 916) [ClassicSimilarity], result of:
              0.00863584 = score(doc=916,freq=12.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.15602624 = fieldWeight in 916, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=916)
            0.032518093 = weight(_text_:22 in 916) [ClassicSimilarity], result of:
              0.032518093 = score(doc=916,freq=2.0), product of:
                0.16809508 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04800207 = queryNorm
                0.19345059 = fieldWeight in 916, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=916)
          0.6666667 = coord(2/3)
      0.25 = coord(1/4)
    
    Abstract
    During the coronavirus pandemic, changes in the way science is done and shared occurred, which motivates meta-research to help understand science communication in crises and improve its effectiveness. The objective is to study how many Spanish scientific papers on COVID-19 published during 2020 share their research data. Qualitative and descriptive study applying nine attributes: (a) availability, (b) accessibility, (c) format, (d) licensing, (e) linkage, (f) funding, (g) editorial policy, (h) content, and (i) statistics. We analyzed 1,340 papers, 1,173 (87.5%) did not have research data. A total of 12.5% share their research data of which 2.1% share their data in repositories, 5% share their data through a simple request, 0.2% do not have permission to share their data, and 5.2% share their data as supplementary material. There is a small percentage that shares their research data; however, it demonstrates the researchers' poor knowledge on how to properly share their research data and their lack of knowledge on what is research data.
    Date
    21. 3.2023 19:22:02
    Type
    a
  20. Vakkari, P.; Järvelin, K.; Chang, Y.-W.: ¬The association of disciplinary background with the evolution of topics and methods in Library and Information Science research 1995-2015 (2023) 0.01
    0.006858989 = product of:
      0.027435957 = sum of:
        0.027435957 = product of:
          0.041153934 = sum of:
            0.00863584 = weight(_text_:a in 998) [ClassicSimilarity], result of:
              0.00863584 = score(doc=998,freq=12.0), product of:
                0.055348642 = queryWeight, product of:
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.04800207 = queryNorm
                0.15602624 = fieldWeight in 998, product of:
                  3.4641016 = tf(freq=12.0), with freq of:
                    12.0 = termFreq=12.0
                  1.153047 = idf(docFreq=37942, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=998)
            0.032518093 = weight(_text_:22 in 998) [ClassicSimilarity], result of:
              0.032518093 = score(doc=998,freq=2.0), product of:
                0.16809508 = queryWeight, product of:
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.04800207 = queryNorm
                0.19345059 = fieldWeight in 998, product of:
                  1.4142135 = tf(freq=2.0), with freq of:
                    2.0 = termFreq=2.0
                  3.5018296 = idf(docFreq=3622, maxDocs=44218)
                  0.0390625 = fieldNorm(doc=998)
          0.6666667 = coord(2/3)
      0.25 = coord(1/4)
    
    Abstract
    The paper reports a longitudinal analysis of the topical and methodological development of Library and Information Science (LIS). Its focus is on the effects of researchers' disciplines on these developments. The study extends an earlier cross-sectional study (Vakkari et al., Journal of the Association for Information Science and Technology, 2022a, 73, 1706-1722) by a coordinated dataset representing a content analysis of articles published in 31 scholarly LIS journals in 1995, 2005, and 2015. It is novel in its coverage of authors' disciplines, topical and methodological aspects in a coordinated dataset spanning two decades thus allowing trend analysis. The findings include a shrinking trend in the share of LIS from 67 to 36% while Computer Science, and Business and Economics increase their share from 9 and 6% to 21 and 16%, respectively. The earlier cross-sectional study (Vakkari et al., Journal of the Association for Information Science and Technology, 2022a, 73, 1706-1722) for the year 2015 identified three topical clusters of LIS research, focusing on topical subfields, methodologies, and contributing disciplines. Correspondence analysis confirms their existence already in 1995 and traces their development through the decades. The contributing disciplines infuse their concepts, research questions, and approaches to LIS and may also subsume vital parts of LIS in their own structures of knowledge production.
    Date
    22. 6.2023 18:15:06
    Type
    a